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L Introduction IntrOdUCtlon

This talk is a progress report on a long-term project to put together
DGLAP and the linear regime of BFKL evolution, including higher order
and running-coupling corrections.

Main groups active:

» Altarelli, Ball, Forte (+ Falgari, Marzano) aka ABF
» Ciafaloni, Colferai, GPS, Stasto aka CCSS
+ Thorne & White
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Introduction

DGLAP, BFKL (fixed coupling)

DGLAP
Integro(x)—differential(Q?) eq™ for
integrated gluon dist., g:

dg(x, Q%)
din@2

| Zrulaies )

BEKL

n

Integro(k)—differential(x) eq" for

unintegrated gluon dist., G:
dG(x, k?) B
dinl/x

dk'’?
/%

K(k/K')G(x, K"

k, Q are transverse scales; x is longitudinal mom. fraction

xg(x, @) = [ d?kG(x, k?)

Both DGLAP and BFKL relate L structure to long. structure:

» given long. struct. DGLAP gives you | struct. evolution

» given | struct. BFKL gives you long. struct. evolution
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Introduction

BEKL

Integro(k)—differential(x) eq" for
unintegrated gluon dist., G:

DGLAP

Integro(x)—differential(Q?) eq™ for
integrated gluon dist., g:

dg(x, Q%) dG(x, k*) _
din@Q2 diInl/x
dz ) dk’? , 2
/ Peg )g( Q%) / 7 K(k/K')G(x, k")

k, Q are transverse scales; x is longitudinal mom. fraction
xg(x, Q) = [© kG (x, k?)
Both DGLAP and BFKL relate L structure to long. structure:
» given long. struct. DGLAP gives you | struct. evolution
» given | struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physics.
Inevitable that one contaminated by other at fixed order
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L Introduction MOtlvatlon

When looking at proton structure we can establish different evolution
regimes (NB: picture for proton):
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L Introduction MOtlvatlon

When looking at proton structure we can establish different evolution

regimes (NB: picture for proton):

But:

> Regions of validity not clearly
delimited

» Higher orders of DGLAP
contaminated by leading BFKL:

A 3) In®
Pegl) = 52 4 at 0NN
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L Introduction MOtlvatlon

When looking at proton structure we can establish different evolution

regimes (NB: picture for proton):

But:

> Regions of validity not clearly
delimited

» Higher orders of DGLAP
contaminated by leading BFKL:

100

>
& 1o = 3
= as  _,¢(3)In°x
P ~ — —
DGLAP » Higher orders of BFKL
BFKL contaminated by leading DGLAP:
R N - pll k2
w07 105 0% 1wt 10® 02 0! 4 K(k, k') ~as—az—In—+...

X 12 k2
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L Introduction NLL BFKL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the
perturbative expansion? Try LL,

LL

10t 1
xO

o

+

xO

<

)
NO 1 3 1
X

E

N

ko = 20 GeV
01 L L L
0 5 10 15 20
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L Introduction NLL BFKL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the
perturbative expansion? Try LL, then NLL BFKL.

n
NLL ag(q?), sg=kko
10 ---- NLL us(qz), 50:k2
s U e NLL ag(k?), s9=kko b .
< NLL a (k). so=k® Choices that formally only affect
+ NNLLx:
xo
¥ R > scale of ag
O gl il ‘ ,
¥ > ‘energy-scale’ sp (Y =Ins/sp).
N .
lead to completely different an-
ko = 20 GeV Swers -
0.1 :
0 5 10 15 20
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L Introduction NLL BFKL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the
perturbative expansion? Try LL, then NLL BFKL.

LL
—-—- NLL ag(q?), sg=kko
10 ---- NLL us(qz), 50:k2
I 5 |
> T F NLL ag(k?), sp=kkq - .
< NLL a (k). so=k® s Choices that formally only affect
+ i NNLLx:
(=] -~
X L .
o) oDt » scale of ag
s L P L "
A TSI \ ‘ '
b3 ; : > ‘energy-scale’ sp (Y =Ins/sp).
N K | .
_ lead to completely different an-
ko = 20 GeV Swers _
0.1 :
0 5 10 15 20
Y

Source of instability is presence in NLL BFKL of a truncated subset of
DGLAP. Only way to get stability is to include full DGLAP.
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L introduetion Perturbative structure of DGLAP Pg,

» Small-x gluon splitting
function has logarithmic
enhancements:

X | =

XPgg(x) = Za;’ In"—1
n=1

+ ...

X |

+ E al In"2
n=2
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L introduetion Perturbative structure of DGLAP Pg,
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: A + @5[4 In3 1 + @@6 In® 1 4.
o3 60 °
1
-1
XPgg(x) = Zagln" ~
n=1
ny.n—2 1
+ z;as "= 4
n—
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D introduction Perturbative structure of DGLAP Pg,
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: as + @5[4 In3 1 + @@6 In® 1 .
3 ¢ 60 °
1

Next-to-Leading Logs (NLLx)

XPgg(x) = Za;’ In"—1
n=1

A

_ _ 1 _ 1
A200¢§ + A31a§’ In " + /44204;l In3 " +...

51
+ E alln"=2 =
X

n=2
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L introduetion Perturbative structure of DGLAP Pg,
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: A + @5[4 In3 1 + @@6 In® 1 4.
3 T x 60 ° 0 x
1
_ ny,n—1—
XPgg(x) = Zlo‘s In x Next-to-Leading Logs (NLLx)
n=
+ Za”|n”_2 1 + A200_42+ /4310_43“1l —|—A42074|n3l—|—...
. s X PPN s S X S X
n—

» NNLO (a2): first small-x
enhancement in gluon splitting
function.
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Introduction

Perturbative structure of DGLAP Pg,

» Small-x gluon splitting
function has logarithmic

enhancements:
.1
XPgg(x) = Zagln" 1;
n=1
ni.n—2 1
+ ) alln —
n=2

» NNLO (a2): first small-x
enhancement in gluon splitting
function.

Understanding small-x
becomes unavoidable

X ng(x)

0.5

04}

03+

T T T T

LO
-~ NLO
----NNLO

0(Q%) =0.225

02r

01F}

Moch, Vermaseren & Vogt
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L Merging BFKL & DGLAP Merging BFKL & DGLAP

Long history of work on merging leading BFKL and DGLAP.
CCFM '88; Lund group ~ '95; Durham-Cracow group ~'95;

Two approaches have been used in order to combine BFKL and DGLAP
including higher orders:

» Establish all-order relation (duality relation) between splitting functions
(DGLAP) and evolution kernel (BFKL). Use that to simultaneously
construct splitting functions consistent with BFKL kernel and vice-versa.

Altarelli, Ball & Forte '99—

» Establish a more general equation that embodies both BFKL and
DGLAP (double-integral equation):

dk’?
12

p K(z, k,kK')G(x/z, k')

G(x, k?) = Go(x, k2)+/dz/dk’2

From that, deduce effective splitting function and BFKL kernel.
Ciafaloni, Colferai, GPS & Stasto, '98-



Matrix BFKL4+-DGLAP, G. Salam (p. 8)

Merging BFKL & DGLAP

Characteristic function

X(y)

Eigenvalues of BFKL kernel:

K@ (k*) = asx(y) - (k)

X(7y) is characteristic function

20(1) —(7) — (1 —7)
— high energy evolution, o ~ e®X(7)Y

» dominant part at high energies is
minimum (only stable solution)

o~ e4In2asY |, 05y

as ~ 0.2
» pole (1/) corresponds to L DGLAP
logarithms — DL terms asY In Q2
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L-Merging BFKL & DGLAP Building up the kernel. ..
15 ; ; ; Examine asx(v)
05(Q%) =0.215 minimum = BFKL power
L | X)) =x(1) +asxa(y) +- -
. LL BFKL Yl NLL
z
"o05F 1
g
>
UV)
0
_0.5 1 1 1
0 0.5 1 15 2
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L-Merging BFKL & DGLAP Building up the kernel. ..
15 ; ; ; Examine asx(7v)
05(Q%) =0.215 minimum = BFKL power
L | X)) =x(1) +asxa(y) +- -
. LL BFKL 7 L
f » NLL terms pathologically large.
= 057 ] minimum — max. (unstable)
\>T<,> oscillating X-sctns, ...
o}
0 7\
LL + NLL BFKL
_0.5 1 1 1
0 0.5 1 15 2

y
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L Merging BFKL & DGLAP

Building up the kernel. ..

15 " Examine agx(7)
(I%F 0(Q%) =0.215 minimum = BFKL power
L | X)) =xo(y) +asxa(y) + -
o LL BFKL LL NLL
f » NLL terms pathologically large.
= 057 ] minimum — max. (unstable)
\>T<,> oscillating X-sctns, ...
o}
0 /™\ » Culprit: L DGLAP logs
2 8 _la
- 1242 1 2
gé LL + NLL BFKL v 7 [t In@?
05 ‘ ‘ ‘
0 0.5 1 15 2

y
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L-Merging BFKL & DGLAP Building up the kernel. ..
15 ; ; ; Examine asx(v)
05(Q%) =0.215 minimum = BFKL power
L | X)) =x(1) +asxa(y) +- -
. LL BFKL M NLL
f » NLL terms pathologically large.
= 057 ] minimum — max. (unstable)
\>T<» oscillating X-sctns, ...
o}
0 DGLAP » Culprit: | DGLAP logs
as 11a?
LL + NLL BFKL v 1292 2
[y e @
05 0 01_5 1 11_5 2 > Known at all orders (y — 0)
Qs

y

‘Rotated ~(N)'
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L Merging BFKL & DGLAP

Building up the kernel. ..

1.5 T T T
Q% =0.215
1 .
LL BFKL
—l
P4
"os5¢ anti-DGLAP|
Z
x<
[
[e] —
0 DGLAP
LL + NLL BFKL
05 : : :
0 05 1 15 2
Y

Examine asx(v)
minimum = BFKL power

xX(7) = xo(7) +asxi(y) +- ..
—— ==

LL NLL

» NLL terms pathologically large.
minimum — max. (unstable)
oscillating X-sctns, ...

» Culprit: | DGLAP logs

as 11a?
v 1292 tangy
» Known at all orders (v — 0)
Qs
= ‘Rotated v(N)'
Qs + 7y

> Symmetry v« N — v
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L Merging BFKL & DGLAP

Building up the kernel. ..

1.5 T T T
Q%) =0.215
1 L
LL BFKL
—
P
Il L n
= 0.5 combined anti-DGLAP;
=
0
o]
0 DGLAP
LL + NLL BFKL
-0.5 * * *
0 05 1 15

y

Examine asx(v)

minimum = BFKL power

X(7) = xo(7) +asxa(v) + - .-
N~ —
LL NLL

Assemble all constraints:

stable, sensible kernel |

Ciafaloni, Colferai, GPS & Stasto '98-'03;
Altarelli, Ball & Forte; '99-'05
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L Merging BFKL & DGLAP

Building up the kernel. ..

1.5 T T T
Q%) =0.215
1 L
LL BFKL
—
P
Il L n
= 0.5 combined anti-DGLAP;
=
0
o]
0 DGLAP
LL + NLL BFKL
-0.5 * * *
0 05 1 15

y

Examine asx(v)

minimum = BFKL power

X(7) = xo(7) +asxa(v) + - .-
N~ —
LL NLL

Assemble all constraints:

stable, sensible kernel |

Ciafaloni, Colferai, GPS & Stasto '98-'03;
Altarelli, Ball & Forte; '99-'05

NB: cf. strong coupling limits with

same fixed points at v = 0,2
Brower, Polchinski, Strassler & Tan '06
Stasto '07
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L Merging BFKL & DGLAP Pure glue case, LLx+LO
Write Kernel as power series in as: K = Z&"K,, & = as/2m
n=0

First order (LLx-LO) has two parts:

2C 2C
Ko() = ZAx80) + |Fapole) = 22| 1200

—_———

BFKL (LLx) finite-x DGLAP (LO)

use Mellin transforms: v < k2, w <> In1/x, [gg o(w) < Pgg(x)
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L Merging BFKL & DGLAP Pure g| ue case, LLx+LO

Write Kernel as power series in as: K = E a"K, & = as/2m
n=0

First order (LLx-LO) has two parts:

204, 2047
Ko() = ZAx80) + |Fapole) = 22| 1200

———

BFKL (LLx) finite-x DGLAP (LO)

use Mellin transforms: v < k2, w <> In1/x, [gg o(w) < Pgg(x)

BFKL piece has usual transverse | DGLAP remainder piece has a
structure with kinematic constraint | collinear kernel:
1 1
X6 (7) = 2¢(1) = (v) = (1+w—7) () =-+—"—
N v l4+w-—7v
ote symmetry v = 1 —~v 4w

Multiplied by as(g?), G = k — K’ Multiplied by as(k2)
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L Merging BFKL & DGLAP Pure glue case, NLx+NLO
Write Kernel as power series in as: K = Z&"K,, & = as/2m
n=0

First order (LLx-LO) has two parts:

204, 2047
Ko() = ZAx80) + |Fapole) = 22| 1200
———
BFKL (LLx) finite-x DGLAP (LO)

use Mellin transforms: v < k2, w <> In1/x, [gg o(w) < Pgg(x)

Next order (NLx-NLO) also has two parts:

(2Ca)? ) + Faen(w)x2()

Kl(Fy’w) = w

with ¥; and rgg,l(w) adjusted so as to reproduce NLx BFKL and NLO
DGLAP.
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L Merging BFKL & DGLAP

Green fn. from improved kernel

LL

---- scheme A
scheme B 1
~ 10 ¢
=
o
+
N
)
O]
N O 1¢
4
[
N
ko =20 GeV
01 1 1 1
0 5 10 15
Y

20

First tried in '03, without
NLO DGLAP piece.
NLx-LO

Two schemes, to estimate

degree of stability

» scheme A violates mom.
sum-rule at O (ag)

» scheme B satisfies it at
all orders

Solve double-integral eq"
with each.

Different schemes —
similar results

cf. pure NLO
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L Merging BFKL & DGLAP Green function = effective ng

Construct a gluon density from Green function (take k > ko):

Q
xg(x, Q2)E/ d*k G=K)(In1/x, k, ko)
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L Merging BFKL & DGLAP Green function = effective ng

Construct a gluon density from Green function (take k > ko):

Q
xg(x, Q2)E/ d*k G=K)(In1/x, k, ko)

Numerically solve equation for effective splitting function, Pg, oq(z, Q?):

dg(x, Q2 d
i(lxnicﬁ) :/72 Pogerr(z,Q%) g (3 02)
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L Merging BFKL & DGLAP Green function = effective ng

Construct a gluon density from Green function (take k > ko):
Q 2
xg(x, Q?) = / d?k G=F)(In1/x, k, ko)

Numerically solve equation for effective splitting function, Pg, oq(z, Q?):

dg(x, Q2 d
8(;(;;752) :/72 Pogerr(z,Q%) g (; 02)

k Evolution paths in x,k
Factorisation
» Splitting function:
red paths

» Green function:
all paths

factorized (non—perturbative)
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Merging BFKL & DGLAP

Full Pgg(z) splitting fn

N LL (fixed o) -
. LODGLAP ------- g
Q=4.5GeV ' :
1} 5(Q%=0.215 \ ]
\
\
N
O .
N AN
\
N
\\
0.1 f ]
1010 108 10°® 10 1072
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Merging BFKL & DGLAP

Full Pgg(z) splitting fn

N LL (fixed o) -
~ - 2
N \ LL (@) ----
Q=45GeV *. \ LO DGLAP -+
1} 5(Q)=0215 . ' :
.. \\
— “ \\
N ‘\
a N \\
N ~ \
.. .
N \
. .~ :
0.1 |
10710 10 10 107 10
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Merging BFKL & DGLAP

Full Pgg(z) splitting fn

" LL(fixeddy) ———-
. )
' o Hh@(@)) ----
Q=45GeV *. \ NLLg
_ 2 .
1R Q) =0215 . "\LO DGLAP -
\\ N
N
o
N
0.1
1010 108 10°® 10
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L Merging BFKL & DGLAP

One channel Pg: ABF v. CCSS

0.5 A A IR BN BELLAALLY BN LI Altarelli, Ba” & Forte
! ) _ { have also calculated ef-
xP running coupling ] .

04 = - fective Pgg:

X 1 » similar physical

03 [~ — ingredients
[ » completely different

02 [— ‘implementation’

[ Main features similar

o1 |- ABF 16T — between CCSS & ABF.
: (LLx-LO) NNLO DGLAP :

: <-4 In particular splitting-fn
Cod v v v v el e Tl : -3
00 7100 10! 102 108 104 10% 10 has dip at x ~ 107°.
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L Merging BFKL & DGLAP

The dip

LLx

NLLXx

NNLLXx
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L Merging BFKL & DGLAP The Cllp
LLx  NLLx NNLLx
ag - -
2
0g ‘«_0 .
ag _‘0 X
ad - x ‘ X x
L &, = 0.05 :
R/
5 - h
ag 0 X ._.‘X J/,\, %
//7? 2> | |
]/* Y | |
16‘4 1(‘)‘3 10“2 oi1 1
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L Merging BFKL & DGLAP

The dip

LLx

NLLx

NNLLXx

At moderately small x, first terms
with x-dependence are

1
—1.54a%In =
X

o, = 0.05

1073

1072

0.1 1
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L Merging BFKL & DGLAP The di P

At moderately small x, first terms

LLx  NLLx" NNLLx with x-dependence are

o _ - —1.546§|n§+0.4015z§|n3§
azi. 0 -

al . 0 X

ag X X X

104 10° 10? o0.1 1
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L Merging BFKL & DGLAP The di P

At moderately small x, first terms

LLx  NLLx* NNLLx with x-dependence are

1 1
agf. - - ~1.54a2In = +0.401 a2 In® =
X X
Minimum when
2
ag-.. 0 - ) )
asln’x~1 = In=~
0(2 ! X /s
4|
uS
(15

104 10° 10? o0.1 1
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L Two channels TWO Cha n nels

Formalism

BFKL is naturally single-channel ~ Only gluon production has 1/x divergence
DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we had ignored the multi-channel aspect, for simplicity. But:

> If we are to use small-x resummed splitting functions, we need the
whole singlet matrix

» Including quarks in evolution may provide a convenient way of
resumming collinear logs in impact factors
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L Two channels TWO Cha n nels

Formalism

BFKL is naturally single-channel ~ Only gluon production has 1/x divergence

DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we had ignored the multi-channel aspect, for simplicity. But:

> If we are to use small-x resummed splitting functions, we need the
whole singlet matrix

» Including quarks in evolution may provide a convenient way of
resumming collinear logs in impact factors

Generalise double-integral eq" to two channels

Add flavour indices to Green function and kernel

/2
Gap(x, K2, kZ) = 62(k — ko)éab—i—/dz/dk’2%Kac(z,k,k’)Gcb(x/z, K k3)
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L Two channels Symmetry and subtleties
Formalism
|
XX : XX Want to encode two strongly or-
! dered collinear limits
d c b a
i < < <
DGLAP limit o rdc rcb rba o Xd Xe Xp Xa
ktq > kie > kep > ke,
; - Xd > Xe > Xp > X
anti-DGLAP limit Ted TheTap - .. d c b a
ktg < ke < kep < ke,
= .- (rT)dc (rT)Cb (rT)ba cee .

Suggests sym. K(v,w) = KT(1+w —v,w). But this — spurious colour &
1/w structures, e.g. a2C2/w? for g — q — g, in non-ordered limits.

DGLAP attaches 1/w and colour sum to leg with higher p;
BFKL attaches them to left-hand leg — inconsistent
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Two channels

T Matrix requirements
Formalism

Sensibleness requirement on matrix formulation.

Use similarity transform S to reattach colour and 1/w factors in

anticollinear limit, so as to restore compatibility between DGLAP and
BFKL. Resulting symmetry is

K(1+w—7w) =S (7,0)57H(w) .

Choose S, for convenience, such that

KT(y,w) = SKT(7,0)§Hw) = K1 +w—7,w)=K(y,w)
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L Two channels Matrix requirements

Formalism

Sensibleness requirement on matrix formulation.

Use similarity transform S to reattach colour and 1/w factors in
anticollinear limit, so as to restore compatibility between DGLAP and
BFKL. Resulting symmetry is

K1 +w—7,w)=SWKT(,w)SHw) .
Choose S, for convenience, such that

KT(y,w) = SKT(7,0)§Hw) = K1 +w—7,w)=K(y,w)

Other requirements

> Kqq, Kgg should be free of 1/w divergences at all orders
> Kgq, Kgg may at most have 1/w divergences
» No terms in K, should have any collinear divergence stronger than 1/~.

And maintain compatibility with NLx BFKL, NLO DGLAP
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L Two channels MatI’IX kernel

Formalism

Structure quite similar to single-channel; LLx-LO is:

rqq,O(W)X%} (7) rqg,O(W)X? (7) + Aqg(W)Xﬁt (7)
ICO(77 w) = 2CA
Feao(@xe(7) Tago(@)xe(n) + —=[xg(") = xe()]
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L Two channels MatI’IX kernel

Formalism

Structure quite similar to single-channel; LLx-LO is:

Fgq,0(w)xé(v) Cag,0(W)XE (V) + Dgg(w)xi (7)
ICO(77 w) = 2CA
Meao(@xe(7) Tago(@)xe() + —=[xg(M) = xe()]

Note Agg(w) term: allows one to set factorisation scheme at NLO, by
modifying the higher-twist part of the gz kernel.
Without having to add a2 /w term to K1 q¢
NB: We choose MS
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Two channels

Matrix kernel

Formalism

Structure quite similar to single-channel; LLx-LO is:

[aq.0(@)xe(7) Cag,0(W)XE(7) + Dgg(w)xin (7)

ICO(’Y? w) = 2CA
Feao(@xe(7) Tago(@)xe(n) + —=[xg(") = xe()]

Note Agg(w) term: allows one to set factorisation scheme at NLO, by

modifying the higher-twist part of the gz kernel.
Without having to add a2 /w term to K1 q¢
NB: We choose MS

Higher orders:

» Add on K1(y,w) to get NLx-NLO.
> put in extra higher-twist piece in Ko(7,w) to get a2 /w?
scheme-dependent terms (NLx-NLO™).
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LTwo channels Known |ImltatI0nS

Formalism

» MS scheme for ag/w"_l terms in Pyg, Pgg, Pgg only set up to some
fixed order (NLO, NNLO), even though known [Catani & Hautmann
'94] to all orders. Believed to be no larger than renorm-scale uncertainties

Based on study of P,,, CCSS '06
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LTwo channels Known |ImltatI0nS

Formalism

» MS scheme for ag/w”_l terms in Pyg, Pgg, Pgg only set up to some
fixed order (NLO, NNLO), even though known [Catani & Hautmann
'94] to all orders. Believed to be no larger than renorm-scale uncertainties

Based on study of P,,, CCSS '06

» Formalism ‘predicts’ that at NLx accuracy, at NNLO

NLX o CF NLX
r =—I
&9,2 CA 88,2

But true MS [MVV '04] result differs by an N -suppressed term

NLx _ =F Cr NLx _ _Nf
&9,2 C 882 N.w?

Not understood, but numerically tiny < 0.5%
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L Two channels Intercept at fixed coupling

Numerical results

Power of growth of cross-sections and splitting functions at fixed coupling.
Rather similar to 2003 results:

0.5
0.4 - acki

g Faal

g P% NLX-NLO, nf = 4 ——
0.2 / NLx-NLO, nf =0

NLX-LO ,nf=0 —
1-channel B a

0 005 01 015 02 025 03 035 04

0.1

S
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Two channels

Numerical results

Green function

21kG Gig(Y, k. ko) [k= 1.2 ko]

10

0.1

—— NLx-NLO

NLx-NLO™*
scheme B

5 10

Y = In s/(k ko)

Green function for gluon is
very similar to 2003 results.
Scale uncertainties (band)
under control

Additionally generate quark

component, with  same

power-growth,  but sup-
pressed by ~ as.

Scale uncertainties larger

— radiative generation

NNLO part of NLx scheme
terms (NLO™) have little im-
pact.
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Two channels
Numerical results

Splitting functions

X Pgq(X)

X qu(x)

10% 10% 10* 10% 207 100 110% 20° 10* 10° 207 10t
T T T T T T T T T T
004 | — NLNLO i 0702, 4
=== NLNLO® 05<x,<2
o0z~ Mo |
002 N 1
001 :
@ a9
0.00 ‘ ‘

9

99

0.00
105 10° 10%

10?

110% 10°

0.10

0.08

0.00

0.00

X Pgg(X)

X Pgg(X)

In gg channel results
again similar to those
from 2003

gq channel rather simi-
lar to gg

Both have dip

at x ~ 1073

qq and gg channels
have barely any dip,
and large scale uncer-
tainties — NLx is first
order of generation of
small-x quarks.
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L Two channels Conclusions, outlook

Numerical results

» Have matrix double integral equation that contains both NLx BFKL and
NLO DGLAP in MS scheme.

» From it one can deduce Green functions and matrix of effective small-x
resummed splitting functions.

> Gluon-channel results agree with earlier resummations, now also get full
singlet matrix.
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L Two channels Conclusions, outlook

Numerical results

» Have matrix double integral equation that contains both NLx BFKL and
NLO DGLAP in MS scheme.

» From it one can deduce Green functions and matrix of effective small-x
resummed splitting functions.

> Gluon-channel results agree with earlier resummations, now also get full
singlet matrix.

Many options open for future

» providing splitting functions in convenient form for general use
» understanding what happens at NNLO

> extending treatment to coefficient functions
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Extras

EXTRAS
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Extras

We VS. O
Q [GeV]
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Extras wc VS &S
Q [GeV]
300 24 6.8 3.2 1.9
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I—Extras wc VS &S
Q [GeV]
300 24 6.8 3.2 1.9
0.5
04
o 0.3 eI
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%. ) ‘/_‘//" "
< 02 Y i
° ,;/';/ LL, fixed ag
0.1 /,"/’/ LL, running ag ———- |
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Extras wc VS. &S
Q [GeV]
300 24 6.8 3.2 1.9
0.5
0.4
£ e
o 0.3 B R
= -7
£ T
< 02 ot — _—
? B ’;/// LL, fixed ag
0.1 (.o LL, running ag ———- |
- NLLg, fixed ag - - - -
0 NLLg, running Oy ——
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L sras Similarity transforms
2neNcfy(w) 0
5 = ’
0 (NZ = 1)fe(w)
ng fq(w)
B lqq e fg(w)rgq
r=sr’'s1=
Cr fo(w
e figw;rqg leg
r r
Ko~ - )
v l+w—vy
2T, -
fq(w) = R — r = r N
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L stras qg entry of matrix kernel

Ko,qg(7:w) = Tag0(w)Xe (7) + Agg(w)xm (7)

X5 (7) is a higher-twist kernel possessing the v < 1+ w — 7, e.g.

2/ 1 1 .
i = - + 0)=1

Agg is an w-dependent coefficient, regular for R(w) > —1

1 2 1
— Ao (0) = 0ge -
14w 2+w+3+w> ’ %(0) i

Dgg(w) = dgg A(w) = Ggg - 3 (

To get the MS scheme, set §qz = 52273 =8T¢/9.
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L stras Higher-order kernel

joN
Il
B

_ (m) An+1 1,
K(as,v,w) = Z pKCn @My
n,m,p=0

1 2\ (o 0
K1 = (M= KEPED) 2 + (2€ 2(———)
! (1 0 °>XC+( A) w 11w)\0 52—y

=0 = 7, = oKeg1 _  BFKL _ [0Ko 1K0] 5
= (2Ca)? ! (2Ca)?

)
3
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Extras

Effective y — matrix eigenvalues

2 —
\ |
15 Ly /{04
1 \ \ 03
t \
(] |
> |
0.5 i
0 ‘\
g NLx-LO
| 85702 =4 NLX-NLO ——
-05 \‘ I I
-0.5 0 05 1
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