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Introduction Introduction

This talk is a progress report on a long-term project to put together
DGLAP and the linear regime of BFKL evolution, including higher order
and running-coupling corrections.

Main groups active:

◮ Altarelli, Ball, Forte (+ Falgari, Marzano) aka ABF

◮ Ciafaloni, Colferai, GPS, Staśto aka CCSS

+++ Thorne & White
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Introduction DGLAP, BFKL (fixed coupling)

DGLAP

Integro(x)–differential(Q2) eqn for
integrated gluon dist., g :

dg(x ,Q2)

d lnQ2
=
∫

dz

z
Pgg (z)g(

x

z
,Q2)

BFKL

Integro(k)–differential(x) eqn for
unintegrated gluon dist., G :

dG (x , k2)

d ln 1/x
=

∫
dk ′2

k ′2
K (k/k ′)G (x , k ′2)

k , Q are transverse scales; x is longitudinal mom. fraction

xg(x ,Q2) =
∫ Q

d2kG(x , k2)

Both DGLAP and BFKL relate ⊥ structure to long. structure:

◮ given long. struct. DGLAP gives you ⊥ struct. evolution

◮ given ⊥ struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physics.

Inevitable that one contaminated by other at fixed order
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Introduction Motivation

When looking at proton structure we can establish different evolution
regimes (NB: picture for proton):

But:

◮ Regions of validity not clearly
delimited

◮ Higher orders of DGLAP
contaminated by leading BFKL:

Pgg (x) ≃ ᾱs

x
+ ᾱ4

s

ζ(3)

3

ln3 x

x
+ . . .

◮ Higher orders of BFKL
contaminated by leading DGLAP:

K (k, k ′) ≃ ᾱs − ᾱ2
s

11

12
ln

k2

k ′2
+ . . .
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+ ᾱ4

s

ζ(3)

3

ln3 x

x
+ . . .

◮ Higher orders of BFKL
contaminated by leading DGLAP:

K (k, k ′) ≃ ᾱs − ᾱ2
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Introduction NLL BFKL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the
perturbative expansion? Try LL, then NLL BFKL.

 0.1

 1

 10

 0  5  10  15  20

2π
 k

02  G
(Y

; k
0 

+
 ε

, k
0)

Y

LL

k0 = 20 GeV

Choices that formally only affect
NNLLx :

◮ scale of αs

◮ ‘energy-scale’ s0 (Y = ln s/s0).

lead to completely different an-
swers →

Source of instability is presence in NLL BFKL of a truncated subset of

DGLAP. Only way to get stability is to include full DGLAP.
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Introduction Perturbative structure of DGLAP Pgg

◮ Small-x gluon splitting
function has logarithmic
enhancements:

xPgg (x) =
∑

n=1

αn
s lnn−1 1

x

+
∑

n=2

αn
s lnn−2 1

x
+ . . .

◮ NNLO (α3
s ): first small-x

enhancement in gluon splitting
function.

Understanding small-x

becomes unavoidable

Leading Logs (LLx)

ᾱs +
ζ(3)

3
ᾱ4

s ln3 1

x
+
ζ(5)

60
ᾱ6

s ln5 1

x
+ · · ·

Next-to-Leading Logs (NLLx)

A20ᾱ
2
s + A31ᾱ

3
s ln

1

x
+ A42ᾱ

4
s ln3 1

x
+ . . .
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Merging BFKL & DGLAP Merging BFKL & DGLAP

Long history of work on merging leading BFKL and DGLAP.
CCFM ’88; Lund group ∼ ’95; Durham-Cracow group ∼’95;

Two approaches have been used in order to combine BFKL and DGLAP
including higher orders:

◮ Establish all-order relation (duality relation) between splitting functions
(DGLAP) and evolution kernel (BFKL). Use that to simultaneously
construct splitting functions consistent with BFKL kernel and vice-versa.

Altarelli, Ball & Forte ’99–

◮ Establish a more general equation that embodies both BFKL and
DGLAP (double-integral equation):

G (x , k2) = G0(x , k
2) +

∫

dz

∫

dk ′2 dk ′2

k ′2
K (z , k, k ′)G (x/z , k ′2)

From that, deduce effective splitting function and BFKL kernel.
Ciafaloni, Colferai, GPS & Staśto, ’98-
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Merging BFKL & DGLAP Characteristic function

 0

 5

 10

 0  0.5  1

χ(
γ)

γ

4 ln 2

≈ 1/γ ≈ 1/(1−γ)

Eigenvalues of BFKL kernel:

K ⊗ (k2)γ = ᾱsχ(γ) · (k2)γ

χ(γ) is characteristic function

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ)

→ high energy evolution, σ ∼ eᾱsχ(γ)Y .

◮ dominant part at high energies is
minimum (only stable solution)

σ ∼ e4 ln 2ᾱsY ∼ e0.5Y

αs ≃ 0.2

◮ pole (1/γ) corresponds to ⊥ dglap

logarithms → DL terms αsY lnQ2
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Merging BFKL & DGLAP Building up the kernel. . .

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2

α
s 

χ(
γ)

  
=

  
N

 -
 1

γ

LL BFKL

α−s(Q
2) = 0.215

Examine ᾱsχ(γ)
minimum = BFKL power

χ(γ) = χ0(γ)
︸ ︷︷ ︸

LL

+ ᾱsχ1(γ)
︸ ︷︷ ︸

NLL

+ . . .

◮ NLL terms pathologically large.

minimum → max. (unstable)
oscillating X-sctns, . . .

◮ Culprit: ⊥ DGLAP logs

ᾱs

γ
− 11

12

ᾱ2
s

γ2
+ . . .

[γ−1 ⇔ ln Q2]

◮ Known at all orders (γ → 0)

≈ ᾱs

ᾱs + γ
‘Rotated γ(N)’

◮ Symmetry γ ↔ N − γ
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ᾱs

γ
− 11

12

ᾱ2
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Merging BFKL & DGLAP Building up the kernel. . .
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Merging BFKL & DGLAP Building up the kernel. . .
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+ ᾱsχ1(γ)
︸ ︷︷ ︸

NLL

+ . . .

◮ NLL terms pathologically large.

minimum → max. (unstable)
oscillating X-sctns, . . .

◮ Culprit: ⊥ DGLAP logs

ᾱs
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Merging BFKL & DGLAP Building up the kernel. . .

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2

α
s 

χ(
γ)

  
=

  
N

 -
 1

γ

LL BFKL

LL + NLL BFKL

DGLAP

anti-DGLAPcombined

α−s(Q
2) = 0.215

Examine ᾱsχ(γ)
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Assemble all constraints:

stable, sensible kernel

Ciafaloni, Colferai, GPS & Staśto ’98–’03;

Altarelli, Ball & Forte; ’99–’05

NB: cf. strong coupling limits with
same fixed points at γ = 0, 2

Brower, Polchinski, Strassler & Tan ’06

Stasto ’07
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Merging BFKL & DGLAP Pure glue case, LLx+LO

Write Kernel as power series in αs: K =
∑

n=0

α̂nKn α̂ = αs/2π

First order (LLx-LO) has two parts:

K0(γ, ω) =
2CA

ω
χω

0 (γ)
︸ ︷︷ ︸

BFKL (LLx)

+

[

Γgg ,0(ω) − 2CA

ω

]

χω
c (γ)

︸ ︷︷ ︸

finite-x DGLAP (LO)

use Mellin transforms: γ ↔ k2, ω ↔ ln 1/x , Γgg ,0(ω) ↔ Pgg (x)
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]
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finite-x DGLAP (LO)

use Mellin transforms: γ ↔ k2, ω ↔ ln 1/x , Γgg ,0(ω) ↔ Pgg (x)

BFKL piece has usual transverse
structure with kinematic constraint

χω
0 (γ) = 2ψ(1)−ψ(γ)−ψ(1+ω−γ)

Note symmetry γ ↔ 1 − γ + ω

Multiplied by αs(q
2), ~q = ~k − ~k ′

DGLAP remainder piece has a
collinear kernel:

χω
c (γ) =

1

γ
+

1

1 + ω − γ

Multiplied by αs(k
2
>)
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Merging BFKL & DGLAP Pure glue case, NLx+NLO

Write Kernel as power series in αs: K =
∑

n=0

α̂nKn α̂ = αs/2π

First order (LLx-LO) has two parts:

K0(γ, ω) =
2CA

ω
χω

0 (γ)
︸ ︷︷ ︸

BFKL (LLx)

+

[

Γgg ,0(ω) − 2CA

ω

]

χω
c (γ)

︸ ︷︷ ︸

finite-x DGLAP (LO)

use Mellin transforms: γ ↔ k2, ω ↔ ln 1/x , Γgg ,0(ω) ↔ Pgg (x)

Next order (NLx-NLO) also has two parts:

K1(γ, ω) =
(2CA)2

ω
χ̃ω

1 (γ) + Γ̃gg ,1(ω)χω
c (γ)

with χ̃1 and Γ̃gg ,1(ω) adjusted so as to reproduce NLx BFKL and NLO
DGLAP.
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Merging BFKL & DGLAP Green fn. from improved kernel
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 k
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(Y
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+
 ε

, k
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Y

k0 = 20 GeV

(a)

LL
scheme A
scheme B

First tried in ’03, without
NLO DGLAP piece.

NLx-LO

Two schemes, to estimate
degree of stability

◮ scheme A violates mom.
sum-rule at O

(
α2

s

)

◮ scheme B satisfies it at
all orders

Solve double-integral eqn

with each.

Different schemes →
similar results

cf. pure NLO
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Merging BFKL & DGLAP Green function ⇒ effective Pgg

Construct a gluon density from Green function (take k ≫ k0):

xg(x ,Q2) ≡
∫ Q

d2k G (ν0=k2)(ln 1/x , k, k0)

Numerically solve equation for effective splitting function, Pgg ,eff(z ,Q2) :

dg(x ,Q2)

d lnQ2
=

∫
dz

z
Pgg ,eff(z ,Q2) g

(x

z
,Q2

)

Factorisation

◮ Splitting function:
red paths

◮ Green function:
all paths



Matrix BFKL+DGLAP, G. Salam (p. 12)

Merging BFKL & DGLAP Green function ⇒ effective Pgg

Construct a gluon density from Green function (take k ≫ k0):

xg(x ,Q2) ≡
∫ Q

d2k G (ν0=k2)(ln 1/x , k, k0)

Numerically solve equation for effective splitting function, Pgg ,eff(z ,Q2) :

dg(x ,Q2)

d lnQ2
=

∫
dz

z
Pgg ,eff(z ,Q2) g

(x

z
,Q2

)

Factorisation

◮ Splitting function:
red paths

◮ Green function:
all paths



Matrix BFKL+DGLAP, G. Salam (p. 12)

Merging BFKL & DGLAP Green function ⇒ effective Pgg

Construct a gluon density from Green function (take k ≫ k0):

xg(x ,Q2) ≡
∫ Q

d2k G (ν0=k2)(ln 1/x , k, k0)

Numerically solve equation for effective splitting function, Pgg ,eff(z ,Q2) :

dg(x ,Q2)

d lnQ2
=

∫
dz

z
Pgg ,eff(z ,Q2) g

(x

z
,Q2

)

Factorisation

◮ Splitting function:
red paths

◮ Green function:
all paths

x

Q1

Q2

g(x,Q )1

g(x,Q2 )

k

2

2

Pgg

Evolution paths in x,k

factorized (non−perturbative)

g



Matrix BFKL+DGLAP, G. Salam (p. 13)

Merging BFKL & DGLAP Full Pgg(z) splitting fn
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Merging BFKL & DGLAP One channel Pgg : ABF v. CCSS

Altarelli, Ball & Forte
have also calculated ef-
fective Pgg :

◮ similar physical
ingredients

◮ completely different
‘implementation’

Main features similar
between CCSS & ABF.

In particular splitting-fn
has dip at x ∼ 10−3.
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Merging BFKL & DGLAP The dip
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Two channels

Formalism
Two channels

BFKL is naturally single-channel Only gluon production has 1/x divergence

DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we had ignored the multi-channel aspect, for simplicity. But:

◮ If we are to use small-x resummed splitting functions, we need the
whole singlet matrix

◮ Including quarks in evolution may provide a convenient way of
resumming collinear logs in impact factors

Generalise double-integral eqn to two channels

Add flavour indices to Green function and kernel

Gab(x , k
2, k2

0 ) = δ2(k − k0)δab +

∫

dz

∫

dk ′2 dk ′2

k ′2
Kac(z, k , k

′)Gcb(x/z, k
′2, k2

0 )
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Two channels

Formalism
Symmetry and subtleties

abcd

Want to encode two strongly or-
dered collinear limits

DGLAP limit . . . Γdc Γcb Γba . . .

{

xd < xc < xb < xa

ktd ≫ ktc ≫ kt b ≫ kt a

anti-DGLAP limit . . . Γcd Γbc Γab . . .

{

x̄d > x̄c > x̄b > x̄a

ktd ≪ ktc ≪ kt b ≪ kta

= . . . (ΓT )dc (ΓT )cb (ΓT )ba . . . .

Suggests sym. K (γ, ω) = KT (1 + ω− γ, ω). But this → spurious colour &
1/ω structures, e.g. α2

sC
2
F/ω

2 for g → q → g , in non-ordered limits.

DGLAP attaches 1/ω and colour sum to leg with higher pt

BFKL attaches them to left-hand leg — inconsistent
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Two channels

Formalism
Matrix requirements

Sensibleness requirement on matrix formulation.

Use similarity transform S to reattach colour and 1/ω factors in
anticollinear limit, so as to restore compatibility between DGLAP and
BFKL. Resulting symmetry is

K(1 + ω − γ, ω) = S(ω)KT (γ, ω)S−1(ω) .

Choose S, for convenience, such that

KT (γ, ω) = S(ω)KT (γ, ω)S−1(ω) =⇒ K(1 + ω − γ, ω) = K(γ, ω)

Other requirements

◮ Kqq, Kqg should be free of 1/ω divergences at all orders

◮ Kgq, Kgg may at most have 1/ω divergences

◮ No terms in Kab should have any collinear divergence stronger than 1/γ.

And maintain compatibility with NLx BFKL, NLO DGLAP
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Two channels

Formalism
Matrix kernel

Structure quite similar to single-channel; LLx-LO is:

K0(γ, ω) =






Γqq,0(ω)χω
c (γ) Γqg ,0(ω)χω

c (γ) + ∆qg (ω)χω
ht

(γ)

Γgq,0(ω)χω
c (γ) Γgg ,0(ω)χω

c (γ) +
2CA

ω

[
χω

0 (γ) − χω
c (γ)

]






Note ∆qg (ω) term: allows one to set factorisation scheme at NLO, by
modifying the higher-twist part of the Kqg kernel.

Without having to add α2
s/ω term to K1,qg

NB: We choose MS

Higher orders:

◮ Add on K1(γ, ω) to get NLx-NLO.

◮ put in extra higher-twist piece in K0(γ, ω) to get α3
s/ω

2

scheme-dependent terms (NLx-NLO+).
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Two channels

Formalism
Known limitations

◮ MS scheme for αn
s /ω

n−1 terms in Pqq, Pqg , Pgg only set up to some
fixed order (NLO, NNLO), even though known [Catani & Hautmann
’94] to all orders. Believed to be no larger than renorm-scale uncertainties

Based on study of Pgg , CCSS ’06

◮ Formalism ‘predicts’ that at NLx accuracy, at NNLO

ΓNLx
gq,2 =

CF

CA

ΓNLx
gg ,2

But true MS [MVV ’04] result differs by an Nc -suppressed term

ΓNLx
gq,2 =

CF

CA

[

ΓNLx
gg ,2 − nf

Ncω2

]

Not understood, but numerically tiny < 0.5%
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Two channels

Numerical results
Intercept at fixed coupling

Power of growth of cross-sections and splitting functions at fixed coupling.
Rather similar to 2003 results:
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Two channels

Numerical results
Green function

2π
 k

02  G
ig

(Y
, k

, k
0)

   
[k

=
 1

.2
 k

0]

Y = ln s/(k k0)

0.5 < xµ < 2

αs = 0.15

NLx-NLO

NLx-NLO+

scheme B
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 0  5  10  15  20

i=g

i=q

Green function for gluon is
very similar to 2003 results.

Scale uncertainties (band)

under control

Additionally generate quark

component, with same
power-growth, but sup-
pressed by ∼ αs.

Scale uncertainties larger

— radiative generation

NNLO part of NLx scheme
terms (NLO+) have little im-
pact.
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Two channels

Numerical results
Splitting functions
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In gg channel results
again similar to those
from 2003

gq channel rather simi-
lar to gg

Both have dip

at x ∼ 10−3

qq and qg channels
have barely any dip,
and large scale uncer-
tainties — NLx is first
order of generation of
small-x quarks.
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Two channels

Numerical results
Conclusions, outlook

◮ Have matrix double integral equation that contains both NLx BFKL and
NLO DGLAP in MS scheme.

◮ From it one can deduce Green functions and matrix of effective small-x
resummed splitting functions.

◮ Gluon-channel results agree with earlier resummations, now also get full
singlet matrix.

Many options open for future

◮ providing splitting functions in convenient form for general use

◮ understanding what happens at NNLO

◮ extending treatment to coefficient functions
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Extras

EXTRAS
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Extras ωc vs. αs
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Extras Similarity transforms

S =





2nf Nc fq(ω) 0

0 (N2
c − 1)fg (ω)



 ,

Γ = SΓTS−1 =






Γqq
nf

CF

fq(ω)
fg (ω)Γgq

CF

nf

fg (ω)
fq(ω)Γqg Γgg




 .

K ≃ Γ

γ
+

Γ

1 + ω − γ
,

fq(ω) =
2TR

ω + 3
=⇒ Γ = Γ ,
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Extras qg entry of matrix kernel

K0,qg (γ, ω) = Γqg ,0(ω)χω

c (γ) + ∆qg (ω)χω

ht(γ)

χω

ht
(γ) is a higher-twist kernel possessing the γ ↔ 1 + ω − γ, e.g.

χω

ht
(γ) =

2

3

(
1

1 + γ
+

1

2 + ω − γ

)

, χ0
ht

(0) = 1 ,

∆qg is an ω-dependent coefficient, regular for ℜ(ω) > −1

∆qg (ω) ≡ δqg ∆(ω) ≡ δqg · 3
(

1

1 + ω
− 2

2 + ω
+

1

3 + ω

)

, ∆qg (0) = δqg .

To get the MS scheme, set δqg = δMS
qg = 8Tf /9.
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Extras Higher-order kernel

K(αs, γ, ω) ≡
∞∑

n,m,p=0

pK(m)
n α̂n+1γm−1ωp−1 , α̂ ≡ αs

2π

K1 =
(

Γ1 −K(1)
0 K(0)

0

)

χω
c + (2CA)2

(
1

ω
− 2

1 + ω

)(

0 0

0 χ̃ω
1 − χ̃

(0)
1 χω

c

)

χ̃ω=0
1 ≡ χ̃1 =

0Kgg ,1

(2CA)2
= KBFKL

1 −
[

0K0 1K0

]

gg

(2CA)2
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Extras Effective χ — matrix eigenvalues
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