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Jets @ early LHC (p. 2)

Introduction

LHC is a parton collider

◮ Quarks and gluons are inevitable in initial state

◮ and ubiquitous in the final state

Partons — quarks and gluons — are key concepts of QCD.

◮ Lagrangian is in terms of quark and gluon fields

◮ Perturbative QCD only deals with partons

Though we often talk of quarks and gluons, we never see them

◮ Not an asymptotic state of the theory — because of confinement

◮ But also even in perturbation theory
because of collinear divergences (in massless approx.)

◮ The closest we can get to handling final-state partons is jets
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Introduction Jets as projections
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LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons
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parton shower
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Projection to jets provides “universal” view of event
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Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses
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Introduction Sequential recombination algorithms

kt algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber ’91–’93

Ellis, Soper ’93

◮ Find smallest of all dij= min(k2
ti , k

2
tj )∆R2

ij/R
2 and diB = k2

i

◮ Recombine i , j (if iB : i → jet)

◮ Repeat

NB: hadron collider variables

◮ ∆R2
ij = (φi − φj)

2 + (yi − yj)
2

◮ rapidity yi = 1
2 ln Ei+pzi

Ei−pzi

◮ ∆Rij is boost invariant angle

R sets minimal interjet angle

Bottom-up jets:

Sequential recombination
(attempt to invert QCD branching)
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Introduction Sequential recombination algorithms
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Introduction Adapting seq. rec. to give circular jets

Soft stuff clusters with nearest neighbour

kt : dij = min(k2
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Introduction Adapting seq. rec. to give circular jets

Soft stuff clusters with nearest neighbour

kt : dij = min(k2
ti , k

2
tj)∆R2

ij −→ anti-kt: dij =
∆R2

ij

max(k2
ti , k

2
tj)

anti-kt gives
cone-like jets

without using stable
cones

Hard stuff clusters with nearest neighbour

Privilege collinear divergence over soft divergence

Cacciari, GPS & Soyez ’08
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Introduction ATLAS: first dijet event, with anti-kt
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Introduction CMS: first dijet event, with anti-kt
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Introduction

With ATLAS and CMS having adopted anti-kt as

their default jet algorithm, LHC is the first hadron

collider experiment to start running with a clear

prospect for infrared and collinear jet-finding.

Crucial for future comparisons to QCD.
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Early data Early data?

Limited luminosity

Jet energy scale poorly constrained (±10%?)

Steeply falling jet cross sections not well measured

Strategy?

Use purely hadronic events (large X-sct)

Measure ratios of jet pt ’s, ratios of cross sections
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Early data y23, a simple event shape

1) Select events with two central jets, hardest with pt1 > 100 GeV
σ = O (100 nb) @ 7 TeV

2) Define d23 = maximum of

◮ 3rd hardest jet, p2
t3

◮ kt splitting scale of either of two central jets cf. substructure studies

3) Normalise to Q2 = (pt1 + pt2)
2, y23 = d23/Q2

cancel (most of) Jet Energy Scale uncertainty

4) Plot differential distribution within selected events
uncertainty on selected X-section cancels
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Early data

You can compare to Monte Carlo parton showers
Pythia, Herwig, Sherpa

Parton showers matched to tree-level matrix elements
Alpgen (MLM), Madgraph (MLM), Sherpa (CKKW)

Non-MC predictions: NLL resummation + NLO

CAESAR + NLOJET: controlled approximations
Banfi, GPS & Zanderighi ’10
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Early data NLL+NLO v. showers

Low pt , gluon dominated

 0

 0.1
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 0.3

-8 -4

1−σ 
dσ−−dln y3,g

LHC, 14 TeV

pt1 > 200 GeV, |yjets| < 1, ηC = 1.5

PARTON LEVEL NO UE

NLO+NLL (all uncert.)

NLO+NLL (sym. scale uncert.)

Herwig 6.5

Pythia 6.4 virtuality ordered shower (DW tune)
Pythia 6.4 pt ordered shower (S0A tune)
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Early data NLL+NLO v. showers

High pt , quark dominated
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pt1 > 1 TeV, |yjets| < 1, ηC = 1.5

PARTON LEVEL NO UE

NLO+NLL (all uncert.)

NLO+NLL (sym. scale uncert.)

Herwig 6.5

Pythia 6.4 virtuality ordered shower (DW tune)
Pythia 6.4 pt ordered shower (S0A tune)
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Early data Several showers

High pt , quark dominated
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Early data NLL+NLO v. Alpgen+Herwig

Low pt , gluon dominated
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Early data Other event shapes [http://tr.im/Nj9z]
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There are many other
ways of combining
event particle mo-
menta to get “event
shapes”

e.g. transverse thrust

Each with different
sensitivity to QCD
branching.

http://tr.im/Nj9z
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Early data

Hadronic observables not just for constraining

Monte Carlos
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Neutralinos R-parity violating SUSY

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, except that neutralino is not LSP, but
instead decays, χ̃0

1 → qqq.
Jet combinatorics makes this a tough channel for discovery

◮ Produce pairs of squarks, mq̃ ∼ 500 GeV.

◮ Each squark decays to quark + neutralino,
mχ̃0

1
∼ 100 GeV

◮ Neutralino is somewhat boosted → jet
with substructure

Butterworth, Ellis, Raklev & GPS ’09

q~

q~

q~

q~

g~

~0χ1

~0χ1

q

q

q

q

q

q
q

qq

q
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Neutralinos Analytics (back-of-the-enveolope)

Subjet decomposition procedures are not just trial and error.

Mass distribution for undecomposed jet:

1

N

dN

dm
∼ 2Cαs lnRpt/m

m
e−Cαs ln2 Rpt/m+···

Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within
C/A jet that satisfies a symmetry cut (z > zmin):

1

N

dN

dm
∼ C ′αs(m)

m
e−C ′αs lnRpt/m+···

∼ C ′αs(Rpt)

m

[
1 + (2b0 − C ′)

︸ ︷︷ ︸

partial cancellation

αs lnRpt/m + O
(
α2

s ln2
)]

Procedure gives nearly flat distribution in mdN/dm

Neutralino procedure involves 2 hard substructures, but ideas are similar
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Neutralinos RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Herwig 6.5 + Jimmy 4.3

Cam/Aachen R=0.7
pt1 > 500 GeV

signal + background

background (just dijets)

signal

Keep it simple:

Look at mass of leading jet

◮ Plot m
100 GeV

dN
dm

for hardest jet
(pt > 500 GeV)

◮ Require 3-pronged substructure

◮ And third jet

◮ And fourth central jet
99% background rejection

scale-invariant procedure

so remaining bkgd is flat

Once you’ve found neutralino:

◮ Look at m14 using events with
m1 in neutralino peak and in
sidebands

Out comes the squark!
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Neutralinos RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Neutralinos RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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sidebands

Out comes the squark!
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Neutralinos RPV SUSY, SPS1a, 1 fb−1 [14 TeV]
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Keep it simple:

Look at mass of leading jet

◮ Plot m
100 GeV

dN
dm

for hardest jet
(pt > 500 GeV)

◮ Require 3-pronged substructure

◮ And third central jet

◮ And fourth central jet
99% background rejection

scale-invariant procedure

so remaining bkgd is flat

Once you’ve found neutralino:

◮ Look at m14 using events with
m1 in neutralino peak and in
sidebands

Out comes the squark!
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Neutralinos RPV SUSY: significance v. mass scale

◮ All points use 1 fb−1, 14 TeV

◮ Divide significance by ∼ 3 for
7 TeV

◮ as mχ increases, mq̃ goes from
530 GeV to 815 GeV

◮ Same cuts as for main SPS1A
analysis

no particular optimisation
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UE

Constraining low-pt part of Monte Carlos

Underlying Event
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UE Traditional approach

For each event [Marchesini & Webber (1988), UA1 (1988), Field et al.]

1. take charged particles with pt > 0.5 GeV and |y | < 1

2. cluster with cone jet algorithm with R = 0.7 to find the leading jet

3. define typical pt of UE as 〈pt〉 in TransMin, TransMax or TransAv regions

y +1−1

TransMin

TransMax

Leading
Jet

φ

2π

0

TransMin TransMax

Leading Jet
φ

TransAv: O(αs)

TransMax: O(αs)

TransMin: O(α2
s )

◮ topological separation: UE defined as particles entering certain region of (y , φ) space
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UE Area/median approach

For each event [Cacciari, Salam, Soyez (’08), http://fastjet.fr]

1. cluster particles with an infrared safe jet
finding algorithm (all particles are clustered
so we have set of jets ranging from hard to
soft) only kt or C/A algs

2. from the list of all jets (no cuts required!)
determine

ρ = median

[{pt,j

Aj

}]

and its uncertainty σ
◮ median gives a typical value of pt/A for a

given event
◮ using median is a way to dynamically

separate hard and soft parts of the event

http://fastjet.fr
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UE Area/median approach

For each event [Cacciari, Salam, Soyez (’08), http://fastjet.fr]

1. cluster particles with an infrared safe jet
finding algorithm (all particles are clustered
so we have set of jets ranging from hard to
soft) only kt or C/A algs

2. from the list of all jets (no cuts required!)
determine

ρ = median

[{pt,j

Aj

}]

and its uncertainty σ
◮ median gives a typical value of pt/A for a

given event
◮ using median is a way to dynamically

separate hard and soft parts of the event
1/

n 
dn

/d
(p

tj/
A

j)

ptj/Aj

15.86th percentile for σ

median
50th percentile for ρ

ρρ-σ/√ Aj

http://fastjet.fr
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UE

How do you decide when one
method works better than another?

Cacciari, GPS & Sapeta ’10
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UE What is the underlying event?

Questions

◮ should initial and final state radiation be called
part of the underlying event?

◮ are multiple parton interactions
responsible for most of the
underlying activity?

jet 1

jet 2

◮ what about correlations? BFKL chains?

jet 1

jet 2 jet 2

jet 1
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UE A toy model for the UE

Do the methods measure “UE” or perturbative radiation?

If you can’t define what UE is, you can’t answer the question

So try a simplistic, but well-defined toy model

Soft component (UE)

Independent emission with
spectrum

1

n

dn

dpt
=

1

µ
e−pt/µ

〈Number〉 of emissions and
〈pt〉 = µ set its characteristics

Hard component (PT)

Independent emission with
spectrum

dn

dptdydφ
=

Ci

π2

αs(pt)

pt

up to scale Q ∼ pt,hard/2
(Ci is CA = 3 or CF = 4

3)
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UE Fluctuations in estimation of ρ

In the toy model: the same ρ distribution used to generate all events

◮ nevertheless: event-to-event fluctuations of ρ due to restricted area

◮ this sets the lower limit for the uncertainty of ρ determination
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UE Fluctuations in estimation of ρ

In the toy model: the same ρ distribution used to generate all events

◮ nevertheless: event-to-event fluctuations of ρ due to restricted area

◮ this sets the lower limit for the uncertainty of ρ determination
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◮ lower fluctuations for area/median approach due to larger available area

◮ traditional approach suffers more from the hard contamination Sd ∼ Q
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UE

UE in Monte Carlo with median
method?
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UE Average ρ as a function of y

◮ dijets at the LHC,
√

s = 10 TeV, pt > 100 GeV, |y | < 4

 0.0
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-5 -4 -3 -2 -1  0  1  2  3  4  5
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〉 
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pp, √ s = 10 TeV, a-kt+C/A, R= 0.6

Herwig 6.510 + Jimmy 4.31

Pythia 6.4.21 DWT

Pythia 6.4.21 S0A

Pythia 6.4.21 DW

◮ significant y dependence

◮ strips of ∆y=2 sufficient for robust ρ determination
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UE Fluctuations within an event

◮ from event to event
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◮ within an event
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◮ large inter-event and intra-event

◮ two patterns of rapidity dependence

◮ sizable difference between Herwig+Jimmy and Pythia
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UE Fluctuations within an event

◮ from event to event
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UE Correlations
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◮ y1, y2 – rapidity bins of width ∆y = 2

◮

〈
. . .

〉
– average over many events

◮ significant difference between Herwig +
Jimmy and Pythia

◮ qualitatively consistent with 〈σ〉/〈ρ〉:
smaller fluctuations within event ⇔
larger correlations
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Conclusions Conclusions

◮ In early data, look at ratios of observables.
Much scope for constraining our QCD predictions

◮ There’s more information in the Underlying Event than

we’re extracting currently Jets offer a way of extracting it

◮ Searches, e.g. multi-jet + jet-substructure, have
interesting potential in 2010-2011 data
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Extras

EXTRAS



Jets @ early LHC (p. 36)

Extras

Cross sections
Some high-pt cross sections

7 TeV LHC (leading order, from Herwig 6.5):

dijets, pt > 100 GeV 2.7 × 105 pb 65% glue
dijets, pt > 300 GeV 1000 pb
dijets, pt > 500 GeV 53 pb 30% glue

W→e/µ+ν +j , ptW > 50 GeV 620pb

W→e/µ+ν +j , ptW > 100 GeV 90pb

Z
→µ+µ−/e+e−+j , ptZ > 50 GeV 66pb

tt̄ 70pb
tt̄, pt,t > 300 GeV 1.5 pb
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Extras

UE
Two component model: soft UE + hard PT

Area/median approach
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pure soft

〈ρext〉 ≃ 〈ρ(soft)
ext 〉 +

√
πcJ

2
σR

〈nh〉
Atot

〈nh〉 – number of perturbative part.
σ – measure of fluctuations
ρ – true value of pt/A

〈ρ(soft)
ext 〉 ≃ ρ

cJ R2ν − ln 2

cJ R2ν − ln 2 + 1
2

Θ(Rcr)

〈nh〉
Atot

≃ nb

Atot

+
Ci

π2

1

2b0
ln

αs(Q0)

αs(Q)

◮ the two terms bias 〈ρext〉 in opposite directions

◮ for R ≃ 0.5 − 0.6 (used in most MC analysis of UE) the biases largely cancel

◮ similar picture and conclusions for σ
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Extras

UE
Comparison of characteristics: toy model vs MC
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◮ the pattern for ρ(R) from the toy model present in MC events:
(i) turn-on at low R , (ii) linear growth at larger R

◮ variation in the curves indicative of the inter-event fluctuations

◮ growth of ρ with R produced by the tails of distributions of pt/A
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