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Introduction Jet definition / algorithm

A jet definition is a systematic procedure that projects away the

multiparticle dynamics, so as to leave a simple picture of what happened
in an event:

jet
definition

Jets are as close as we can get to a physical single hard quark or gluon:

with good definitions their properties (multiplicity, energies, [flavour]) are

◮ finite at any order of perturbation theory

◮ insensitive to the parton → hadron transition

NB: finiteness ←→ set of jets depends on jet def.
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Introduction Public jet codes

In rough order of first public release:

◮ KTCLUS (Fortran)

◮ ARCLUS (Fortran)

◮ PxCone (Fortran)

◮ KTJet (C++)

◮ Optimal Jet Finder [OJF] (Fortran)

◮ FastJet + plugins (C++)

◮ CDF MidPoint and JetClu codes (C++)

◮ SpartyJet (C++)

◮ FFTJet (C++)

Also: jet finders in non-jet tools: simple cone jet finders in Pythia, Isajet,
Alpgen, PGS, AcerDet, ...; kt and seedless/midpoint cones in MCFM,
NLOJet++, etc.
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FastJet

FastJet
http://fastjet.fr/

http://fastjet.fr/
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FastJet FastJet

Jan 2006 (FJ 1.0):

◮ Fast implementation of pp kt algorithm Cacciari & GPS

N2 and N lnN timings for clustering N particles v. N3 with earlier codes

N lnN strategy relies on external package CGAL

Oct 2006 (FJ 2.0):

◮ Implementation of Cambridge/Aachen algorithm
including coding of Chan’s Closest Pair algorithm

◮ Introduction of jet areas and background estimation/subtraction

◮ New interface for long-term stability

Apr 2007 (FJ 2.1):

◮ Plugin mechanism giving common interface to external jet finders

◮ Inclusion of plugins that wrap CDF (JetClu, Midpoint) code and PxCone

◮ Inclusion of SISCone as a plugin
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FastJet FastJet

Jan 2008 (FJ 2.3): Soyez joined development team

◮ Added the anti-kt algorithm (fast, native implementation)

◮ Added “passive” and “Voronoi” areas

◮ Switched to autotools for compilation/installation

◮ Better access to information for subjet studies

◮ Basic Fortran wrapper

April 2009 (FJ 2.4):

◮ Added plugins for DØRunIICone, ATLAS cone, CMS cone, TrackJet
DØ and Trackjet code contributed by Sonnenschein

ATLAS code taken from SpartyJet

◮ Added gen-kt + e+e− algorithms (kt , Cambridge, Jade, e+e− anti-kt)

◮ Framework for handling user-supplied clustering distances (NNH)
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FastJet Jet algorithms list

Native implementations:

◮ longitudinally invariant kt

◮ (inclusive) Cambridge/Aachen

◮ anti-kt

◮ gen-kt

◮ e+e− kt and gen-kt

Plugins (distributed with FastJet)

◮ SISCone

◮ CDF MidPoint [IR3+1 unsafe]

◮ CDF JetClu [IR2+1 unsafe]

◮ D0 Run II Cone [IR3+1 unsafe]

◮ ATLAS Cone algorithm [IR2+1 unsafe]

◮ CMS Cone algorithm [Coll3+1 unsafe]

◮ TrackJet [Coll3+1 unsafe]

◮ PxCone (fortran 77) [IR3+1 unsafe]

◮ e+e− (spherical) SISCone

◮ e+e− JADE algorithm

◮ e+e− Cambridge algorithm

http://www.lpthe.jussieu.fr/~salam/fastjet/jet-algorithms.html
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FastJet Speeds in 2005
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FastJet Speeds in 2009
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FastJet Adapting seq. rec. to give circular jets

Soft stuff clusters with nearest neighbour

kt : dij = min(k2
ti , k

2
tj)∆R2

ij −→ anti-kt: dij =
∆R2

ij

max(k2
ti , k

2
tj)

Hard stuff clusters with nearest neighbour

Privilege collinear divergence over soft divergence

Cacciari, GPS & Soyez ’08
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FastJet Adapting seq. rec. to give circular jets
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FastJet Example code

#include "fastjet/ClusterSequence.hh"

using namespace fastjet;

using namespace std;

int main () {

// choose a jet definition
double R = 0.7;

JetDefinition jet_def(kt_algorithm, R);

vector<PseudoJet> particles;

// build event with 2 particles: px py pz E

particles.push_back( PseudoJet( 100.0, 0, 0, 100.0) );

particles.push_back( PseudoJet(-100.0, 0, 0, 100.0) );

// run the clustering, extract the jets

ClusterSequence cs(particles, jet_def);

vector<PseudoJet> jets = cs.inclusive_jets();

}
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FastJet Example code

#include "fastjet/ClusterSequence.hh"

using namespace fastjet;

using namespace std;

int main () {

// choose a jet definition
double R = 0.7, f = 0.75;

JetDefinition jet_def = new SISConePlugin(R, f);

vector<PseudoJet> particles;

// build event with 2 particles: px py pz E

particles.push_back( PseudoJet( 100.0, 0, 0, 100.0) );

particles.push_back( PseudoJet(-100.0, 0, 0, 100.0) );

// run the clustering, extract the jets

ClusterSequence cs(particles, jet_def);

vector<PseudoJet> jets = cs.inclusive_jets();

}
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FastJet

Jets “ecosystem”
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Ecosystem Jets ecosystem: users

Individuals

◮ Anyone needing simple jet finding need stable, simple interface

◮ People playing with new jet ideas need flexible interface

◮ Theorists who still like Fortran

Community-wide projects

◮ Rivet One of the drivers for inclusion of “legacy” jet algorithms

◮ Delphes detector simulation

Experiments

◮ The four main LHC experiments all use FastJet

◮ ATLAS and CMS have chosen anti-kt as the first jet alg. to calibrate

◮ ATLAS uses FastJet in the high-level trigger It had better not crash!
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Ecosystem Anti-kt at LHC (
√

s = 900 GeV)

ATLAS CMS
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Ecosystem Jets ecosystem: plugins (or not)

External plugins for FastJet: (not included in release)

◮ Variable R plugin Krohn, Thaler & Wang ’09

◮ Pruning plugin Ellis, Vermillion & Walsh ’09

◮ Trimming plugin Krohn, Thaler & Wang ’10

Algorithms not naturally “pluggable” into FastJet:

FastJet designed for algorithms for which each particle ends up in at most 1
jet. Not all algorithms fit this picture:

◮ ARCLUS (3→ 2 clustering)

◮ OJF (a particle has weighted assignment to multiple jets)

◮ FFTJet, in its “fuzzy” mode (weighted assignment)
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Ecosystem Jets ecosystem: extensions, tools

SpartyJet Delsart, Geerlings, Huston & Martin ’06-

◮ Provides root interface to FastJet, including PyRoot access

◮ Provides visualisation tools

◮ Also has a number of native implementations of jet algs

FastJet Tools page

◮ A range of boosted-particle finders (Higgs, top, etc.)
Our own, links to other people’s, and our implementations of other people’s

◮ Background (UE/pileup) estimation and subtraction tools
Already in FJ, more flexible versions in the works

◮ Filtering cleanup of UE/pileup noise to improve resolution

[Butterworth, Davison, Rubin & GPS ’08]

[“trimming” is closely related]

http://projects.hepforge.org/spartyjet/
http://www.lpthe.jussieu.fr/~salam/fastjet/tools.html
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Physics Roadmap

Physics Roadmap:
Questions include

a) Developing (analytical) understanding of

different uses of jets

b) Designing better analyses as a result

What follows is an illustration
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Physics Roadmap What R is best for an isolated jet?

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −
CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2
t 〉 ≃ 〈∆pt〉2

E.g. to reconstruct mX ∼ (ptq + ptq̄)

X
pp

q

q

q

q

in small-R limit (?!)

cf. Dasgupta, Magnea & GPS ’07
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At low pt, small RRR limits relative impact of UE

At high pt, perturbative effects dominate over

non-perturbative → RbestRbestRbest ∼ 1.
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Dijet mass: scan over R [Pythia 6.4]
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Physics Roadmap Scan through qq̄ mass values

mqq = 100 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 150 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 150 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 200 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 300 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 500 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08
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Physics Roadmap Scan through qq̄ mass values

mqq = 700 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 1000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 2000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 4000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 4000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Scan through qq̄ mass values

mqq = 4000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans

involve running with fixed

smallish RRR values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

http://quality.fastjet.fr
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Physics Roadmap Analytical Rbest

Medium-term aim: have ability for FastJet to suggest near-optimal
parameter choices for different classes of analysis. Can be based on MC
study, or analytical calculations:
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Physics Roadmap Other active “Physics Roadmap” topics

◮ Search strategies with jets in complex events
◮ Boosted objects [Several groups working]
◮ Non-boosted objects

◮ Further work on noise reduction (UE/pileup removal)

◮ Further understanding of UE/pileup characterisation
e.g. Cacciari, GPS & Sapeta ’10

◮ Jets in heavy-ion collisions
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Software roadmap

Software Roadmap

Long-term maintainability

Facilitation of “advanced” usage



Jets (p. 25)

Software roadmap Long-term maintainability

The most frequently used core code (N2Tiled strategy) was written in the
space of a couple of days in 2005.

Not quite spaghetti code (C-style macaroni code?)

It could do with a cleanup

An important part of maintanability is validation:

◮ We currently check compilation and clustering results for 1000 MC
events for all algorithms every night on several systems.

We would like to switch to 10k events

◮ Other aspects of FastJet (e.g. jet areas) not yet subject to automatic
validation, but that should probably change.
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Software roadmap Planned interface evolution

We aim to maintain backwards compatibility for extended periods of time
(allow 2-3 years from “deprecation” to “removal” of any feature).

Apparently “small” user-interface additions. E.g. from

vector<PseudoJet> constituents = cluster_sequence->constituents(jet);

to

vector<PseudoJet> constituents = jet.constituents();

Has memory management implications. But can help significantly with
advanced usage.

One step on the way to a simple “tools” interface.
Goal: easy and centralized access to helpful utilities
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Conclusions

Conclusions
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Conclusions Conclusions

Main public jet-clustering package currently is FastJet

◮ Code is quite stable

◮ Provides access to a lot more than just native FastJet algorithms

Future evolution

◮ Physics-driven: how can we make better use of jets?

◮ Code should provide facilities to make this easy in pracice

User feedback is welcome!

◮ It has driven inclusion of “legacy” plugins

◮ It can help shape future evolution of code

◮ E.g. should there be built-in access from Python, PyRoot?
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