
BOOSTED TOPS AND HEAVY-ION COLLISIONS 
A YOCTOSECOND CHRONOMETER?

Gavin Salam, CERN  
work in progress with Liliana Apolinário,  
Guilherme Milhano and Carlos Salgado 

Boost 2016, Zurich, July 2016



this talk is about developing methods to measure 
time on scale of 1fm/c ~ 10-24 s (1 yoctosecond)

1) one day we might discover new particle(s). Can we find 
new ways of measuring or constraining their lifetime?  

2) in heavy-ion collisions, dynamics of the early universe 
takes place on timescale of 1-5fm/c.  

Can we time-resolve it? 2



QUARK-GLUON PLASMA

Deconfined state of quarks and 
gluons: 
➤ first few μs of our universe 
➤ first few fm/c of heavy-ion 

collisions 
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A KEY PROBE OF THE MEDIUM: JET QUENCHING

As a parton goes through the quark-gluon plasma, it loses 
energy.  

Amount (and pattern) of energy loss tells you about the medium. 
Interpretation of existing data is still an open topic.
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magnitude of effects? Look at Z – jet pT balance
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TIME DEPENDENCE

➤ Most probes of the HI medium involve an integral over time 
(e.g. jet quenching, thermal photons), or come from freezeout 
(hadrons) 

➤ Can we find probes where we can control the time when they 
interact with the medium?
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top quarks and W’s have finite lifetime (and decay to jets)

➤ you can control the lifetime by selecting the pT of the top (or 
W) and exploiting time dilation 

➤ colour singlet qqbar from W doesn’t start interacting with 
medium right away — the q and qbar need to decohere
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top quark @ rest ~0.15 fm/c

W boson @ rest ~0.10 fm/c

Resolving the time structure of the quark-gluon plasma

with boosted top quarks

Liliana, Guilherme, Gavin and Carlos

July 18, 2016

Abstract

Abstract still to be written

1 Key formulas and numbers

FCC: 39 TeV, 30 nb�1, A = 208
LHC: 5.5 TeV, 10 nb�1, A = 208
Factors to consider

• assume 50% e�ciency for two b-tags

• assume no background

• assume about 50% of cross section for 10% centrality

• People typically assume a medium lifetime of 5 fm/c – but of course it gets quite
diluted over that time.

Decoherence time. Ref. [1] gives this without the leading numerical factors. With the
numerical factors we should have

td =

✓
3

q̂✓2qq̄

◆1/3

(1)

A sensible value for q̂ is q̂ = 4 GeV2/ fm. If we translate that just to units of distance (or
time) we get

td = 0.31 fm⇥ ✓�2/3
qq̄ (2)

Pictures

• CMS event display http://media4.s-nbcnews.com/j/MSNBC/Components/Photo/

_new/101130-cern-RhoPhi-huge.grid-6x2.jpg

1

q̂ is parameter of medium ⇠ 4GeV

2/fm

✓qq̄ is quark-antiquark opening angle

Mehtar-Tani, Salgado & Tywoniuk, 1205.5739

http://arxiv.org/abs/1205.5739
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MACHINE & EVENT PARAMETERS

HL-LHC 

➤ 5.5 TeV/nucleon 

➤ 10 nb-1 

➤ A = 208 (Pb) 

➤ 0–10% centrality 
(~42% of ttbar events)

11

FCC-hh 

➤ 39 TeV/nucleon 

➤ 30 nb-1 

➤ A = 208 (Pb) 

➤ 0–10% centrality 
(~42% of ttbar events)

For this talk, we’re concentrating on FCC-hh  
Plan to see later if anything is possible at LHC

 simulation: POWHEG + Pythia 8;  
no HI background; no physics backgrounds



EVENT SELECTION & RECONSTRUCTION

Basic event selection & object defn 

➤ require 1 muon with pT > 25 GeV, |η| < 2.5  
(in real world, require MET?) 

➤ anti-kT jets, R=0.3, pT > 30 GeV, |y| < 2.5  
(in real world, HI background would need to be subtracted)
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not super-optimised, but insensitive to soft radiation  
and functional in boosted and non-boosted regimes

Hadronic top reconstruction 

➤ recluster each jet with kT, R=1, decluster with dcut=(30 GeV)2, 
replace each original jet with result of declustering 

➤ from new list of jets, require 2 b-tagged ones (70% eff./b-tag); 
b-jet further from muon is candidate for b from hadronic-top  

➤ require ≥ 2 non-b-tagged; two highest-pT ones → hadronic W
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reconstructed W mass v. pT
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NAIVE TIME-DEPENDENCE MODEL

➤ medium has constant density for time T, then vanishes 
➤ W decoheres at time t (a function of pt, etc.) 

➤ energy loss is: 
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CONCLUSIONS

➤ Top & W finite lifetimes (+qqbar decoherence time) mean top 
→ W →jets may quench differently from normal hadronic jets 

➤ By controlling boost of top quark, you can control time when 
jets interact with the heavy-ion medium. Unique means to 
learn about medium’s time structure. 

➤ Gives information in range 0.5fm/c – 5 fm/c with pT < 1 TeV 

➤ Some info maybe even accessible at HL-LHC (pT < 200 GeV) 

➤ [if a new particle decays hadronically, and is produced with a big cross 
section, quenching of its decay jets could tell you about its lifetime]
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BACKUP
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JET QUENCHING IN GAMMA + JET BALANCE
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NUMBER OF HADRONIC TOPS WITH PT ABOVE SOME THRESHOLD
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DISTRIBUTIONS OF DECAY + DECOHERENCE TIME FOR W V. TOP PT
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