

Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High $p_{_{\rm T}}$ Jets in Hadron-Hadron Collisions.

J. D. BJORKEN
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

Abstract

High energy quarks and gluons propagating through quark-gluon plasma suffer differential energy loss via elastic scattering from quanta in the plasma. [...]

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

differential jet shape

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r + \delta r]}} p_{\perp}^{(k)},$$

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

differential jet shape

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r+\delta r]}} p_{\perp}^{(k)},$$

$$girth = broadening$$

$$g = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{k \in J} p_{\perp}^{(k)} \Delta R_{kJ},$$

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

differential jet shape

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r + \delta r]}} p_{\perp}^{(k)},$$

girth = broadening

$$g = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{k \in J} p_{\perp}^{(k)} \Delta R_{kJ} ,$$

jet mass, groomed & ungroomed

$$m^2 = \left(\sum_{i \in (\text{sub}) \text{jet}} p_i^{\mu}\right)^2$$

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

differential jet shape

$$\rho(r) = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r, r+\delta r]}} p_{\perp}^{(k)},$$

girth = broadening

$$g = \frac{1}{p_{\perp}^{\text{jet}}} \sum_{k \in J} p_{\perp}^{(k)} \Delta R_{kJ},$$

jet mass, groomed & ungroomed

$$m^2 = \left(\sum_{i \in (\text{sub}) \text{jet}} p_i^{\mu}\right)^2$$

$$z_g$$
, ΔR_{12}

$$z_g = \frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}} > z_{\text{cut}} \left(\frac{\Delta R_{1,2}}{R_J}\right)^{\beta}$$

two theoretical approaches

(semi)-ANALYTIC

- ➤ Gives insight into what physics is relevant where (energy loss, decoherence, etc.)
- Can inspire what to measure
- ➤ Cannot capture all dimensions of full experimental analysis

Monte Carlo Event Generator

- ➤ Gives ultimate realism (accuracy depends on what's inside)
- ➤ Can in principle include full medium embedding & subtraction (but that's often work in progress)
- ➤ Risks looking like a black box

two theoretical approaches

(semi)-ANALYTIC

- ➤ Gives insight into what physics is relevant where (energy loss, decoherence, etc.)
- > Can inspire what to measure
- ➤ Cannot capture all dimensions of full experimental analysis

Monte Carlo Event Generator

- ➤ Gives ultimate realism (accuracy depends on what's inside)
- ➤ Can in principle include full medium embedding & subtraction (but that's often work in progress)
- ➤ Risks looking like a black box

[this morning's newsletter]

two theoretical approaches

(semi)-ANALYTIC

- ➤ Gives insight into what physics is relevant where (energy loss, decoherence, etc.)
- > Can inspire what to measure
- ➤ Cannot capture all dimensions of full experimental analysis

- Monte Carlo Event Generator
- ➤ Gives ultimate realism (accuracy depends on what's inside)
- ➤ Can in principle include full medium embedding & subtraction (but that's often work in progress)
- ➤ Risks looking like a black box

[this morning's newsletter]

MONTE CARLOS EVENT GENERATORS

an MC selection of MC results

Jetscape: current status: pp baseline (// Kauder)

Program

What's included in the event generator (as optional download)

- ✓ Trento (2+1)
- ✓ Free Streaming
- ✓ MUSIC (2+1, 3+1), external reader, brick, Gubser,
 - Pythia8, parton gun
- MATTER, Martini, AdS/CFT, LBT
 - Cooper Frye
- Pythia8 string fragmentation
- Custom and HepMC output 6

10

20

charged jet mass $M_{\text{ch-jet}}$ [GeV]

0.06

mass 📆

JEWEL+PYTHIA Pb+Pb (0 - 10%) (2.76 TeV)

→ ALICE

w/ Recoils, 4MomSub

w/ Recoils, GridSub1

 $p_T^{\rm track}$ [GeV]

JEWEL v. data

➤ arXiv:1707.01539, by Milhano, Wiedemann and Zapp with medium response

Jet evolution in MARTINI

Jet shape with recoil

- Event generator for jet simulation in heavy ion collisions
- Compatible with event-by-event 3D hydrodynamic medium
- Radiation : AMY formalism² (collinear)
 - ightharpoonup Formation time of radiation³, $t_f \sim k/k_\perp^2$
 - → Running coupling in splitting vertex⁴, $\alpha_s(Q)$
- Elastic Scattering⁵
 - → 2-2 scattering causing space-like momentum transfer, q
 - → Momentum broadening
- Conversion¹
 - → quark-gluon, jet-photon, photon conversion

- The ratio shows flat without recoil.
- Recoil yields a significant contribution to the jet shape at large angles.

McGill Chanwook Park **Quark Matter 2018, Venice** **McGill** Chanwook Park

Quark Matter 2018, Venice

11

¹ B. Schenke, C. Gale, and S. Jeon, Phys. Rev. **C 80**, 054913 (2009)

² P. Arnold, G. D. Moore, and L. G. Yaffe, JHEP 0206 (2002) 030

³ S. Caron-Huot and C. Gale, Phys. Rev. **C 82**, 064902 (2010)

⁴ C. Young, B. Schenke, S. Jeon, and C. Gale, Nucl. Phys. **A 910-911**, 494 (2013)

⁵ B. Schenke, C. Gale, and G-Y. Qin, Phys. Rev. C 79, 054908 (2009)

LINEAR BOLTZMANN TRANSPORT

Xin-Nian Wang's // talk

Luo, Cao, He & XNW, arXiv:1803.06785

Poster: JET 18 T Luo

medium mach-cones

➤ Tachibana, Chang & Qin, 1701.07951, 12fm/c

(semi)-ANALYTICAL

still an MC selection

holographic jets in strongly coupled plasma

Jasmine Brewer, a Krishna Rajagopal, a Andrey Sadofyev, a,b Wilke van der Schee a,c

SCET with Glauber gluons

Yang-Ting Chien^{a,b} and Ivan Vitev^a

arXiv:1608.07283v1

vacuum-like fragmentation in a dense medium

FIG. 1. Schematic representation of the phase-space available for VLEs, including an example of a cascade with "1" the last emission inside the medium and "2" the first emission outside.

vacuum-like fragmentation in a dense medium

FIG. 2. The ratio $T(\omega, \theta^2)/T_{\text{vac}}(\omega, \theta^2)$ between the two-dimensional gluon distributions in the medium and respectively the vacuum, both computed to DLA and for the values of the free parameters E, $\theta_{q\bar{q}}$, $\bar{\alpha}_s$, \hat{q} and L shown in the figure.

FIG. 3. The ratio $D(\omega)/D_{\text{vac}}(\omega)$ between the fragmentation functions in the medium and respectively the vacuum, for different choices for the medium parameters \hat{q} and L and the hadronisation scale Λ (and fixed values for E, $\theta_{q\bar{q}}$, and $\bar{\alpha}_s$).

OBSERVABLES

What is observable?

- ➤ Jets are always in the medium (100-200 GeV/unit area)
- ➤ Measurements done after background subtraction
- Subtraction procedure is essential part of observable definition

- ➤ Conclusions only solid if they're independent of subtraction procedure
- ➤ Subtraction procedure should be taken into account in comparisons with MCs and other theory predictions

What is observable?

- ➤ Jets are always in the medium (100-200 GeV/unit area)
- ➤ Measurements done after background subtraction
- Subtraction procedure is essential part of observable definition

- ➤ Conclusions only solid if they're independent of subtraction procedure
- ➤ Subtraction procedure should be taken into account in comparisons with MCs and other theory predictions

What is observable?

- ➤ Jets are always in the medium (100-200 GeV/unit area)
- ➤ Measurements done after background subtraction
- Subtraction procedure is essential part of observable definition

- ➤ Conclusions only solid if they're independent of subtraction procedure
- Subtraction proce taken into accoun with MCs and oth predictions

constituent subtraction

The Definition of Jets in a Large Background 4 6 8 10 12 14 16 18 20 22 24

RIKEN BNL Research Center Workshop

June 25-27, 2018 at Brookhaven National Laboratory

19

Soft-Drop normalisation

0.2

 z_g

0.3

0.1

Normalised to number of jets in pt bin: contains full info

fragmentation function

$$D(z) = \left\langle \sum_{i \in \text{jet}} \delta(z - p_{ti}/p_{t, \text{jet}}) \right\rangle_{\text{jets}}$$

differential
$$\rho(r) = \frac{1}{p_{\perp}^{\rm jet}} \sum_{\substack{k \text{ with} \\ \Delta R_{kJ} \in [r,r+\delta r]}} p_{\perp}^{(k)},$$
 jet shape $g = 1$ ative set of observables? jet mass a sufficiently informative $p_{\perp}^{(k)}$ jets $p_{$

$$g = \frac{1}{\text{formative Stilles}}$$

$$m^2 = \left(\sum_{i \in \text{(sub)jet}} p_i^{\mu}\right)^2$$

$$z_g$$
, ΔR_{12}

$$z_g = \frac{\min(p_{\perp,1}, p_{\perp,2})}{p_{\perp,1} + p_{\perp,2}} > z_{\text{cut}} \left(\frac{\Delta R_{1,2}}{R_J}\right)^{\beta}$$

pp jet substructure field is full of activity

pp jet substructure field is full of activity

 C_n , D_n , $ve_n^{(\beta)}$, M_n , N_n , U_n , EFPs

Shower Deconstruction

Qjets

classification without labels
weak supervision

machine learning DNN, CNN, RNN, LSTM, etc

Multi-variate tagger

recurrent theme in calculations: 2d phasespace plots

recurrent theme in calculations: 2d phasespace plots

Yang-Ting Chien a,b and Ivan Vitev a

A sequence of jet substructure tools taggers

- ➤ 1993: k_t declustering for boosted W's: [Seymour]
- ➤ 2002: Y-Splitter (k_t declustering with a cut) [Butterworth. Cox, Forshaw]
- ➤ 2008: Mass-Drop Tagger (C/A declustering with a k_t/m cut) [Butterworth, Davison, Rubin, GPS]
- \triangleright 2013: Soft Drop, β =0 [Dasgupta, Fregoso, Marzani, GPS]
- \succ 2014: Soft Drop, β ≠0 [Larkoski, Marzani, Soyez, Thaler]
 - 1. Undo last clustering of C/A jet into subjets 1, 2

2. Stop if
$$z = \frac{\min(p_{t1}, p_{t2})}{p_{t1} + p_{t2}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} > z_{\text{cut}}$$

3. Else discard softer branch, repeat step 1 with harder branch

Cambridge/Aachen

A sequence of jet substructure tools taggers

- ➤ 1993: k_t declustering for boosted W's: [Seymour]
- ➤ 2002: Y-Splitter (k_t declustering with a cut) [Butterworth. Cox, Forshaw]
- ➤ 2008: Mass-Drop Tagger (C/A declustering with a k_t/m cut) [Butterworth, Davison, Rubin, GPS]
- \triangleright 2013: Soft Drop, β =0 [Dasgupta, Fregoso, Marzani, GPS]
- \succ 2014: Soft Drop, β ≠0 [Larkoski, Marzani, Soyez, Thaler]
- ➤ 2017: Iterated Soft Drop [Frye, Larkoski, Thaler, Zhou] count number of iterations until you reach 1 particle
- **>** 2018: ?

Cambridge/Aachen

Lund planes from draft 5th heavy-ion workshop proceedings

see also

arXiv.org > hep-ph > arXiv:1803.03589

High Energy Physics - Phenomenology

Probing heavy ion collisions using quark and gluon jet substructure

Yang-Ting Chien, Raghav Kunnawalkam Elayavalli

+ Harry Andrews
ALICE // talk

OUTLOOK

- ▶ jet substructure → many handles for investigating physics of passage of fragmenting partons through a jet
- ➤ Many substructure observables naturally derive from a single "Lund plane" density, which gives direct access to the kinematic regions being discussed in theory calculations

What did I not have time for?

- ➤ Machine learning in pp "searches" world this is becoming a workhorse for substructure; what can be done in heavy-ions?
- ➤ Beyond R=0.4 cf. CMS high-p_t results
- ➤ Heavy-flavour within jets

BACKUP

Jet algorithms

- 1. Identify pair of particles i,j with smallest dij
- 2. If their d_{ij} < smallest d_{iB} , recombine them into a new (pseudo)particle
- 3. Else particle with smallest d_{iB} becomes a jet and is removed from the list of particles
- 4. Repeat until no particles left

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^{2} / R^{2}$$

$$d_{iB} = p_{ti}^{2p}.$$

algorithm	p
lkt	1
Cambridge -Aachen	
anti-k _t	-1

anti-k_t algorithm Cambridge/Aachen k_t algorithm p_t/GeV p_t/GeV p_t/GeV 4 y

Tywoniuk (// talk) w. Mehtar-Tani

CMS large-R?

Conclusions

- An alternative view of how to handle UE subtraction in jets is presented
 - Instead of exploring tight cone R at low-p_T, consider large R at high-p_T
- Jet reconstruction is updated for forward-η and to account for flow modulations
 - Perform Jet Nuclear Modification Factor Radius Scan up to R=1 for p_T > 200
 - Extend CMS jet substructure measurements to large cone size

CMS subjet flavour tagging

Subjet Splitting Results

- Wide-angle gluon-splitting jets ($\Delta R_{1,2} \sim 0.2$) have a balanced subjet splitting distribution
 - Important to note that this is a small subset of total GSP jet contribution
 - B-tagging + reconstruction methodology confirmed by Pythia8 simulation

CMS-DPN-2018

FIG. 12. (Color online) Modification of the groomed jet z_g distributions at the LHC for three different scenarios: solid for medium-modified splitting with coherent energy loss (CEL) of subjets, dashed for medium-modified splitting with independent energy loss (IEL) of subjets, and dash-dotted for vacuum splitting with IEL of subjets.

zg modifications

Probing medium-induced jet splitting and energy loss in heavy-ion collisions

Ning-Bo Chang,^{1,2} Shanshan Cao,³ and Guang-You Qin²

arXiv:1707.03767v2

pt dist & quark fraction

➤ ATLAS-CONF-2017-074