Theory Vision *Gavin P. Salam, CERN**

*on leave from CNRS and University of Oxford/Royal Society

in the

A theory view tocky Gavin P. Salam, CERN*

*on leave from CNRS and University of Oxford/Royal Society

image: CucombreLibre@flickr ⓒ 🕧

A typical "Vision" talk addresses the "big unanswered questions"

- Nature of dark matter (& dark energy) Fine-tuning (e.g. supersymmetry and similar) Matter-antimatter asymmetry of the universe
 - • •

Looking beyond the SM: searches for dark matter at LHC & elsewhere

Classic dark-matter candidate: a weaklyinteracting massive particle (WIMP, e.g. from supersymmetry).

Masses ~ GeV upwards

(search interpretations strongly model dependent)

and much less about the standard model (SM)...

since experiments have already found all its particles...

Searching for answers to the "big unanswered questions" is vitally important, (even if there's no way of knowing if it will pay off)

But we shouldn't forget the importance of **"big answerable questions"** and the issue of how we go about answering them

+ iFBY + X: Yij X; \$+h.c. $+ \left| D_{m} \varphi \right|^{2} - V(\phi)$

Z = - FALFALFAL + iFDY + X: Jij X; \$+h.c. + D g (-V(d))

This equation neatly sums up our current understanding of fundamental particles and forces.

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

L= -= FALFAN + iFDY + X: Jij X; \$+h.c. + D g (-V(d))

This equation neatly sums up our current understanding of fundamental particles and forces.

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

"understanding" = knowledge ? "understanding" = assumption ?

ナ Y: Jii Y, Ø +

This equation neatly sums up our current understanding of fundamental particles and forces.

GAUGE PART

e.g. qqγ, qqZ, qqg, evW, ggg, interactions — well established in ep, e⁺e[−], pp collisions, etc. **≡ KNOWLEDGE**

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

 $t \chi: \mathcal{Y}_{ij} \chi_{j} \phi$ + |Dg| - V(d)

This equation neatly sums up our current understanding of fundamental particles and forces.

GAUGE PART

e.g. qqy, qqZ, qqg, evW, ggg, interactions — well established in ep, e⁺e⁻, pp collisions, etc. \equiv KNOWLEDGE

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

Many SM studies probe this part. In some respects dates back to 1860's, i.e. Maxwell's equations.

If you test another corner of this (as one should), don't be surprised if it works

This equation neatly sums up our current understanding of fundamental particles and forces.

Yukawa couplings

until 6 years ago this was essentially conjecture

no such term had ever been seen in nature

hadn't even been probed in electroweak precision tests

Why do Yukawa couplings matter? (1) A part of the Higgs sector that's unlike any other experimentally-probed interaction

 $(-\mu^2 \phi^2 + \lambda \phi^4, \text{HHH})$ the keystone of the Higgs mechanism and Standard Model, familiar as QFT toy model, never probed in nature

(HWW, HZZ): A gauge interaction, with scalars rather than fermions; much like what we've seen before

(Hbb, Htt, etc.): not a gauge interaction, and unlike anything we've probed before

the status two years ago

- A beautiful plot, appears to show SM working perfectly
- But it mixes two very different kinds of interaction: gauge for W,Z, Yukawa for fermions
- would not look anything like as convincing without underlying fit assumptions
 - no new particles in loops
 - ► no BSM decays

the news of the past 12 months

A year ago: CMS >5-sigma H $\rightarrow \tau \tau$

35.9 fb⁻¹ (13 TeV)

This week: ATLAS >5-sigma H $\rightarrow \tau \tau$

35.9 fb⁻¹ (13 TeV)

 $m_{\tau\tau}^{MMC}$ [GeV]

: past 12 months

This week: ATLAS >5-sigma ttH

Why do Yukawa couplings matter? (2) Because, within SM conjecture, they're what give masses to all quarks

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

proton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

> So protons are **lighter** than neutrons, \rightarrow protons are stable.

Which gives us the hydrogen atom, & chemistry and biology as we know it

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeV

proton mass = 938.3 MeV

neutron mass = 939.6 MeVC

Why do Yukawa couplings matter? (3) Because, within SM conjecture, they're what give masses to all leptons

it sets energy levels of all chemical reactions

Gavin Salam

16

electron mass determines size of all atoms

The $>5\sigma$ observations of ttH and H $\rightarrow \tau\tau$, independently by ATLAS and CMS, firmly establish the existence of a new kind of fundamental interaction, Yukawa interactions.

Yukawa interactions are important not merely because they had never before been directly observed, but also because they are hypothesized to be responsible for the stability of hydrogen, and for determining the size of atoms and the energy scales of chemical reactions.

The $>5\sigma$ observations of ttH and H $\rightarrow \tau\tau$, independently by ATLAS and CMS, firmly establish the existence of a new kind of fundamental interaction, Yukawa interactions.

Yukawa interactions are important not merely because they had never before been directly observed, but also because they are hypothesized to be responsible for the stability of hydrogen, and for determining the size of atoms and the energy scales of chemical reactions.

Is this any less important than the discovery of the Higgs boson itself? My opinion: no, because fundamental interactions are as important as fundamental particles

The New Hork Times

Jpinion

GRAY MATTER

A Crisis at the Edge of Physics

By Adam Frank and Marcelo Gleiser

June 5, 2015

dead end. It offers no path forward [...]"

"the standard model, despite the glory of its vindication, is also a

The New York Times

pinion

GRAY MATTER

A Crisis at the Edge of Physics

By Adam Frank and Marcelo Gleiser

June 5, 2015

"the standard model, despite the glory of its vindication, is also a dead end. It offers no path forward [...]"

I disagree. **Because the non**gauge part of the standard model is far from being fully explored.

2 Yukawas out of 9 We know nothing about the self coupling

EFT approach

Well-defined theoretical approach Assumes New Physics states are heavy Write Effective Lagrangian with only light (SM) particles BSM effects can be incorporated as a momentum expansion

BSM effects SM particles

EFT (expressive formulation of constraints) or not?

- If you've observed a given channel, and to EFT
- if you've not observed it, e.g. charm Yu more debatable

establish then use (lack of) any deviations to SM first (constrain) characterise new physics

BSM effects

> If you've observed a given channel, and it agrees roughly $(\pm 30\%)$ with SM, then go

► if you've not observed it, e.g. charm Yukawa, Higgs self coupling, then use of EFT is

SM particles

 impact of recent ttH observation
 Current limits using LHC
 measurements

2nd & 1st generation Yukawas

- the hierarchy of masses between generations remains a mystery (even if it's one that some people consign to the "hopeless" category)
- Does not necessarily come from hierarchy of dimensionless Yukawa coefficients
- ► E.g. the Giudice-Lebedev mechanism (and follow-up work)

$$-\mathcal{L}_Y = Y_{ij}(\phi)\bar{\psi}_i\psi_j\phi + \text{h.c.}$$

- \blacktriangleright smallness of certain masses is consequence of vev²/M² suppression, not small c_{ij} \blacktriangleright measured Hqq interaction larger by factor (2n_{ii} + 1)
- ► cf. also various more recent discussions, e.g. by Bauer, Carena, Carmona

$$Y_{ij}(\phi) = c_{ij} \left(\frac{\phi^{\dagger}\phi}{M^2}\right)^{n_{ij}}$$

1801.00363

dark matter & other searches

Finding dark matter and studying it will be the biggest challenge for the Large Hadron Collider's second run

https://www.pbs.org/newshour/science/largehadron-collider-gears-find-dark-matter-newparticles-second-run

-a large LHC experiment's spokesperson [2015]

Looking beyond the SM: searches for dark matter at LHC & elsewhere

Classic dark-matter candidate: a weaklyinteracting massive particle (WIMP, e.g. from supersymmetry).

Masses ~ GeV upwards

(search interpretations strongly model dependent)

musn't be (too) disappointed at lack of dark matter signal at LHC

Evidence for dark matter exists since the 1930s.

Today we know that

- there are many possible models
- the range of parameters they span is large

We must deploy full ingenuity in searching for dark matter, including at LHC.

But must also recognise that it has remained elusive for 80–90 years, and chances of finding it in any given year are small!

Snowmass non-WIMP dark matter report, 1310.8642

have an enormous range of masses and interaction cross sections.

- Suppose we had a choice between ► HL-LHC (14 TeV, 3ab⁻¹)
 - or going to higher c.o.m. energy but limited to 80fb⁻¹.
- How much energy would we need to equal the HL-LHC?

today's reach (13 TeV, 80fb ⁻¹)	HL-LHC reach (14 TeV 3ab ⁻¹)	energy neede for same read with 80fb ⁻¹
4.7 TeV SSM Z'	6.7 TeV	20 TeV
2 TeV weakly coupled Z'	3.7 TeV	37 TeV

estimated with <u>http://collider-reach.cern.ch</u>, Weiler & GPS

don't underestimate the value of luminosity

- Suppose we had a choice between ► HL-LHC (14 TeV, 3ab⁻¹)
 - or going to higher c.o.m. energy but limited to 80fb⁻¹.
- How much energy would we need to equal the HL-LHC?

today's reach (13 TeV, 80fb ⁻¹)	HL-LHC reach (14 TeV 3ab ⁻¹)	energy neede for same read with 80fb ⁻¹
4.7 TeV SSM Z'	6.7 TeV	20 TeV
2 TeV weakly coupled Z'	3.7 TeV	37 TeV
680 GeV chargino	1.4 TeV	54 TeV

Facini

Cover All Signatures

• We don't know the description of nature so we really don't know what new physics will look like in our detector

• Personal opinion: If we cannot prove that an existing measurements or search forbids new physics in a given final state/topology, we have to look!

June 7th, 2018

flavour anomalies

the current place where there are hints of something happening

charged current

$$R(D^*) \equiv rac{\mathcal{B}(B^0
ightarrow D^{*-} au^+
u_ au)}{\mathcal{B}(B^0
ightarrow D^{*-} \mu^+
u_\mu)}$$

$R(D^*)$ and R(D) combination Combine LHCb's $R(D^*)$ results with results from B factories:

 $\Rightarrow R(D^*)$ and R(D) average $\sim 4 \sigma$ from SM (latest SM computation: JHEP 11 (2017) 061)

neutral current

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

R(K) and $R(K^*)$ results

Humair

All LHCb results below SM expectations:

- ► *B* factories have less precise but compatible results.

flavor	generic	minim	
$R_{K^{(*)}}$ tree	30 TeV	6 Te	
$R_{K^{(*)}}$ loop	few TeV	0.5 Te	
$R_{D^{(*)}}$ tree	\sim a TeV	0.3 Te	

lower deviation in $R_{D^{(*)}}$, in particular $R_D *$ more "natural".

- In general the main observable generating tensions is $R(D^{(*)})$, with -EW precision tests and B_s -mixing.
- Still work has to be done to find a completely satisfying NP model for the B-anomalies.

nal eV eV

Hiller

Linking the anomalies is intriuging however not straightforward,

Marzocca

standard model theory

Summary & Outlook

HUSS precision Drell–Yan predictions:

- \hookrightarrow fixed order: NNLO QCD, NLO EW, mixed QCD-EW (pole approx.)
- $\hookrightarrow \mathcal{O}(\alpha_{\rm s}\alpha)$ mass shift: $\Delta M_{\rm W}^{\alpha_{\rm s}\alpha} \sim -14 \,{\rm MeV}$
- \hookrightarrow compatible with NLO(QCD+EW) \otimes PS(QCD+QED): $\Delta M_{W}^{\alpha_{s}\alpha} \sim -16 \pm 3 \text{ MeV}$

• the inclusive p_{T}^{V} spectrum:

- \rightarrow N³LL+NNLO: excellent agreement vs. data & residual uncertainties \sim few %
- \hookrightarrow bottom-quark effects: $\sim \pm 0.5\%$ ($\Delta M_{\rm W} < 5$ MeV)
- \hookrightarrow (NLL+NLO)_{QED}: $\sim \pm 0.5\%$

• V + jet production

- \hookrightarrow NNLO QCD available $\forall V = W^{\pm}, Z/\gamma^*, \gamma$
- \hookrightarrow NLO EW important in tails of distributions
- \hookrightarrow first steps towards multi-jet merging including EW corrections

Di-boson production

- \hookrightarrow NNLO QCD available $\forall VV' \in \{W^{\pm}, Z/\gamma^*, \gamma\}$
- \hookrightarrow NNLO \otimes PS: NNLO accuracy in inclusive quantities & captures soft-g effects
- \hookrightarrow NLO EW: prediction for *off-shell* processes

Summary & Outlook

FUSS precision Drell-Yan predictions:

- \hookrightarrow fixed order: NNLO QCD, NLO EW, mixed QCD-EW (pol
- $\hookrightarrow \mathcal{O}(\alpha_{\rm s}\alpha)$ mass shift: $\Delta M_{\rm W}^{\alpha_{\rm s}\alpha} \sim -14 \, {\rm MeV}$
- \hookrightarrow compatible with NLO(QCD+EW) \otimes PS(QCD+QED): ΔM

• the inclusive p_{T}^{V} spectrum:

- \hookrightarrow N³LL+NNLO: excellent agreement vs. data & residual
- \hookrightarrow bottom-quark effects: $\sim \pm 0.5\%$ ($\Delta M_{\rm W} < 5 \,{\rm MeV}$)
- \hookrightarrow (NLL+NLO)_{OED}: $\sim \pm 0.5\%$

\blacktriangleright V + jet production

- \hookrightarrow NNLO QCD available $\forall V = W^{\pm}, Z/\gamma^*, \gamma$
- \hookrightarrow NLO EW important in tails of distributions
- \hookrightarrow first steps towards multi-jet merging including EW co

Di-boson production

- \hookrightarrow NNLO QCD available $\forall VV' \in \{W^{\pm}, Z/\gamma^*, \gamma\}$
- \hookrightarrow NNLO \otimes PS: NNLO accuracy in inclusive quantities & c
- \hookrightarrow NLO EW: prediction for *off-shell* processes

VIRTUAL CORRECTIONS: REDUCTIONS

Recent progress with the evaluation of planar (large N_c) contribution to five-gluon two-loop amplitude.

Badger, Bronnum-Hansen, Hartano, Peraro

Melnikov on analytical approaches

Generalized unitarity provides a different approach to the reduction to master integrals; reduction coefficients are reconstructed from cuts of scattering amplitudes. Very successful method at one-loop; attempts to generalise to two-loops.

An impressive proof of concept that unitarity works at two-loops but still far from a real computation of the full scattering amplitude and e.g. the phenomenology of the three-jet NNLO cross sections.

Similar results in Abreu, Cordero, Ita, Page, Zeng

Summary & Outlook

HUSS precision Drell–Yan predictions:

- \hookrightarrow fixed order: NNLO QCD, NLO EW, mixed QCD-EW (pol
- $\hookrightarrow \mathcal{O}(\alpha_{\rm s}\alpha)$ mass shift: $\Delta M_{\rm W}^{\alpha_{\rm s}\alpha} \sim -14 \, {\rm MeV}$
- \hookrightarrow compatible with NLO(QCD+EW) \otimes PS(QCD+QED): ΔM

• the inclusive p_{T}^{V} spectrum

- \hookrightarrow N³LL+NNLO
- \hookrightarrow bottom-qua
- \hookrightarrow (NLL+NLO)₀
- + jet **produ** $\blacktriangleright V$
 - \hookrightarrow NNLO QCD a
 - \hookrightarrow NLO EW imp
 - \hookrightarrow first steps to

Di-boson prod

- \hookrightarrow NNLO QCD a
- \hookrightarrow NNLO \otimes PS:
- \hookrightarrow NLO EW: pre

VIRTUAL CORRECTIONS: INTEGRALS

Master integrals can also be computed upon numerical integration over Feynman parameters (SecDec). This method has been successfully applied to double Higgs and Higgs + jet production at the LHC with full top mass dependence.

$$\vec{I} = \int_{0}^{1} \dots \int_{0}^{1} dx_1 \dots dx_n \ \frac{\vec{N}(x_1, x_2, \dots, x_n)}{D(x_1, x_2, \dots, x_n)}$$

VIRTUAL CORRECTIONS: REDUCTIONS

Generalized unitarity provides a different approach to the reduction to master integrals; reduction coefficients are reconstructed from cuts of scattering amplitudes. Very successful method at one-loop; attempts to generalise to two-loops.

Recent progress with the evaluation of planar (large N_c) contribution to five-gluon two-loop amplitude.

Melnikov on analytical approaches

Melnikov on numerical approaches

top

4. It is popular 5. It goes beyond

The top quark is the Ronaldo of elementary particles

Why do we still care about the top quark?

Top quarks are key to almost everything!

- Top Properties and Mass at ATLAS -

Andrea Knue

3 TeV	September 2017			
	s Ref.			
± 1.35)	7 TeV [1]			
± 1.50)	7 TeV [2]			
± 0.97)	7 TeV [3]			
± 1.46)	7 TeV [4]			
± 1.23)	7 TeV [5]			
± 0.88)	7 TeV [6]			
± 0.67)	1.96-7 TeV [7]			
± 1.02)	7 TeV [8]			
± 1.30)	7 TeV [8]			
2)	7 TeV [9]			
0)	8 TeV [10]			
± 0.74)	8 TeV [11]			
± 1.01)	8 TeV [12]			
± 0.82)	8 TeV [13]			
± 0.42)	7+8 TeV [13]			
± 0.48)	8 TeV [14]			
± 1.22)	8 TeV [14]			
± 0.59)	8 TeV [14]			
± 0.95)	8 TeV [15]			
± 0.47)	7+8 TeV [14]			
± 0.62)	13 TeV [16]			
(2015) 330 (2015) 158 2014-055 (2016) 350 46	[13] ATLAS-CONF-2017-071 [14] Phys.Rev.D93 (2016) 072004 [15] EPJC 77 (2017) 354 [16] CMS-PAS-TOP-17-007			
	185			

top-quark mass

Controversies [in top mass]

We remind that

- 1. Some authors implicitly claim that the Pole Mass and the Monte Carlo mass parameter (or "Monte Carlo Mass") in direct measurements differ by terms of order $\alpha_s(m_t)$.
- 2. Other authors, also advocating the "Monte Carlo Mass" concept, claim differences relative to the Pole Mass of order of a hadronic scale (Hoang, Stuart 2008).

Our view is in clear contrast with (1), but is not in substantial contradiction with (2): we prefer to say that direct measurements measure the Pole Mass up to corrections of the order of a hadronic scale, rather than saying that they measure a "Monte Carlo Mass".

Nason

Pythia8, hvq, tt_dec,bb41 comparison

	No smearing		15 GeV smearing
	MEC	MEC – no MEC	MEC
$b\bar{b}4\ell$	$172.793\pm0.004~{\rm GeV}$	$-12 \pm 6 {\rm ~MeV}$	$172.717 \pm 0.002 \text{ GeV}$
$t\bar{t}dec$	$172.814\pm0.003~{\rm GeV}$	$-4 \pm 5 \mathrm{MeV}$	$172.857 \pm 0.001 { m ~GeV}$
hvq	$172.803\pm0.003~{\rm GeV}$	$+61 \pm 5 {\rm ~MeV}$	$172.570 \pm 0.001 { m ~GeV}$

POWHEG-bb41, Herwig7 - Pythia8 comparison

	No smearing		15 GeV smearing		
	Hw7.1	Py8.2 - Hw7.1	Hw7.1	Py8.2 - Hw7.1	
$b\overline{b}4\ell$	$172.727 \pm 0.005 { m ~GeV}$	$+66 \pm 7 { m MeV}$	$171.626 \pm 0.002 { m ~GeV}$	$+1091 \pm 2 \text{ MeV}$	
$t\bar{t}dec$	$172.775 \pm 0.004 \mathrm{GeV}$	$+39 \pm 5 { m MeV}$	$171.678 \pm 0.001 { m ~GeV}$	$+1179 \pm 2 \text{ MeV}$	
hvq	$173.038 \pm 0.004 {\rm GeV}$	$-235 \pm 5 \mathrm{MeV}$	$172.319 \pm 0.001 \mathrm{GeV}$	$+251 \pm 2 \text{ MeV}$	

Ravasio, Jezo, Oleari, Nason, 1801.03944

stability (to within 300 MeV) of top-mass peak in different MC formulations (Pythia8 + X)

Pythia v. Herwig comparison shows up to **1 GeV** differences

Pythia8, hvq, $t\bar{t}_dec, b\bar{b}41$ comparison

		No smearing		$15 \mathrm{GeV}$	smea	aring	
		MEC	MEC – no	MEC	MI	EC	
$b\bar{b}4\ell$	172	793 ± 0.004 GeV	-12 + 6 W	ωV	179717 +	0.002	GeV
$t\bar{t}dec$	2 172 There can be two sources of difference:					GeV	
hvq	172				GeV		
(and its interface with NLO)							
2) non-perturbative effects							
		HW/.1	Ру8.2 — Н₩/.1		HW/.l	Pyø.2	2 - Hw7.1
	$b\overline{b}4\ell$	$172.727 \pm 0.005 \text{ GeV}$	$+66 \pm 7 { m MeV}$	171.626	$6\pm0.002~{ m GeV}$	+1091	$1 \pm 2 \text{ MeV}$
	$t\bar{t}dec$	$172.775 \pm 0.004 \text{ GeV}$	$+39 \pm 5 { m MeV}$	171.678	$3\pm0.001~{ m GeV}$	+1179	$9 \pm 2 \text{ MeV}$
	hvq	$173.038 \pm 0.004 {\rm GeV}$	$-235 \pm 5 \text{ MeV}$	172.319	$0 \pm 0.001 \mathrm{GeV}$	+251	$\pm 2 \text{ MeV}$
	$bar{b}4\ell$ $tar{t}dec$ hvq	$\begin{array}{c} 172.727 \pm 0.005 {\rm GeV} \\ 172.775 \pm 0.004 {\rm GeV} \\ 173.038 \pm 0.004 {\rm GeV} \end{array}$	$+66 \pm 7 \text{ MeV}$ $+39 \pm 5 \text{ MeV}$ $-235 \pm 5 \text{ MeV}$	171.626 171.678 172.319	$5 \pm 0.002 \text{ GeV}$ $3 \pm 0.001 \text{ GeV}$ $0 \pm 0.001 \text{ GeV}$	+1091 +1179 +251	$1 \pm 2 N$ $9 \pm 2 N$ $\pm 2 M$

Ravasio, Jezo, Oleari, Nason, 1801.03944

stability (to within 300 MeV) of top-mass peak in different MC formulations (Pythia8 + X)

Pythia v. Herwig comparison shows up to **1 GeV** differences

Recent developments in Monte Carlo Event Generators

Improving the fixed-order perturbative precision of event generators: Many color-singlet processes described at NNLO+PS with MINLO Inclusion of NLO EW effects in full swing in AMC@NLO and SHERPA

- Interesting developments in defining shower at higher order: Treatment of subleading color relevant, even for leading-color PS Can systematically correct PS through fully differential NLO calculation in exponent.
- Continuous improvements of non-perturbative physics: Improved models of complete cross section and photoproduction. More sophisticated color reconnection models. Exciting new ideas in modelling of collectivity (in pp and heavy-ion)

heavy-ion collisions

and hints of a continuum between pp and PbPb

Florchinger: "Little bangs in the laboratory"

True collectivity in small systems!

on one hand, discovering that heavy-ion observables and methods reveal surprises to understand about basic pp physics

interplay between heavy-ion physics and top physics

Probing the time structure of the quark-gluon plasma with top quarks

Liliana Apolinário,^{1,2} José Guilherme Milhano,^{1,2,3} Gavin P. Salam,^{3,*} and Carlos A. Salgado⁴

finite top lifetime

reconstructed top mass tells you something about time structure of the medium

interplay between heavy-ion physics and Higgs physics

Higgs properties revealed through jet quenching in heavy ion collisions

1804.06858v2•

Edmond L. Berger,^{1, *} Jun Gao,^{2, †} Adil Jueid,^{2, ‡} and Hao Zhang^{3, 4}

long Higgs lifetime

no jet b-jet quenching, so enhancement of H→bb signal relative to pp collisions

interplay between heavy-ion physics and Higgs physics

Higgs properties revealed through jet quenching in heavy ion collisions

open question of how much luminosity is needed (both for Higgs and top) and whether lumi is achievable.

But for now, these are fun questions to think about

Edmond L. Berger.^{1,*} Jun Gao.^{2,†} Adil Jueid.^{2,‡} and Hao Zhang^{3,4}

long Higgs lifetime

o jet b-jet quenching, enhancement of H→bb signal relative to pp collisions

conclusions

I personally expect supersymmetry to be discovered at the LHC

http://cerncourier.com/cws/article/cern/35456

-a Nobel prize-winning theorist [2008]

it would be so much more exciting if we'd discovered new physics, right?

Beyond the Standard Model IV

John F Gunion Tao Han James Ohnemus

World Scientific

Back in 1995:

PLAN AND ADDRESS OF A

1. The Desert. A fun aspect of supersymmetry is that it allows us to obtain exact results about strongly interacting gauge theories. However in the MSSM we have nothing but boring perturbative physics to explore below the Planck scale and the interesting dynamics of supersymmetry breaking is hidden.

not everyone would agree

some theorists

it's interesting if it's what everyone is thinking about right

now

both have a point (don't let one side dampen the other side's interest)

experimenter

it's interesting if it's never been measured before

we must not underestimate our ignorance about the Higgs sector we must not undersell the value of exploring and establishing it

e.g. accessing the triple-Higgs coupling, keystone of SM

I think Nature is smarter than physicists. We should have the courage to say: "Let Nature tell us what is going on."

http://cerncourier.com/cws/article/cern/35456

-Carlo Rubbia [2008]

