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how well do (did) we know  
the parton distributions?
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IT MATTERED FOR DI-LEPTON, DI-BOSON, TTBAR, EW HIGGS, ETC.
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FIG. 7. (a) Prediction of the DY+PI dilepton spectrum for the 100 NNPDF replicas. (b) central value for the DY (black line)
and DY+PI (red line) dilepton spectrum from NNPDF including the PDF error band for the two cases. (c) Relative impact of
the PDF uncertainties with (magenta line) and without (blue line) the PI contribution. Standard acceptance cuts are applied
(|⌘l| < 2.5 and plT > 20 GeV).

on the central value. The methods are basically two. CTEQ and MRST apply the Hessian method that exploits
PDF eigenvalues [10, 43]. In this approach, the error is estimated from the standard deviation of a limited number
of central values coming from the di↵erence of paired PDF fits (order 20 pair of fits). The other procedure consists
in applying the replicas method and is adopted by the NNPDF collaboration. The error on the PDF central value
is computed as the standard deviation of a large set of replicas (order 100) that represent other possible fits of the
experimental data [29, 31]. For any observable, the central value is defined as the average of the di↵erent replicas and
its error is given by the standard deviation as summarized by the following equations

O0 = hOi =
1

N

NX

k=1

Ok, (III.1)

(�O)2 =
1

N

NX

k=1

(Ok �O0)
2
, (III.2)

where Ok (k = 1, ..., N) are the N replicas. Following this approach, we have evaluated the di↵erential cross section
for the hundred NNPDF replicas for both the DY and PI processes. The good quality of the quark (antiquark) fit
translates into a rather satisfactory prediction for the DY dilepton spectrum. This is shown in Fig. 5a where we plot
the dilepton invariant mass distribution for all the replicas. The result of the averaging procedure gives the central
value and the error band visible in Fig. 5b.
At the LHC RunII with 13 TeV, the PDF uncertainty coming from the large-x region is pushed towards higher dilepton
invariant masses, compared to RunI. More in detail, the relative PDF error grows above 10% for Mll � 4 TeV and
goes up sharply to 80% at the LHC potential edge around Mll ' 6 TeV, as shown in Fig.5c. The theoretical error on
the DY process initiated by a quark-antiquark interaction looks reasonably under control over a large portion of the

Accomando et al,  
1606.06646

di-lepton spectrum
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where else does the photon come in? Any time you produce charged particles

➤ Electroweak corrections to almost any process 

➤ E.g. ~5% WH  

➤ top production  

➤ VV production
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LHC-HXSWG YR4  

Pagani, Tsinikos, Zaro, arXiv:1606.01915 
 

1409.1803, 1510.08742, 1603.04874, 1601.07787,  
 1605.03419, 1604.04080,1607.04635, … 
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Figure 5: The di↵erential W boson pair production cross sections at
p
s = 13 TeV and 100

TeV with respect to the invariant mass of the pair MWW , for W pseudorapidity |⌘| < 4.
The photon–initiated contributions predicted following the approach of Section 2.2 and the
NNPDF3.0QED [8], including the 68% C.L. uncertainty bands are shown, in addition to
the NLO QCD cross section, calculated with MCFM [21], and including the gluon–initiated
box contribution. An uncertainty band due to varying the incoherent component between
x�(x,Q0) = 0 and the upper bound of (11) is shown for our prediction.

section for high mass lepton pair production; this could, for example, have an impact on
searches for new heavy particles decaying to lepton pairs. However, it is our finding that
this is not the case. In particular, we can see from Fig. 4 that even up to the highest Mll

values the predicted contribution from the photon–initiated process is fairly small, ⇠ 10%
of the Drell–Yan. This result is entirely consistent with the expectations from Fig. 2. Thus
we expect no significant contamination from the photon–initiated process. For the FCC case
shown in Fig. 4 (right), which was recently discussed in [7], a similar trend is seen. Moreover,
it is worth emphasising that for both the LHC and FCC cases, tighter cuts on the lepton
transverse momentum p? and pseudorapidity ⌘ will further decrease the relative contribution
from the photon–initiated process, which being due to the t and u channel diagrams is more
strongly peaked towards low p? and high ⌘.

In Fig. 5 we show predictions for the W boson pair production cross sections, again at
the LHC and FCC. We impose the same cuts on the W boson pseudorapidities, and include
no further decays, as in [7], for the sake of comparison. MCFM [21] with MMHT2014NLO [20]
PDFs is used to generate the the QCD WW production process at NLO in ↵s, with the gg–
initiated box contribution also included. Again a similar trend is clear, with the NNPDF set
predicting potentially a completely dominant photon–initiated contribution at higher masses,
within very large uncertainties. However, for the LHC our approach predicts instead that
the standard QCD–initiated is dominant, apart from at the very highest masses. On the
other hand for the FCC this is no longer the case: over the mass range considered the �� and
QCD–initiated contributions are generally expected to be comparable in size. In this case a

12

Harland-Lang, Khoze, Ryskin  
1607.04635

γγ (NNPDF) 100× larger than qq−



EARLIER PHOTON PDF ESTIMATES (not exhaustive)
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elastic inelastic in  
LHAPDF?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

NNPDF23qed no separation; fit to data ✓

CT14qed ✘ model  
(data-constrained) ✓

CT14qed_inc dipole model  
(data-constrained) ✓

Martin Ryskin  
2014

dipole  
(only electric part) model ✘

Harland-Lang, Khoze 
Ryskin 2016 dipole model ✘

elastic: Budnev, Ginzburg,  
 Meledin, Serbo, 1975



YOU DON’T NEED A MODEL  
ep scattering (i.e. structure functions) contains all info about proton’s EM field



YOU DON’T NEED A MODEL  
ep scattering (i.e. structure functions) contains all info about proton’s EM field

Manohar, Nason, GPS & Zanderighi, arXiv:1607.04266 
(use of BSM inspired by Drees & Zeppenfeld, PRD39(1989)2536)  

can also use PDF operator formalism, arXiv:1708.01256

study hypothetical (“BSM”) heavy-neutral lepton production process  
 Calculate it in two ways 

(1) in terms of structure functions (known) 
(2) in terms of photon distribution (unknown) 

Equivalence gives us photon distirbution



calculation
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11

proton

neutral lepton l  
(massless)

heavy neutral lepton L  
(mass M)

2

e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) is the pro-

ton hadronic tensor as defined in [30], and L
µ⌫(k, q) =

1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �

µ
⇤
(/k0 +M)

⇥
�
⌫
, /q
⇤⌘

is the lep-

tonic tensor. We define the physical QED coupling

e
2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2 � m
2
p, where

p
s is the centre-of-mass en-

ergy and mp the proton mass, one obtains
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c0
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#
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where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2

max = M
2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as

� = c0

X

a

Z
dz

z
�̂a(z, µ

2)
M

2

zs
fa/p

✓
M

2

zs
, µ

2

◆
, (4)

where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
�2+3z� z

2+

zp�q(z)

✓
ln

M
2

µ2
+ ln

(1� z)2

z

◆#
e
2
q�aq + . . . , (5)

with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1

2⇡↵(µ2)

Z 1

x

dz

z

(Z µ2

1�z

Q2
min

dQ
2

Q2
↵
2(Q2)

" 
2� 2z + z

2 +
2x2

m
2
p

Q2

!
F2(x/z,Q

2)

� z
2
FL

⇣
x

z
,Q

2
⌘#

� ↵
2(µ2)z2F2

⇣
x

z
, µ

2
⌘)

, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q

2
> x

2
m

2
p/(1 � x), which implies that the

Wµ⌫(p, q)

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]⇥ 2⇡�((k � q)2 �M2)

STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL

leptonic tensor,  
calculate with Feynman diag.k

k0

p

q
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e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X

� =
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4p · k

Z
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4
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(2⇡)4q4
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2
ph(q

2) [4⇡Wµ⌫ L
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⇥ 2⇡�((k � q)2 �M
2) , (1)

where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) is the pro-

ton hadronic tensor as defined in [30], and L
µ⌫(k, q) =

1
2 (e

2
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0 ⇥
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tonic tensor. We define the physical QED coupling
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2
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2) = e
2(µ2)/(1�⇧(q2, µ2
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2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2 � m
2
p, where

p
s is the centre-of-mass en-

ergy and mp the proton mass, one obtains
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where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2

max = M
2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as
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with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧
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�(1� x) , (7a)

F
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[GE(Q2)]2
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where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q

2
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STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL

leptonic tensor,  
calculate with Feynman diag.k

k0

p

q

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
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/(2pq), we have
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where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q
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2) up to terms proportional
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, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
px

2
/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have

Q
2
min = x

2
m

2
p/(1� z) and Q

2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as
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◆
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where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)
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� 2 + 3z+

+ zp�q(z) ln
M

2(1� z)2

zµ2

#
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i2{q,q̄}

e
2
i �ai + . . . , (5)

where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

�gµ⌫F1(xBj, Q
2) +

pµp⌫
p.q

F2(xBj, Q
2) + · · ·

Q2 = �q2

xBj =
Q2

2p.q
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X
process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f�/p for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±

H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f�/p.

The two most widely used estimates of f�/p are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `

+
`
�. This is dominated by qq̄ ! `

+
`
�, with a

small component from �� ! `
+
`
�. The drawback of

this approach is that even with very small uncertainties
in `

+
`
� production data [8], in the QCD corrections to

qq̄ ! `
+
`
� and in the quark and anti-quark distribu-

tions, it is di�cult to obtain high precision constraints
on f�/p.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f�/p. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f�/p. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form Lint = (e/⇤)L�

µ⌫
Fµ⌫ l. Here e

2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
2
/(2pq), we have

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫(p, q)L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q

2) +
pµp⌫/(pq)F2(xBj, Q

2) up to terms proportional
to qµ, q⌫ , and the leptonic tensor is L

µ⌫(k, q) =
1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �

µ
⇤
(/k0 +M)

⇥
�
⌫
, /q
⇤⌘

. In Eq. (1)

we introduced the physical QED coupling

e
2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
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where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
px

2
/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have

Q
2
min = x

2
m

2
p/(1� z) and Q

2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c0

X
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where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
� 2 + 3z+

+ zp�q(z) ln
M

2(1� z)2

zµ2

#
X

i2{q,q̄}

e
2
i �ai + . . . , (5)

where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1
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x2m2
p

1�z

dQ
2

Q2
↵
2(Q2)

" 
zp�q(z) +
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2
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, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X

� =
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4p · k
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4
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2) , (1)

where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) is the pro-

ton hadronic tensor as defined in [30], and L
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is the lep-

tonic tensor. We define the physical QED coupling
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2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2 � m
2
p, where

p
s is the centre-of-mass en-

ergy and mp the proton mass, one obtains
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where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2

max = M
2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as
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where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +
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with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q

2
> x

2
m

2
p/(1 � x), which implies that the
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X
process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f�/p for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±

H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f�/p.

The two most widely used estimates of f�/p are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `

+
`
�. This is dominated by qq̄ ! `

+
`
�, with a

small component from �� ! `
+
`
�. The drawback of

this approach is that even with very small uncertainties
in `

+
`
� production data [8], in the QCD corrections to

qq̄ ! `
+
`
� and in the quark and anti-quark distribu-

tions, it is di�cult to obtain high precision constraints
on f�/p.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f�/p. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f�/p. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form Lint = (e/⇤)L�

µ⌫
Fµ⌫ l. Here e

2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
2
/(2pq), we have
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where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q

2) +
pµp⌫/(pq)F2(xBj, Q

2) up to terms proportional
to qµ, q⌫ , and the leptonic tensor is L
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we introduced the physical QED coupling
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where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
px

2
/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have

Q
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min = x
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p/(1� z) and Q
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max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
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From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2
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dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
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work out same cross section in terms of a photon distribution
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where ei is the charge of quark flavour i and zp�q(z) =
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where the result includes all terms of order ↵L (↵sL)n,
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2
L
2 (↵sL)n [33]. Within our accuracy
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tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2
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where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
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e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q
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2, GM (Q2) = µpGE(Q2) with m
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0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
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2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q
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p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

➤ Quarks and gluons come in at higher orders



ACCURACY AIM

➤ Take quark and gluon distributions ~ O(1) 

➤ α is QED coupling, αs is QCD coupling, L = ln μ2/mp2 

➤ Take L ~ 1/αs , so all (αs L)n ~ 1 

➤ Think of α ~ (αs)2 

➤ To first order, photon distribution ~ (α L) 

➤ we aim to control all terms: 

➤ α L (αs L)n                              [LO] 

➤ αs α L (αsL)n ≣ α (αs L)n         [NLO — extra αs or 1/L] 

➤ α2 L2 (αsL)n                            [NLO — extra α L] 

➤ Matching done at large M2 and μ2 to eliminate higher twists
16
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2
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p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is
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order ↵3
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
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where ⌧ = Q
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p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q
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dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q
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p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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where ei is the charge of quark flavour i and zp�q(z) =
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keep, observe that the photon will be suppressed by ↵L
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From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2
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text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =
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dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
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a = �. Equating the latter with the former will allow us
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where x = M
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p, we have
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

At low Q2, F2 and FL come directly from data (non.pert.)  
At high Q2, get them from PDFs, including O(αs) (NLO) terms
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2
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p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
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order ↵3
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
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where ⌧ = Q
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/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
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2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q
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p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
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Terms at boundaries are suppressed by 1/L (NLO)
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where ei is the charge of quark flavour i and zp�q(z) =
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tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2
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where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
� 2 + 3z+

+ zp�q(z) ln
M

2(1� z)2

zµ2

#
X

i2{q,q̄}

e
2
i �ai + . . . , (5)

where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

QED running of α accounts for most (αL)2 effects (NLO)  
(others come in the way we match to normal PDFs)
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Cross checks & literature comparisons

➤ Repeat calculation for a different process (γp→H+X, via 
γγ→H). Intermediate results differ, final photon distribution 
is identical. 

➤ Substitute elastic-scattering component of F2 and FL: 
 
 
 
 
 
and reproduce widely-used Equivalent Photon 
Approximation with electric (GE) and magnetic (GM) Sachs 
proton form factors 

Budnev et al., Phys.Rept.15(1975)181
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e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions,

where
p
s is the centre-of-mass energy.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X
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2 = �q
2, Wµ⌫(p, q) =

�gµ⌫F1(x,Q2) + pµp⌫/(pq)F2(x,Q2) + O(qµ, q⌫) is the
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µ⌫(k, q) =
1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
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is the lep-

tonic tensor. We define the physical QED coupling
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, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M
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p, where mp is the proton mass, one

obtains

� =
c0

2⇡

Z 1

x

dz

z

Z Q2
max

Q2
min

dQ
2

Q2
↵
2
ph(�Q

2)

"✓
2�2z+z

2+
2x2

m
2
p

Q2

+
z
2
Q

2

M2
�

2zQ2

M2
�

2x2
Q

2
m

2
p

M4

◆
F2(x/z,Q

2)

+

✓
�z

2
�

z
2
Q

2

2M2
+

z
2
Q

4

2M4

◆
FL(x/z,Q

2)

#
, (3)

where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2
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z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as
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where in the MS factorisation scheme
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with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
2
/(2pq), we have
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where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q

2) +
pµp⌫/(pq)F2(xBj, Q

2) up to terms proportional
to qµ, q⌫ , and the leptonic tensor is L
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. In Eq. (1)

we introduced the physical QED coupling
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2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
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/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have
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2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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➤ A core part of our answer   
 
 
 
 
appears in literature for QED compton process ep → eγΧ 
(but with inexact treatment of the upper and lower limits for 
Q2 integration) 

Anlauf et. al, CPC70(1992)97  
Mukherjee & Pisano, hep-ph/0306275 

➤ [NB other literature has expression for photon distribution in 
terms of F2 and F1 that doesn’t reproduce DGLAP limit] 

Luszczak, Schäfer & Szczurek, arXiv:1510.00294  
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�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k
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2 and
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in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q
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2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order
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s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
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where in the MS factorisation scheme
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-



Cross checks & literature comparisons

➤ μ2 derivative of our answer should reproduce known DGLAP QCD-
QED splitting functions 

➤ At LO, this is trivial.  
➤ At NLO we get relations between QED-QCD splitting functions (P) 

and DIS coefficient functions (C)   
 
 
 
 
  
 
 

➤ These agree with de Florian, Sborlini & Rodrigo results 

for O(α αs) terms, arXiv:1512.00612  
both they and we have gone to higher order — but pheno accuracy not there yet
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The e↵ective splitting functions are obtained by taking the derivative of xfMS
�/p

(x, µ2)

with respect to lnµ2. Two classes of term arise: that from the derivative of the integral
over Q2 and that from the part that is directly evaluated at scale µ

2. For the former, the
(1,1) contribution comes from the order ↵s contributions to F2 and FL, while for the latter
it comes from the O (↵s) contribution to the µ

2 evolution of F2 i.e from P
(1,0)
qq ⌦ q and

P
(1,0)
qg ⌦ g. Overall therefore we expect the following result

P
(1,1)
�q

= e
2
q

⇥
p�q ⌦ C2q � h⌦ CLq + (p̄�q � h)⌦ P

(1,0)
qq

⇤
, (97)

P
(1,1)
�g

=
X

q,q̄

e
2
q

⇥
p�q ⌦ C2g � h⌦ CLg + (p̄�q � h)⌦ P

(1,0)
qg

⇤
, (98)

where the gluonic term is to be summed over quark flavours and anti-flavours.

Numerically evaluating moments of these expressions, one finds good agreement with
the results from dFSR, as shown in Fig. 3.

Now let us examine what happens with running coupling. The equivalent of Eq.(96) is

xf
MS
�/p

(x, µ2) =
1

2⇡↵(µ2)

"Z
µ
2

dQ
2

Q2
↵
2(Q2) (p�q ⌦ F2 � h⌦ FL) (x,Q

2) +
↵
2(µ2)

2⇡
[(p̄�q � h)⌦ F2] (x, µ

2)

#
.

(99)
We will also need the QED �-function

d↵

d lnµ2
= ��↵(↵s,↵) , �↵(↵s,↵) = b

(0,2)
↵

↵
2 + b

(1,2)
↵

↵s↵
2 + . . . (100)

where couplings are all evaluated at scale µ
2 and

b
(0,2)
↵

= �
1

3⇡

 
n` +NC

X

q

e
2
q

!
, (101)

b
(1,2)
↵

= �
3CF

4⇡

NC

3⇡

X

q

e
2
q
, (102)

where the sum runs over just the quarks, not anti-quarks and n` is the number of active
lepton flavours (i.e. a maximum of 3).

Let’s now take the derivative

d

d lnµ2
xf

MS
�/p

(x, µ2) =
�↵(↵,↵s)

↵
xf

MS
�/p

(x, µ2) +
1

↵

d

d lnµ2

⇣
↵xf

MS
�/p

(x, µ2)
⌘

(103)

The first term will give us (up to the orders that we control)

P�� = �↵(↵,↵s)�(1� x) (104)
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or equivalently

P
(0,1)
��

= 2⇡b(0,2)
↵

�(1� x) = �
2

3

 
n` +NC

X

q

e
2
q

!
�(1� x) , (105)

P
(1,1)
��

= (2⇡)2b(1,2)
↵

�(1� x) = �CFNC

X

q

e
2
q
�(1� x) . (106)

The results of Eqs.(97) and (98) remain unchanged, with the runing of the ↵2(µ2) term in
Eq.(99) a↵ecting only higher-order terms.

9 QED-DGLAP studies

9.1 Hoppet v. other QED evolutions

Fig. 4 compares Hoppet’s evolution to that from CT14 both for the photon and for other
flavours. One sees that there is agreement at about the 1% level for the photon.

For the other flavours, there is generally acceptable agreement at moderate x values,
even up to quite large x for the up quarks. For all flavours there appears to be a small
discrepancy at small x and a significant discrepancy at large x. However it’s not clear what
the accuracy the CT14 evolution has. In particular at large x the parton distributions are
very small, so it can be harder to evolve them correctly. This is especially the case for
sea-quark distributions and for the gluon.

9.2 Other flavours

One potentially di�cult question is that of how we handle flavours other than the photon.
In an ideal world, one would determine the photon distribution using our master equation
and then one would perform a global fit to DIS and other data using QCD+QED evolution,
including all photon corrections.4 However this is beyond the scope of our article.

The question we ask here is whether this is necessary given the accuracy of today’s
data.

A first way of investigating this is to compare QCD+QED DGLAP evolution to plain
QCD evolution, for a starting condition with a zero photon, and see how the di↵erent
flavours are modified by the QED e↵ects. That’s shown in Fig. 5, where we carry out
an evolution from Q = 1.295GeV to Q = 100GeV (which is roughly the highest scale at
which there is accurate data?). What one observes is that in nearly all cases the e↵ects of
QED radiation are much smaller than the uncertainties on the data. The one exception is
for the up quark around x = 0.3. [What more do we say here?]

4GPS thanks Kirill Melnikov for discussions of this issue.
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8.2 Cross checks with mixed QCD-QED splitting functions

De Florian, Sborlini and Rodrigo (dFSR) [dFSR16a] recently published mixed QCD–QED
splitting functions, i.e. splitting functions at O (↵↵s). In their notation, the splitting
function for going from a parton b to a parton a is given by

Pab =
X

i,j

✓
↵s(µ2)

2⇡

◆i ✓
↵(µ2)

2⇡

◆j

P
(i,j)
ab

. (91)

Our results for the MS photon, Eqs. (50) and (53) trivially coincide with leading-order

QED results, i.e. the P
(0,1)
�q splitting function

P
(0,1)
�q

(z) = e
2
q
p�q(z) , p�q(x) =

1 + (1� z)2

z
, (92)

while

P
(0,1)
��

(z) = �
2

3

X

f

e
2
f
�(1� z), , (93)

is consistent with the running coupling factor in Eq. (90). [NB, Eq. (21) of dFSR

appears to have a typo in the P
(0,1)
q� entry, which should have an additional

factor of NC].

Now let us consider what can be verified concerning mixed QCD–QED terms. Specifi-
cally our results must be consistent with the dFSR predictions for P (1,1)

�q and P
(1,1)
�g .

Let us introduce the F2 and FL coe�cient functions,

F2(x,Q
2) =

X

i=q,q̄

e
2
i

⇣
xqi +

↵s

2⇡
C

(1)
2q ⌦ xqi +

↵s

2⇡
C

(1)
2g ⌦ xg

⌘
(x,Q2) , (94)

and similarly for FL except insofar as the ↵
0
s
term is absent. We have introduced the

notation

(C ⌦ xf)(x,Q2) ⌘

Z 1

x

dz

z
zC(z)

x

z
f

⇣
x

z
,Q

2
⌘
. (95)

Now let’s manipulate Eqs. (50) and (53) into a form that will make it straightforward
to obtain the e↵ective splitting functions. Let us do it, for now, at fixed QED coupling
and write

xf
MS
�/p

(x, µ2) =
↵

2⇡

Z
µ
2

dQ
2

Q2
(p�q ⌦ F2 � h⌦ FL) (x,Q

2) +
↵

2⇡
[(p̄�q � h)⌦ F2] (x, µ

2) (96)

where h(z) ⌘ z and p̄�q(z) ⌘ p�q(z) ln
1

1�z
. Note that we’ve modified the upper limit to

read µ
2 in Eq. (96) rather than the µ

2
/(1 � z) in Eq. (50) and correspondingly added a

term involving p�q ln
1

1�z
to compensate for that change.
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2

e
2
/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale

⇤ �
p
s is introduced to ensure the correct dimensions,

where
p
s is the centre-of-mass energy.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F2(x,Q2) and FL(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) fa/p(x, µ

2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) +X

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where q = k � k
0, Q

2 = �q
2, Wµ⌫(p, q) =

�gµ⌫F1(x,Q2) + pµp⌫/(pq)F2(x,Q2) + O(qµ, q⌫) is the
proton hadronic tensor as defined in [30], and L

µ⌫(k, q) =
1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �

µ
⇤
(/k0 +M)

⇥
�
⌫
, /q
⇤⌘

is the lep-

tonic tensor. We define the physical QED coupling

e
2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M

2
� m

2
p, where mp is the proton mass, one

obtains
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where x = M
2
/s, Q2

min = x
2
m

2
p/(1�z), Q2

max = M
2
/(1�

z) and c0 = 16⇡2
/⇤2.

The same result in terms of parton distributions can
be written as
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z
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✓
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, (4)

where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
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◆#
e
2
q�aq + . . . , (5)

with eq the charge of quark flavour q and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1

2⇡↵(µ2)

Z 1

x

dz

z

(Z µ2

1�z

Q2
min

dQ
2

Q2
↵
2(Q2)

" 
2� 2z + z

2 +
2x2

m
2
p

Q2

!
F2(x/z,Q

2)

� z
2
FL

⇣
x

z
,Q

2
⌘#

� ↵
2(µ2)z2F2
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z
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, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n. The last term in this equa-

tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq.(6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
2
/(2pq), we have

� =
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where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q

2) +
pµp⌫/(pq)F2(xBj, Q

2) up to terms proportional
to qµ, q⌫ , and the leptonic tensor is L
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. In Eq. (1)

we introduced the physical QED coupling
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2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
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2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
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p, we have

Q
2
min = x

2
m

2
p/(1� z) and Q

2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme
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where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

➤ Elastic component of F2/L 
lives at x=1 

➤ Express in terms of Sachs 
Form factors
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Figure 1: Elastic form factors (ratio to standard dipole form) as fitted by the A1 collabo-
ration [B+14]. Left: electric. Right: magnetic.

Other things to look at include [PPJ+15, A+15]. A widely used (but older) parametrisation
is [Kel04].

[Quote a number for µp; check to see if there are other refs; and settle on a
parametrisation].

We need to decide what corrections to use relative to the dipole form factor. The fits
from the A1 collaboration [B+14] are shown in Fig. 1. In particular, the world fits show
two extractions, with and without polarized data. It seems that the latter are important
for the extraction of two-photon-exchange (TPE) corrections. CLAS [A+15] doesn’t refer
to A1, but does claim that an independent method of extracting TPE corrections suggests
that the extractions from the polarized data are more reliable.

7.2 Longitudinal v. Transverse structure functions and cross
sections

Eq. (10) from Ref. [RSB99] tells us:

FL(x,Q
2) = F2(x,Q

2)

✓
1 +

4m2
p
x
2

Q2

◆
RL/T (x,Q2)

1 +RL/T (x,Q2)
(66)

where they also write RL/T (x,Q2) = �L(x,Q2)/�T (x,Q2). Their section 3 discusses data
(as of 1999) on transverse and longitudinal moments of cross sections, still to be read.
Ref. [O+03]’s Appendix A gives a parametrisation, as does [A+99] (R1998). The latter is
used in the parametrisation of world data on F2 by HERMES [A+11].

15
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➤ proton gets excited, e.g. to  
Δ→ pπ and higher resonances 

➤ relevant for  
(mp+mπ)2<W2<3.5GeV2

8

relevant kinematic range is very insensitive to the value
of R. In fact even a 100% systematic uncertainty on R
gives only a few percent uncertainty on F2. The relative
total systematic error is given by:

δsys
F2

(x, Q2) =

[

δ2
sys(x, Q2) +

(

1 − ϵ

1 + ϵR

δR

1 + R

)2]1/2

.

(22)
The uncertainties of R given in Ref. [14] were propagated
to the resulting F2, and the actual systematic errors in-
troduced by δR were always lower than 3%.

The combined statistical and systematic precision of
the obtained structure function F2 is strongly depen-
dent on kinematics and the statistical errors vary from
0.2% up to 30% at the largest Q2 where statistics are
very limited. Fig. 6 shows a comparison between the
F2 data from CLAS and the other world data in the
Q2 = 0.775 GeV2 bin. The observed discrepancies with
the data from Ref. [7] which fill the large x region in
Fig. 6 are mostly within the systematic errors. Because
of the much smaller bin centering corrections in this Q2

region our data are in a better agreement with data pre-
viously measured at SLAC, given in Ref. [22], and the
parameterization of those from Ref. [21, 22]. The average
statistical uncertainty is about 5%; the systematic uncer-
tainties range from 2.5% up to 30%, with the mean value
estimated as 7.7% (see Table I). The values of F2(x, Q2)
determined using our data are tabulated elsewhere [10].

TABLE I: Range and average of systematic errors on F2.

Source of uncertainties Variation range Average
[%] [%]

Efficiency evaluation 1-9 4.3
e+e− pair production correction 0-3 0.3

Photoelectron correction 0.1-2.2 0.6
Radiative correction 1.5-20 3.2

Momentum correction 0.1-30 3.5
Uncertainty of R = σL

σT
0.5-5 2.4

Total 2.5-30 7.7

G. Moments of the Structure Function F2

As discussed in the introduction, the final goal of this
analysis is the evaluation of the Nachtmann moments of
the structure function F2. The total Nachtmann mo-
ments were computed as the sum of the elastic and in-
elastic moments:

Mn = M el
n + M in

n . (23)

The contribution originating from the elastic peak was
calculated according to the following expression from

x

F 2
(x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 6: Structure function F2(x,Q2) at Q2 = 0.775 GeV2:
stars represent experimental data obtained in the present
analysis with systematic errors indicated by the hatched
area, empty circles show data from previous experiments
[7, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] and
the solid line represents the parametrization from Ref. [14].

Ref. [14]:

M el
n =

(

2

1 + r

)n+1 3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

G2
E(Q2) + Q2

4M2 G2
M (Q2)

1 + Q2

4M2

, (24)

where the proton form factors G2
E(Q2) and G2

M (Q2) are
from Ref. [8] modified according the recently measured
data on GE/GM [9], as described in Ref. [10].

The evaluation of the inelastic moment M in
n involves

the computation at fixed Q2 of an integral over x. For
this purpose, in addition to the results obtained from the
CLAS data, world data on the structure function F2 from
Refs. [7, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44] and data on the inelastic cross section [21, 22, 45]
were used to reach an adequate coverage (see Fig. 1).
The integral over x was performed numerically using the
standard trapezoidal method TRAPER [46]. Data from
Ref. [47] were not included in the analysis due to their
inconsistency with other data sets as explained in detail
in Ref. [48], and data from Ref. [49, 50] were not included
due to the large experimental uncertainties.

The Q2-range from 0.05 to 3.75 (GeV/c)2 was divided
into ∆Q2 = 0.05 (GeV/c)2 bins. Then within each Q2

bin the world data were shifted to the central bin value
Q2

0, using the fit of FB
2 (x, Q2) from Ref. [14]. Here the fit

FB
2 (x, Q2) consists of two parts, a parametrization [21,

22] in the resonance region (W < 2.5 GeV), and a QCD-
like fit from Ref. [51] in the DIS (W > 2.5 GeV):

F2(x, Q2
0) =

F2(x, Q2)

FB
2 (x, Q2)

FB
2 (x, Q2

0) . (25)

Δ(1232)

Q2 = 0.775 GeV2Bj

N(1520)

data sources in x,Q2 plane
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➤ Much data 
➤ For Q2 → 0, σγp indep. of Q2 

at fixed W2
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  9.1 1.436
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 36.9 1.433
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T  ⋅
 c

 [ 
ba

rn
 ]

Figure 9: HERMES data for the photon-proton cross section σp
L+T as a function of W 2, together

with world data and the results from the GD11-P fit (central curves) and its uncertainties (outer
curves), in bins of Q2. The data points denoted ’real photon’ are for photoproduction. Inner error
bars are statistical uncertainties, while outer error bars are total uncertainties calculated as the
sum in quadrature of all statistical and systematic uncertainties including normalization.
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➤ Less direct data for F2 and FL 
at high Q2 

➤ But we can reliably use PDFs 
and coefficient functions (up 
to NNLO) to calculate them 

➤ Our default choice is 
PDF4LHC15_nnlo_100 (and 
zero-mass variable flavour-
number scheme)
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2

�, one in terms of standard proton structure functions,
F2 and FL (or F1), the other in terms of the proton PDFs
fa/p, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f�/p.

We start with the inclusive cross section for l(k) +
p(p) ! L(k0) + X. Defining q = k � k

0, Q2 = �q
2 and

xBj = Q
2
/(2pq), we have

� =
1

4p · k

Z
d
4
q

(2⇡)4q4
e
2
ph(q

2) [4⇡Wµ⌫(p, q)L
µ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M
2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by Wµ⌫(p, q) = �gµ⌫F1(xBj, Q

2) +
pµp⌫/(pq)F2(xBj, Q

2) up to terms proportional
to qµ, q⌫ , and the leptonic tensor is L

µ⌫(k, q) =
1
2 (e

2
ph(q

2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �

µ
⇤
(/k0 +M)

⇥
�
⌫
, /q
⇤⌘

. In Eq. (1)

we introduced the physical QED coupling

e
2
ph(q

2) = e
2(µ2)/(1�⇧(q2, µ2

, e
2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
c0

2⇡

Z 1� 2xmp
M

x

dz

z

Z Q2
max

Q2
min

dQ
2

Q2
↵
2
ph(�Q

2)

"✓
2�2z+z

2

+
2x2

m
2
p

Q2
+

z
2
Q

2

M2
� 2zQ2

M2
�

2x2
Q

2
m

2
p

M4

◆
F2(x/z,Q

2)

+

✓
�z

2 � z
2
Q

2

2M2
+

z
2
Q

4

2M4

◆
FL(x/z,Q

2)

#
, (3)

where x = M
2
/(s � m

2
p), mp is the proton mass,

FL(x,Q2) = (1+4m2
px

2
/Q

2)F2(x,Q2)�2xF1(x,Q2) and
c0 = 16⇡2

/⇤2. Assuming that M
2 � m

2
p, we have

Q
2
min = x

2
m

2
p/(1� z) and Q

2
max = M

2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c0

X

a

Z 1

x

dz

z
�̂a(z, µ

2)
M

2

zs
fa/p

✓
M

2

zs
, µ

2

◆
, (4)

where in the MS factorisation scheme

�̂a(z, µ
2) = ↵(µ2)�(1� z)�a� +

↵
2(µ2)

2⇡

"
� 2 + 3z+

+ zp�q(z) ln
M

2(1� z)2

zµ2

#
X

i2{q,q̄}

e
2
i �ai + . . . , (5)

where ei is the charge of quark flavour i and zp�q(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L

relative to the quark and gluon distributions, which are
of order (↵sL)n, where L = lnµ2

/m
2
p ⇠ 1/↵s. The first

term in Eq. (3) is of order ↵2
L(↵sL)n, the second one is

of order ↵
2(↵sL)n. We neglect terms that would be of

order ↵3
L(↵sL)n or ↵2

↵s(↵sL)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf�/p(x, µ
2) =

1

2⇡↵(µ2)

Z 1

x

dz

z

(Z µ2

1�z

x2m2
p

1�z

dQ
2

Q2
↵
2(Q2)

" 
zp�q(z) +

2x2
m

2
p

Q2

!
F2(x/z,Q

2)� z
2
FL

⇣
x

z
,Q

2
⌘#

� ↵
2(µ2)z2F2

⇣
x

z
, µ

2
⌘)

, (6)

where the result includes all terms of order ↵L (↵sL)n,
↵ (↵sL)n and ↵

2
L
2 (↵sL)n [33]. Within our accuracy

↵ph(�Q
2) ⇡ ↵(Q2). The conversion to the MS factorisa-

tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵s for the P�q, P�g and P�� splitting functions using
known results for the F2 and FL coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F2

and FL. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F2 and
FL,

F
el
2 (x,Q2) =

[GE(Q2)]2 + [GM (Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F
el
L (x,Q2) =

[GE(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q
2
/(4m2

p) and GE and GM are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for GE,M is the dipole form GE(Q2) =
1/(1 + Q

2
/m

2
dip)

2, GM (Q2) = µpGE(Q2) with m
2
dip =

0.71 GeV2 and µp ' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f�/p(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf�/p(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f�/p(x)
for x . 0.5. The data constrains the form factors for
Q

2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q

2
> x

2
m

2
p/(1 � x), which implies that

the elastic contribution to f�/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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Figure 18. The left panel shows the contributions to the photon PDF at µ = 100 GeV, Eqs. (6.16a,
6.17a, 7.6, 7.12), multiplied by 103x0.4

/(1 � x)4.5, with a breakdown into the various components
discussed in the text. The white line is the sum of the inelastic contribution from Q

2
 1 (GeV)2

in Eq. (6.17a) and the full elastic contribution. The full physical factorisation result of Eq. (6.17a),
which is equivalent to a LO result, is given by the dashed blue line. The right panel shows the same
plot for µ = 500GeV, with the scale µM in Eq. (9.4a) for the LO results set to µ/2 or 2µ. The
total PDF (edge of grey region) is shown for µM = µ. The MS-conversion term (di↵erence between
grey region and dashed blue curve) has a significant impact with scale choices other than µM = µ.

resonance and (low-Q2) continuum contributions to the photon PDF all depend slowly on

µ via the overall 1/↵(µ2) factor in Eq. (6.17a). These components, though formally NLO,

remain a significant fraction of the overall photon PDF, even at this large value of µ.

The right panel in Fig. 18 also shows the impact of scale variation on the contributions

at µ = 500GeV. The blue dashed curves are for µM = µ/2 and µM = 2µ in Eqs. (9.1,9.4a)

for the PF photon. The total MS photon PDF (the top edge of the grey band) uses our

central choice of µM = µ in Eq. (9.4a). The impact of a change of µM on the MS photon

PDF would be barely visible in the plot, because the substantial scale dependence of the

PF result is largely cancelled by that of the MS-conversion term, as was noted earlier in

the discussion of Fig. 13. Previous photon PDFs were at best accurate to leading order,

and hence had much larger scale uncertainties than LUXqed.

Figure 19 shows the �� luminosity compared with the gg and total qq luminosities for
p
s = 13TeV and 100TeV, where the luminosity dLij/d lnm2 for partons i and j in pp

collisions is defined by

dLij

d lnm2
=

m
2

s

Z
dz

z
fi(z,m

2) fj

✓
m

2

zs
,m

2

◆
. (11.1)

For the
P

i qiqi luminosity, we have included a factor of two in the sum, since either

quarks or antiquarks can come from each beam. The �� luminosity is about three orders

of magnitude smaller than the gg and qq luminosities over a wide range of masses. The

impact of the �� luminosity is however enhanced in processes with leptons and electroweak

gauge bosons, such as pp ! WW , where the �� process has a t-channel exchange diagram

which is enhanced in some kinematic regions.

Figure 20 shows the photon momentum fraction of the proton as a function of µ.

The momentum fraction is ⇠ 0.43% at µ = 100 GeV, and increases by about 0.1% for

– 54 –

photon distribution, reweighted by 1000 x0.4/(1-x)4.5
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
black line. See the text for a detailed description of the various contributions.

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
black line. See the text for a detailed description of the various contributions.

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


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!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
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estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
black line. See the text for a detailed description of the various contributions.

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
black line. See the text for a detailed description of the various contributions.

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
black line. See the text for a detailed description of the various contributions.

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown
stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick
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estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order ↵

corrections to the DIS coe�cient functions, and with information about the photon PDF

as an input (e.g. because it a↵ects the momentum sum rule at order ↵ at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ
2
match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f
rescaled
g (x, µ2

match) =


1�

!�(µ2
match)

!g(µ2
match)

�
⇥ fg(x, µ

2
match) , (10.1)

where !i(µ2) is the momentum fraction carried by parton flavour i at scale µ
2,

!i(µ
2) =

Z 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, !� , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2
match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ
2
match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coe�cient

functions (without QED corrections), we should reproduce the true experimental F2/L at
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elastic inelastic in  
LHAPDF?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

NNPDF23qed no separation; fit to data ✓

CT14qed ✘ model  
(data-constrained) ✓

CT14qed_inc dipole model  
(data-constrained) ✓

Martin Ryskin  
2014

dipole  
(only electric part)

model ✘

Harland-Lang, Khoze 
Ryskin 2016 dipole model ✘

LUXqed 2016/17 data data ✓
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PHOTON UNCERTAINTY (1-2%) COMPARED TO OTHER FLAVOURS
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PDF uncertainties (Q = 100 GeV)

photon (LUXqed)

strange (PDF4LHC15)
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MOMENTUM CARRIED BY PHOTON
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momentum (μ = 100 GeV)
gluon 46.8 ± 0.4%

up valence 18.1 ± 0.3%
down valence   7.5 ± 0.2%

light sea quarks 20.5 ± 0.4%
charm 4.0 ± 0.1%
bottom 2.5 ± 0.1%
photon 0.425 ± 0.003%

LUXqed17_plus_PDF4LHC15_nnlo_100 
(1+107 members, symmhessian, errors 

 handled by LHAPDF out of the box) 

Figure 19. Upper panels: partonic luminosities in pp collisions, as a function of the partonic
invariant mass m, at centre-of-mass energies of 13 TeV (left) and 100 TeV (right). The �� (scaled
by 102), qq̄ and gg luminosities appear from bottom to top. Lower panels: the relative uncertainties
of the luminosities. Our luminosity definition is given in Eq. (11.1).
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Figure 20. Momentum fraction (top) and its relative uncertainty (bottom) carried by the photon,
as a function of the factorisation scale µ.

each factor of 10 increase in µ. Eventually, neglecting electroweak corrections, the photon

momentum fraction saturates at a value that is independent of ↵ and ↵s, however this

occurs at trans-Planckian scales.
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NNPDF approach — LUXqed photon approach, refits other flavours
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Figure 2.2. Flow diagram representing the NNPDF3.1luxQED fitting strategy. In the last iteration
nite, once the procedure has converged, the additional LUXqed17 are added to �(x,Q), see Sect. 2.5.

e↵ects are likely to be small in this specific analysis, our framework is fully general and allows for
the consistent inclusion of hadronic observables sensitive to the photon-initiated contributions.

In order to illustrate the convergence of the procedure, in Fig. 2.3 we show a comparison
of the photon, gluon, up quark, and down quark PDFs at Q = 100 GeV between the first and
the second iteration (labelled ITE1 and ITE2, respectively). We have verified that additional
iterations leave the photon PDF unchanged, demonstrating that stability has been reached. For
completeness, in Fig. 2.3 we also show the third and final iteration of the procedure (ITE3), where
the additional LUXqed17 systematic variations are added to the photon PDF (see Sect. 2.5). As
expected, these have the largest impact in the region x

⇠
> 0.05, where the elastic contribution

to the photon PDF is most important.

2.5 The uncertainties on the photon PDF

As mentioned above, the calculation of the photon PDF in terms of structure functions involves
several contributions: the elastic component, the inelastic resonance component, and the in-
elastic low- and high-Q2 continuum components. Only the last component can be factorised in
terms of PDFs and perturbative coe�cient functions. Therefore, the ensemble of Nrep Monte
Carlo replicas of the photon PDF accounts only for a part of the uncertainty, namely the one
associated to the inelastic high-Q2 component. For a comprehensive estimate of the uncertainty
one must also account for a number of additional sources of error.

The following sources of uncertainty are considered [42]: the elastic contribution from the
A1 world proton form factor fits [103]; the parametrisation of the DIS structure functions in
the resonance region [104–106]; the parametrisation of RL/T [107, 118, 119], the ratio between
longitudinal and transverse structure functions; the scale Q2

match at which low- and high-Q2

inelastic structure functions are matched; a twist-4 modification of the longitudinal structure
function FL [120, 121]; and finally an estimate of the missing higher-order corrections in the
calculation of the DIS structure functions at high Q2.

In the NNPDF3.1luxQED analysis, these uncertainties are introduced at the last iteration
of the procedure. Once the quark and gluon PDFs from the (nite � 1)-th iteration have been
determined, they are used to construct �nite(x,Q). Then, for each photon PDF replica of this

7



NNPDF LUXqed (1712.07053) v. our LUXqed
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Figure 3.1. Left: comparison of the NNPDF3.1luxQED photon at Q = 100 GeV with that of
LUXqed16/17 normalized to the central value of the latter. The bottom panel indicates the relative
uncertainty on the photon PDF in each case. Right: the same comparison, now including only the
uncertainties on �(x,Q) related to the quark and gluon PDFs in the high-Q2 inelastic component.

global fit quality is identical to the corresponding NNPDF3.1 results at NNLO. See Appendix A
for a full breakdown of the data description at NNLO and its comparison with NNPDF3.1.

3.1 The photon PDF

Here we compare our results for the photon PDF �(x,Q) with those of the NNPDF3.0QED
and LUXqed16/17 PDF sets. Comparisons with the latter are performed always at Q � 10
GeV, as the LUXqed16/17 sets are not defined below this scale. As discussed in Sect. 9.2 of
Ref. [42], the LUXqed17 set has a improved evaluation of the photon PDF calculation and
of the associated error estimates in comparison to LUXqed16. In the left panel of Fig. 3.1
we compare the NNPDF3.1luxQED photon PDF at Q = 100 GeV with the corresponding
results from LUXqed16 and LUXqed17, normalised to the central value of the latter. The
three determinations agree well across the full x range, with central values always compatible
within uncertainties. In addition, for x

⇠
> 0.1 the total uncertainties on the photon PDF from

NNPDF3.1luxQED and LUXqed16/17 are identical. This feature is explained by the fact that in
this region the uncertainties due to the elastic and low-Q2 inelastic structure functions dominate.

At medium- and small-x, the NNPDF3.1luxQED photon exhibits somewhat smaller uncer-
tainties. This is due to the use of a di↵erent set of quark and gluon PDFs determining the
high-Q2 inelastic component, specifically NNPDF3.1 rather than the PDF4LHC15 set [124]
used in LUXqed16/17. The contribution from the di↵erent error sources is further illustrated
in the right panel of Fig. 3.1 where the same comparison including only the uncertainties due
to the high-Q2 inelastic component is shown. The plot shows how at medium- to small-x the
contribution from the high-Q2 inelastic structure functions dominates the overall uncertainty.

In order to gauge the stability of the photon PDF with respect to the perturbative order
of the QCD calculations used in the fit, in Fig. 3.2 we compare the photon PDFs from the
NNPDF3.1luxQED NLO and NNLO fits, normalised to the central value of the former. The
photon distributions are consistent within uncertainties, demonstrating good perturbative sta-
bility. Indeed, the shift due to the change in perturbative order is outside the PDF error bands
only in the small-x region, where the photon is sensitive to the prior PDF used for the computa-
tion of the high-Q2 inelastic component. In addition, we find that the photon PDF uncertainties
are una↵ected by the variation of the perturbative order.

In order to quantify the di↵erences between photon PDFs determined from global analyses
with and without imposing the LUXqed theoretical constraint, we compare NNPDF3.1luxQED
with NNPDF3.0QED. In the following, the PDF uncertainties of NNPDF3.0QED are computed

9
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Figure 22: The ratio of Photon PDFs between the LUXqed and NNPDF3.1luxQED sets with
that of MMHT, at Q2 = 104 GeV2.

difference seen in Fig. 22.
Common to all the sets are errors of O(1%), displaying the remarkable improvements in

accuracy seen in photon PDFs developed on the strategy outlined in this paper and that
of [15] and [21], in comparison to that of older sets. A full breakdown of the contributing
sources of error are explored in Section 4.3.

4.2.3 QED Corrected Structure Functions

The PDFs are related to the measured structure functions by the standard formulae

Fi(x,Q
2) = x

∑

q,q̄

e2q

∫ 1

x

dz

z
q(z, Q2)

{

δ
(

1−
x

z

)

+
αS

2π
Ci,q

(x

z

)

+ ...
}

+

x
∑

q,q̄

e2q

∫ 1

x

dz

z
g(z, Q2)

{αS

2π
Ci,g

(x

z

)

+ ...
}

.

(60)

where i (= 2, 3, L...) labels the structure function and Cq,g are the corresponding coefficient
functions. The introduction of a photon PDF and of QED corrections to the DGLAP splitting
kernels requires that we also modify the expression for these to include O(α) corrections, in

particular introducing terms of the form C(α)
γ ⊗ γ(z, Q2), for both Neutral Current (NC) and

Charged Current (CC) processes.
In Fig. 25 we show the effect of these changes with and without refitting. Again, the sen-

sitivity introduced by the gluon parameterisation is seen to have an effect at low x, reducing
F2,3 somewhat, while after fitting, the CC structure functions F2,3 are moderately decreased
at low x. In the NC case however, F2 is generally reduced by O(0.5%), as anticipated by the
fact that the introduction of QED in the evolution is seen in general to diminish the quark
singlet content, see Fig. 15.
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differences: (1) larger charge-weighted  than PDF4LHC15  
                     (2) absence of  splittings

q + q̄
γ → ℓ+ℓ−
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By taking note of the fact that the scale variation of F2(Q2) and α(Q2) may be treated
as stationary at the order we are calculating at (∂F2/∂Q2, ∂α/∂Q2 ∼ 0), we get

xγ(x,Q2
0) =

1

2πα(Q2
0)

∫ 1

x

dz

z

{

∫ Q2
0

x2m2
p

1−z

dQ2

Q2
α2(Q2)

[(

zPγ,q(z) +
2x2m2

p

Q2

)

F2(x/z,Q
2)

−z2FL(x/z,Q
2)

]

− α2(Q2
0)

(

z2 + ln(1− z)zPγ,q(z)−
2x2m2

pz

Q2
0

)

F2(x/z,Q
2
0)
}

.

(4)

This is the final expression for the input photon PDF that we will use throughout this paper,
taking Q2

0 = 1GeV2 as the input scale. We note that this closely resembles Eq.(4.10) of [22],
however in our case we retain the term of order O(m2

p/Q
2
0) as this is more significant for the

lower input scale we consider in comparison to LUXqed, which uses Q2
0 = 10GeV2. We now

elaborate on the composition of F2,L and how each source contributes to our expression for
xγ(x,Q2

0). As discussed in the previous section, F2,L receive contributions from both elastic
and inelastic scattering processes, as shown in Fig. 1. In other words:

F2,L = F (el)
2,L + F (inel)

2,L . (5)

As we will discuss below, the elastic and inelastic components of F2,L are obtained from fits
to data, largely in the same way as in LUXqed [21, 22].

For F (el)
2,L we use the A1 collaboration fit [31] to elastic scattering data, which is provided

in terms of the Sachs electric and magnetic form factors for the proton:

F (el)
2 (x,Q2) =

[GE(Q2)]2 + τ [GM(Q2)]2

1 + τ
δ
(

1− x
)

,

F (el)
L (x,Q2) =

[GE(Q2)]2

τ
δ
(

1− x
)

,

(6)

where τ = Q2/(4m2
p). We note that the fits from the A1 collaboration differ from the widely

used dipole approximation by about 10% at x ∼ 0.5; above this the difference increases
further but this has little impact due to the effective kinematic cut at high x, discussed below.
However, as discussed in [21], the dipole model’s reasonably good (O(5%)) correspondence
to the data at low x makes it useful in interpreting the scaling behaviour in this region
(γ(el)(x) ∼ α ln(1/x)).

By substituting Eq. (6) into Eq. (4) we obtain an explicit formula for the elastic contri-
bution to the photon PDF at a scale µ,

xγ(el)(x, µ2) =
1

2πα(µ2)x

∫ µ2

x2m2
p

1−z

dQ2

Q2
α2(Q2)

[(

xPγ,q(x) +
2x2m2

p

Q2

)

×

[GE(Q2)]2 + τ [GM(Q2)]2

1 + τ
− x2 [GE(Q2)]2

τ

]

,

(7)

which, noting the presence of the 1/α(µ2) factor outside the integral, is equivalent to the
order to which we calculate to solving the coupled DGLAP evolution for γel.

6

The target mass corrections for the proton are well known, modifying the O(α) quark to
photon splitting in an identical manner to the first term in the integrand of Eq. (4):

P (0,1)
γ,q (z) → P (0,1)

γ,q (z) +
2x2m2

p

zQ2
. (29)

Further modifications are also required for higher twist terms which lead to discrepancies
between F2 as calculated from the partons and experimental measurements for F (inel)

2 , due
to non-perturbative effects at high x and low Q2. In a global fit this effect is typically
eliminated by cutting on the low W 2 region where such corrections are relevant, however for
the determination of the photon PDF which is sensitive to F (inel)

2 in the region discussed, we
must include this. Therefore a phenomenological model must be adopted to account for such
higher–twist corrections. We follow the approach of [39], where non-perturbative ∼ 1/Q2

power corrections to the structure functions are provided, by characterising the associated
infrared divergences in field theory with the so–called renormalon. In this paper we shall use
the term renormalon synonymously with higher twist corrections of this type. In [39], they
provide at O(1/Q2) a modification to F2 that accounts for the change due to renormalon
calculations at high x, and this is found to give an improved description of DIS data [40].

In lieu of F (inel)
2 , during the evolution the contributions to γ(inel) are essentially generated

by the quark splittings (q → qγ), where the total quark singlet Σ plays the role of F2 in eq.
(4). Therefore, to approximate renormalon effects during the evolution, these modification
are instead made to the quarks via

q(x,Q2) → q(x,Q2)
(

1 +
A′

2

Q2

∫ 1

x

dz

z
C2(z)q(

x

z
,Q2)

)

, (30)

where A′
2 is a parameter not given a priori by the theory and C2(z) is defined in Eq. 4.1

of [39], and conserves the flavour number properties of the various q(x/z,Q2). As such, higher
twist contributions to F2 do not contribute to the Adler sum rule,

∫ 1

0

dxFHT
2 (x,Q2) = 0 , (31)

enforcing that these are well behaved as x → 0. However no such restriction applies to F3,
and renormalon calculations [41] imply that they become large, necessitating the need for
the more stringent cut on F3 data used in the fit (from the CHORUS collaboration [42]) that
extend into this region. This is of interest because the parameter A′

2 is not well determined,
and in [39], is fit loosely to structure function data to yield a value of A′

2 = −0.2 GeV2. As
discussed above, data sensitive to renormalon contributions are typically excluded in global
fits, to remove any sensitivity to such non–perturbative effects. In particular, in MMHT
kinematic cuts of W 2 > 15 GeV2 (and W 2 > 20 GeV2 at LO) are taken, while for those
data sets relating to ν(ν̄)N experiments to measure xF3 a more stringent cut of W 2 > 25
GeV is imposed [43]. However, with the aim of determining a more precise value of A′

2 we
have relaxed these constraints, lowering the threshold to W 2 > 5 GeV2 and modifying F2

and F3 to include the relevant renormalon contributions as in [39], i.e. with modifications of
the form shown in eq. (30).
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Figure 3: (Left) Ratio of the photon PDF with (γ(x,Q2)) and without (γ x2
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(x,Q2)) target

mass corrections and (right) Higher Twist (renormalon) corrections.

sources of momentum violation in the evolution, as discussed in Section 2.5.

2.4 Separation of Elastic and Inelastic Components

As noted in Section 2.2, the photon PDF actually comprises of two component distributions,
γ(x,Q2) = γ(el)(x,Q2)+ γ(inel)(x,Q2), which represent photon contributions from elastic and
inelastic proton scattering events, respectively. Separating γ(el) and γ(inel) from one another
while consistently performing the evolution for all the partons required certain changes to
be made from the standard procedure for performing DGLAP, due to the fact that the
generation of γ(el) in the evolution is independent of parton splittings, as detailed below.

For γ(inel), the evolution is analogous to that of the other partons. The contributions
from the HERMES (continuum) and CLAS (resonance) data for F (inel)

2 are present only at
input, above which DGLAP evolution is performed. We emphasise that all photon contribu-
tions that arise from the splitting of other partons (the quarks, antiquarks and both photon
components themselves, but also the gluon at O(ααS)) in DGLAP are absorbed into the
definition of γ(inel) (using the notation of the previous section):

dγ(inel)

dt
=

nF
∑

j

Pγqj ⊗ qj +
nF
∑

j

Pγq̄j ⊗ q̄j + Pγg ⊗ g + Pγγ ⊗ γ(inel). (32)

This reflects the fact that scattering processes that are sensitive to the partons are them-
selves inelastic and that therefore any photon contributions that arise from their evolution
in DGLAP are necessarily inelastic contributions.

While γ(el) is included at input and passed to the other partons during evolution, its own
evolution requires consideration of the contributions it receives above Q0 from F (el)

2 , since
our expression for γ(el) given in Section 2.2, Eq. (7), holds generally above the input scale.
Incorporating this and splittings of the form γ → qq̄ and γ → qq̄g at O(ααS), the evolution
for γ(el) is given as:

dγ(el)

dt
= Pγγ ⊗ γ(el) + δxγ(el). (33)

14

The expression for δxγ(el) is given by taking the derivative of the expression for the elastic
photon, eq. (7), w.r.t Q2:

δxγ(el)(x,Q2) =
α(Q2)

2π

1

x

[(

xPγ,q(x) +
2x2m2

p

Q2

)

[GE(Q2)]2 + τ [GM (Q2)]2

1 + τ

−x2 [GE(Q2)]2

τ

]

.

(34)

As discussed in the next section, including the term introduced in Eq. (34) as an external

contribution (not generated from parton splittings but added into the evolution from F (el)
2

data) introduces a small amount of momentum violation, as do subsequent splittings of the
form γ(el) → qq̄.

Although the provisions outlined above are needed for the evolutions of γ(el) and γ(inel),
i.e. those contributions from splitting functions of the form Pγ{q,q̄,g,γ}, the treatment for
the rest of the partons remains broadly unchanged. Since the quark, antiquark and gluon
contributions from P{q,q̄,g,γ}γ splittings do not distinguish between γ(el) and γ(inel), the entire
photon contribution, γ(x,Q2) = γ(el)(x,Q2)+γ(inel)(x,Q2), is passed to the relevant splitting
kernels during evolution.

As γ(el) and γ(inel) distinguish between the photon in two distinct categories of scattering
processes, there is a phenomenological interest in comparing the two. At input, the elastic
contribution dominates over that of the inelastic, as F (el)

2 > F (inel)
2 in the region Q ! 1

GeV. However, evolution quickly enhances the contributions of γ(inel), particularly at low
x, predominantly due to quark splittings, as shown in Figs. 4 and 5. As discussed above,
the only contributions γ(el) receives during the evolution are those from Eq. (34). Since
GE,M(Q2) are known to diminish with increasing Q2 and 1/τ ∼ 1/Q2, an inspection of the
form of eq. (34) reveals that it will be of diminishing importance in a significant range of x.
In fact, investigating the effects of leaving out this term in eq. (33) entirely yielded a γ(el)

with differences of just O(10−3) from the form with the contributions included. However,
the elastic distribution’s contribution at input, and above, is proportionally large at high x,
even at high Q2 (Fig. 5), and due to the kinematic cut all contributions to the photon at
the highest x are from Q2 > Q2

0. Indeed, in this region the elastic contribution even above
Q2

0 dominates the photon, as can be seen in Fig. 6, which shows the effect on the photon of
turning this contribution off. One slight caveat, however, is that as limx→1 γ(el), γ(inel) → 0,
and ultimately uncertainties become large in this region (see Section 4.3), making it difficult
to make very strong predictive statements about either distribution in this region.

2.5 Momentum Conservation

The inclusion of the photon PDF requires that the photon be included in the momentum
sum rule (14), naturally leading to a redistribution of momentum in the other partons in
order to obey eq. (14) at input. However, due to the procedure adopted for the inclusion
of γ(el), outlined in the previous section, as well as higher twist terms, this equation is not
strictly obeyed during the evolution. This reflects the discrepancy between effects of non-
perturbative corrections, such as that of target masses, and the parton model. In this section
we outline the consequences of such changes.

16

The target mass corrections for the proton are well known, modifying the O(α) quark to
photon splitting in an identical manner to the first term in the integrand of Eq. (4):

P (0,1)
γ,q (z) → P (0,1)

γ,q (z) +
2x2m2

p

zQ2
. (29)

Further modifications are also required for higher twist terms which lead to discrepancies
between F2 as calculated from the partons and experimental measurements for F (inel)

2 , due
to non-perturbative effects at high x and low Q2. In a global fit this effect is typically
eliminated by cutting on the low W 2 region where such corrections are relevant, however for
the determination of the photon PDF which is sensitive to F (inel)

2 in the region discussed, we
must include this. Therefore a phenomenological model must be adopted to account for such
higher–twist corrections. We follow the approach of [39], where non-perturbative ∼ 1/Q2

power corrections to the structure functions are provided, by characterising the associated
infrared divergences in field theory with the so–called renormalon. In this paper we shall use
the term renormalon synonymously with higher twist corrections of this type. In [39], they
provide at O(1/Q2) a modification to F2 that accounts for the change due to renormalon
calculations at high x, and this is found to give an improved description of DIS data [40].

In lieu of F (inel)
2 , during the evolution the contributions to γ(inel) are essentially generated

by the quark splittings (q → qγ), where the total quark singlet Σ plays the role of F2 in eq.
(4). Therefore, to approximate renormalon effects during the evolution, these modification
are instead made to the quarks via

q(x,Q2) → q(x,Q2)
(

1 +
A′

2

Q2

∫ 1

x

dz

z
C2(z)q(

x

z
,Q2)

)

, (30)

where A′
2 is a parameter not given a priori by the theory and C2(z) is defined in Eq. 4.1

of [39], and conserves the flavour number properties of the various q(x/z,Q2). As such, higher
twist contributions to F2 do not contribute to the Adler sum rule,

∫ 1

0

dxFHT
2 (x,Q2) = 0 , (31)

enforcing that these are well behaved as x → 0. However no such restriction applies to F3,
and renormalon calculations [41] imply that they become large, necessitating the need for
the more stringent cut on F3 data used in the fit (from the CHORUS collaboration [42]) that
extend into this region. This is of interest because the parameter A′

2 is not well determined,
and in [39], is fit loosely to structure function data to yield a value of A′

2 = −0.2 GeV2. As
discussed above, data sensitive to renormalon contributions are typically excluded in global
fits, to remove any sensitivity to such non–perturbative effects. In particular, in MMHT
kinematic cuts of W 2 > 15 GeV2 (and W 2 > 20 GeV2 at LO) are taken, while for those
data sets relating to ν(ν̄)N experiments to measure xF3 a more stringent cut of W 2 > 25
GeV is imposed [43]. However, with the aim of determining a more precise value of A′

2 we
have relaxed these constraints, lowering the threshold to W 2 > 5 GeV2 and modifying F2

and F3 to include the relevant renormalon contributions as in [39], i.e. with modifications of
the form shown in eq. (30).
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formulated so as to allow evolution with photon from low scale  
(whereas in LUXqed we take point of view that γ PDF makes sense only at high Q2)
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Figure 19. Upper panels: partonic luminosities in pp collisions, as a function of the partonic
invariant mass m, at centre-of-mass energies of 13 TeV (left) and 100 TeV (right). The �� (scaled
by 102), qq̄ and gg luminosities appear from bottom to top. Lower panels: the relative uncertainties
of the luminosities. Our luminosity definition is given in Eq. (11.1).

Figure 20. Momentum fraction (top) and its relative uncertainty (bottom) carried by the photon,
as a function of the factorisation scale µ.

each factor of 10 increase in µ. Eventually, neglecting electroweak corrections, the photon

momentum fraction saturates at a value that is independent of ↵ and ↵s, however this

occurs at trans-Planckian scales.

– 55 –

γγ luminosity is 
about 1000 times 
smaller than  

luminosity
qq̄
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pp → H W+ (→ l+ν) + X  at 13 TeV

non-photon induced contributions 91.2 ± 1.8 fb

photon-induced contribs (NNPDF23) 6.0 +4.4–2.9 fb

photon-induced contribs (LUXqed) 4.4 ± 0.1 fb

non-photon numbers from LHCHXSWG (YR4)  
including PDF uncertainties
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HW production (with NNPDF31-LUXqed)
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Figure 4.7. Same as Fig. 4.3 for Higgs production in association with aW boson, for the Higgs transverse
momentum phT distribution (left), and its rapidity yh distribution (right plot).

than the PDF uncertainties. Concerning the yh rapidity distribution, the PI contribution can
be ' 6% in the central rapidity region when using NNPDF3.1luxQED, while it becomes smaller
as one moves to the forward region.

The comparisons of Fig. 4.7 illustrate that PI contributions are relevant also for Higgs boson
physics, including the measurements of its couplings and branching fractions.

5 Summary

Parton distributions with QED e↵ects and a photon PDF are an essential component in high-
precision calculations of many LHC processes. Previous NNPDF QED sets adopted a data-
driven strategy to determine the photon PDF, independently parametrising �(x,Q0) and then
fitting it using constraints from Drell-Yan measurements at the LHC. While this strategy min-
imised the theoretical bias due to model assumptions, the lack of a precise experimental handle
to constrain the photon PDF led to large uncertainties.

With the development of the LUXqed framework, it is now possible to constrain the photon
PDF in terms of the accurately known inclusive structure functions in lepton-hadron scattering.
In this work we have presented the NNPDF3.1luxQED set, where the photon content of the
proton is determined by means of a global PDF analysis supplemented by the LUXqed theo-
retical constraint. As a result, the uncertainty upon the photon PDF is considerably reduced
as compared to our previous NNPDF3.0QED determination, down now to the level of a few
percent. We find that photons carry up to 0.5% of the total momentum of the proton, and that
the overall impact of the various types of QED e↵ects included in NNPDF3.1luxQED induce
small but non-negligible modifications in the quark and gluon PDFs.

We have then presented a first exploration of the implications of NNPDF3.1luxQED for
photon-initiated processes at the LHC. We determine that the impact of PI contributions is
consistent within uncertainties with respect to previous estimates based on NNPDF3.0QED
except for the low-mass region Q < MZ , and that they can be significant for many processes.
For instance, we find corrections up to ' 10% for high-mass Drell-Yan and up to ' 20% for
W+W� production. In many cases, PI processes can be either comparable with or larger than
PDF uncertainties. The uncertainty associated with these PI e↵ects is in itself at the level of a
few percent, so their overall e↵ect is a shift of the cross-sections as compared to the QCD-only
calculation.

The NNPDF3.1luxQED set represents a state-of-the-art determination of the PDFs of the
proton including its photon component, accounting for all relevant theoretical and experimental
constraints. This set is therefore well suited for precision calculations of LHC processes. The
NNPDF3.1luxQED sets are available via the LHAPDF6 interface [135]:

NNPDF31 nlo as 0118 luxqed

NNPDF31 nnlo as 0118 luxqed
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lepton-pair production (from NNPDF collab.)

ratio of γγ to 
other PDF 
channels
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Figure 4.1. Representative PI diagrams for various LHC processes: Drell-Yan, vector-boson pair pro-
duction, top-quark pair production, and the associated production of a Higgs with a W boson.
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Figure 4.2. The ratio of photon-initiated contributions to the corresponding quark- and gluon-initiated
ones for neutral current Drell-Yan production as function of the lepton-pair invariant mass Mll in the Z
peak region and central rapidities |yll|  2.5 at

p
s = 13 TeV. We compare NNPDF3.0QED, LUXqed17,

and NNPDF3.1luxQED, with the PI contributions in each case normalized to the central value of the
latter. The NNPDF3.0QED uncertainty band is represented by the red band. For reference, we also
indicate the value of the PDF uncertainties in NNPDF3.1luxQED.

We will compare the predictions of NNPDF3.1luxQED to those of NNPDF3.0QED and
LUXqed17. In all cases we will use the NNLO PDF sets, though the photon PDF depends
only mildly on the perturbative order (see Fig. 3.2). PDF uncertainties for the NNPDF sets
are defined as the 68% confidence level interval and the central value as the midpoint of this
range. This is particularly relevant for NNPDF3.0QED for which, due to non-Gaussianity in
the replica distribution, PDF errors computed as standard deviations can di↵er by up to one
order of magnitude as compared to the 68% CL intervals.

4.1 Drell-Yan production

We begin by examining the role of PI contributions in neutral-current Drell-Yan production. We
will study this process in three di↵erent kinematic regions of the outgoing lepton pair: around
the Z peak, at low invariant masses, and at high invariant masses. We start with the Z peak
region, defined as 60  Mll  120 GeV, where Mll is the lepton-pair invariant mass, and focus
on the central rapidity region |yll|  2.5, relevant for ATLAS and CMS.2 This region provides
the bulk of the Drell-Yan measurements included in modern PDF fits and therefore assessing
the impact of PI contributions is particularly important here.

In Fig. 4.2 we show the ratio of the PI contributions to the corresponding quark- and gluon-
initiated contributions for Drell-Yan production as a function of Mll at

p
s = 13 TeV in the Z

peak region. We compare the predictions of NNPDF3.0QED, LUXqed17, and NNPDF3.1luxQED,
with the PI contributions normalised to the central value of NNPDF3.1luxQED. For reference
we also show the value of the PDF uncertainties in NNPDF3.1luxQED.

We find that PI e↵ects for this process are at the permille level forMll ⇠ MZ but they become
larger as we move away from the Z peak, reaching 3% for Mll = 60 GeV. At the lower edge of the

2
We have verified that similar results hold for the forward rapidity region, 2.0  yll  4.5, relevant for LHCb.

15



Harland-Lang (1910.10178): in some cases photon distribution is too indirect

ratio of γγ to 
other PDF 
channels
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Figure 5: Ratio of the photon–initiated cross sections for lepton pair production production to
the NLO QCD Drell–Yan cross section at the 13 TeV LHC, as a function of the lepton pair
invariant mass, mll. The LO collinear predictions and the exact result, using (1) directly, are
shown. In the former case the uncertainty band due to factorization scale variation by a factor
of two around the central value µ = mll, is given. The leptons are required to lie in the |⌘l| < 2.5
region. No PDF uncertainties are shown.

Figure 6: Percentage contribution from photon–initiated production to the lepton pair p? dis-
tribution, within the ATLAS [29] o↵–peak event selection, at 8 TeV. The photon–initiated cross
section is calculated using (1) directly, while the QCD predictions in the left (right) plots cor-
respond to NNLO (NNLO+NNLL) QCD theory. No PDF uncertainties are shown.
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exact  contribution, using structure function approach γγ → ℓ+ℓ−

 contribution, using photon PDF  
and collinear factorisation
γγ → ℓ+ℓ−



conclusions & resources
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LHAPDF PDF sets with modern photon distributions
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LUXqed17_plus_PDF4LHC15_nnlo_100

NNPDF31_nlo_as_0118_luxqed

NNPDF31_nnlo_as_0118_luxqed

MMHT2015qed_nnlo_total

MMHT2015qed_nnlo_inelastic

MMHT2015qed_nnlo_elastic



CLOSING REMARKS

➤ distribution of photons in the proton depends on the non-
perturbative QCD physics of the proton 

➤ But perturbative QED enables you to deduce the photon 
density from measured (non-pert.) proton structure functions 

➤ photon distributions needed for some EW higher-order 
calculations, but not necessarily for γγ → ℓ+ℓ−
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“If you think about it, it's awesome: we are made of protons, and protons are, in 
some part, made of light... And now we know how much of it.”

blog post by Tommaso Dorigo

http://www.science20.com/a_quantum_diaries_survivor/how_much_light_does_a_proton_contain-176396


extra slides
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input data & 
procedures
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ELASTIC COMPONENT & COMPARISON TO “DIPOLE” MODEL

61

Figure 1: Elastic form factors (ratio to standard dipole form) as fitted by the A1 collabo-
ration [B+14]. Left: electric. Right: magnetic.
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Figure 2: Elastic contribution to f�/p(x,Q2) with various fits for the form factors, nor-
malised to the result obtained with the A1 world fit, including polarised data. The ratio
freezes above x = 0.9 because the A1 fits extends only up Q

2 = 10GeV2 and beyond that
scale we simply extrapolate the results for GE/M(Q2) using the standard-dipole shape,
normalised to GE/M(10GeV2). [Should we try to do this better? Maybe x > 0.9
not so critical for now.]
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CLAS DATA
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MATCHING PROCEDURE FOR FULL SET OF PARTONS

➤ evaluate master eqn. for μ=100 
GeV (with default 
PDF4LHC15_nnlo partons) 

➤ Do O(ααs) photon evolution 
down to μ=10 GeV (other 
partons: pure QCD evln.) 

➤ Adjust momentum sum-rule by 
rescaling gluon 
g(x)→0.993g(x)  

➤ Evolve back up with NNLO-
QCD & O(ααs) QED for all 
partons
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gluon reduced by 0.7% 
to fix momentum

up-quark reduced by 
0.5-1% by QED DGLAP 

evolution
better approach would be full PDF 
re-fit for QCD partons incl. EW/QED 
corrections & LUXqed photon



other PDFs v. LUXqed
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central NNPDF result much higher at large x 
(but consistent within errors) 

at small x, with corrected evolution (NNPDF30), about 20% smaller 

ratio to LUXqed



Others are 
numerically 
closer 

Error 
bands don’t 
always 
overlap 
with  

LUXqed, 
but within 
~10-20% 
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