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NLO + shower matching methods 
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MC@NLO POWHEG KrkNLO

applicability any shower any shower
only showers with 

shower real > NLO  
real everywhere

1st step  
of shower shower prog. NLO prog. shower prog.

negative  
weights? intrinsic largely absent absent(?)

Valuable to have more than one NLO+shower matching method 
Maybe valuable to have NLO+shower matching where shower has full showering control 
(e.g. ongoing logarithmic-accuracy work from PanScales, Manchester-Vienna, Deductor) 

But do we have to live with negative weights?
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The hardest event cross section can be represented in both POWHEG and MC@NLO as

d� = B̄s(�B)S(tcut,�B)d�B + B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
✓(t� � tcut)d�+

+ [R(�)�Rs(�)] d�, (2.3)

or HACKED

d� = B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
d�+ [R(�)�Rs(�)] d� (2.4)

where d� = d�B d�rad, and tcut represents a lower limit for radiation, needed to avoid the
Landau-pole singularities. Events are generated with a probability proportional to each
term of the cross section formula. The first two terms are generated with a Monte Carlo
technique. In fact, they satisfy the shower unitarity equation

S(tcut,�B) +

Z

t�>tcut

S(t�,�B)⇥
Rs(�)

B0(�B)
d�rad = 1, (2.5)

which follows from the fact that the expression under the integral sign is an exact differential.
In POWHEG, the generation of the hardness t is uniform in the Sudakov form factor, and one
can generate events with the standard shower algorithm by equating a random number
with the Sudakov form factor, and solving for t. If the t value so obtained is above tcut,
the radiation kinematics is generated, and the event with the hardest radiation is fed to a
shower generator, which takes care of adding subsequent (less hard) radiation.

In the case of MC@NLO, the implementation of the first two terms is generally more
involved. If the shower is ordered in transverse momentum, the hardest emission is the
first, and the radiation mechanism is the same as in POWHEG, except that it is implemented
within the shower generator, rather than in the NLO program. In case of an angular
ordered shower, large angle soft radiation is generated first, and the hardest radiation
occurs somewhere down the shower.2 It was shown in ref. [2] that, in this case, by suitable
rearrangement of the Sudakov factors for each emission, one reconstructs the transverse
momentum Sudakov form factor in formula (2.3).

The last term in Eq. (2.3) is non-singular, and thus is dominated by hard radiation. It
is handled essentially in the same way in MC@NLO and POWHEG.

The NLO accuracy of Eq. (2.3) can be demonstrated by computing the expectation
value of a generic infrared safe observable O(�) as follows

hOi =

Z
d�B B̄s(�B)

(
S(tcut,�B)O(�B) +

Z

t�>tcut

S(t�,�B)⇥
Rs(�)

B0(�B)
O(�)d�rad

)
+

+

Z
[R(�)�Rs(�)]O(�)d�, (2.6a)

2
Taking t to be the angular scale of the shower means that t does not represent a hardness. As a result,

in the absence of an infrared cutoff, the first emission is dominated by the infinitely soft region (where

Rs = R) rather than by the hard region.

– 3 –

Generate “Born” events ( ) 
with NLO normalisation,  

Let Pythia/Herwig/Sherpa 
shower them 

(combining Sudakov  & 
real shower radiation )

ΦB
B̄s/B0

S(t, Φ)
Rs

 for real emission|ME |2

pT

shower 
NLO RS
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True real radiation matrix-
element, ,  

differs from shower 
R

Rs

 for real emission|ME |2

true NLO R

pT

shower 
NLO RS
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element, ,  

differs from shower 
R

Rs

 for real emission|ME |2

true NLO R

pT

shower 
NLO RS

correct for this difference by 
adding a sample of real events 

with weights  
(and shower them)

R(Φ) − Rs(Φ)
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This is an additive (or “accumulative”) 
correction to the shower
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KrkNLO
“KrkNLO” papers, 2015 onwards from Jadach, Nail, Płaczek, Sapeta, Siódmok and 
Skrzypek, …, pointed out (among various other things) the following. 

If the shower satisfies property that  for all phase-space points, you can 
replace additive matching (and their negative weights) by “multiplicative” matching: 
you multiply the effective shower event weight, , by  

 

which you implement by accepting the showered event with probability .

Rs(Φ) > R(Φ)

Rs(Φ)
R(Φ)
RS(Φ)

R(Φ)/Rs(Φ)
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(with an implicit ✓(t� tcut) in d�). Or HACKED

d� = B̄s(�B)

⇢
S(t�,�B)⇥

Rs(�)

B0(�B)

�
⇥


R(�)

Rs(�)

�
d� , (2.11)

In the literature dealing with the KrkNLO method [5, 20–25], particular emphasis has been
put on the use of a specific scheme for the parton densities, which considerably simplifies
the expression for the B̄s function. Here we are instead interested in a simpler aspect of
the method, which is that to generate NLO accurate radiation, it uses a multiplicative
correction, rather than the additive correction of the MC@NLO method. The NLO accuracy
of the KrkNLO formula can be simply demonstrated by showing that KrkNLO is equivalent
to MC@NLO at the NLO level. In fact, we can rewrite formula (2.10) as

d� = B̄s(�B)S(tcut,�B)d�B + B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
⇥


R(�)

Rs(�)
� 1

�
d�+

+ B̄s(�B)S(t�,�B)
Rs(�)

B0(�B)
d� . (2.12)

The middle term is now insensitive to the soft region, because the factor in square brackets
vanishes there, so we can drop the Sudakov form factor and, neglecting terms of NNLO
size, set B̄s/B0 = 1. By doing this we recover exactly Eq. (2.3).

The KrkNLO method leads to positive weighted events. On the other hand, unlike
MC@NLO and POWHEG, its cross section at fixed underlying Born does not exactly match
the corresponding fixed order result, but differs from it by NNLO terms.3 The KrkNLO
method, however, generates weighted events, so, the unweighting efficiency may constitute
a problem if one wants to apply the method to generic processes without having to do
process-by-process adjustments. As a related problem, the shower generator may not cover
the full radiation phase space. This is the same as saying that Rs can become zero in certain
regions, in which case the method is not applicable. For these reasons, it seems difficult to
apply the method to generic processes in automated framework, something that has been
available in POWHEG and MC@NLO since a long time.

3 The new method

By comparing the MC@NLO and KrkNLO method using a common language, it becomes clear
that the two methods have much in common, and can in fact be merged in such a way that
the KrkNLO positivity is maintained, unweighted events can be generated on the fly, and no
issues arise from the limited coverage of the phase space by the parton shower code. The
merged method is defined by the following formula

d� = B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
⇥

⇢
1 +

R�Rs

Rs
✓(Rs �R)

�
d�+ ✓(R�Rs) [R�Rs] d� ,

(3.1)
3
Although some authors consider this to be an undesirable feature, it does not constitute a real problem,

since choices for uncontrolled NNLO terms are made, for example, when choosing the scales, and there is

no preferred way to define an NLO result as far as the neglected NNLO terms are concerned.

– 5 –
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The middle term is now insensitive to the soft region, because the factor in square brackets
vanishes there, so we can drop the Sudakov form factor and, neglecting terms of NNLO
size, set B̄s/B0 = 1. By doing this we recover exactly Eq. (2.3).

The KrkNLO method leads to positive weighted events. On the other hand, unlike
MC@NLO and POWHEG, its cross section at fixed underlying Born does not exactly match
the corresponding fixed order result, but differs from it by NNLO terms.3 The KrkNLO
method, however, generates weighted events, so, the unweighting efficiency may constitute
a problem if one wants to apply the method to generic processes without having to do
process-by-process adjustments. As a related problem, the shower generator may not cover
the full radiation phase space. This is the same as saying that Rs can become zero in certain
regions, in which case the method is not applicable. For these reasons, it seems difficult to
apply the method to generic processes in automated framework, something that has been
available in POWHEG and MC@NLO since a long time.

3 The new method

By comparing the MC@NLO and KrkNLO method using a common language, it becomes clear
that the two methods have much in common, and can in fact be merged in such a way that
the KrkNLO positivity is maintained, unweighted events can be generated on the fly, and no
issues arise from the limited coverage of the phase space by the parton shower code. The
merged method is defined by the following formula

d� = B̄s(�B)S(t�,�B)⇥
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⇢
1 +

R�Rs

Rs
✓(Rs �R)
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(3.1)
where from now, for compactness, we leave out the no-radiation term from our expressions
(for completeness, they are reintroduced at the end of section 4). It is easy to see by
inspection that this formula has the same NLO accuracy as MC@NLO. In fact, the ✓ function

3
Although some authors consider this to be an undesirable feature, it does not constitute a real problem,

since choices for uncontrolled NNLO terms are made, for example, when choosing the scales, and there is

no preferred way to define an NLO result as far as the neglected NNLO terms are concerned.

– 5 –

As with MC@NLO:  
generate “Born” events ( ) 

with NLO normalisation,  

Let Pythia/Herwig/Sherpa 
shower them 

(combining Sudakov  & 
real shower radiation )

ΦB
B̄s/B0

S(t, Φ)
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https://arxiv.org/abs/2111.03553
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accept with prob 

 R(Φ)/Rs(Φ)

(with an implicit ✓(t � tcut) in d�). In the literature dealing with the KrkNLO method [5,
20–25], particular emphasis has been put on the use of a specific scheme for the parton
densities, which considerably simplifies the expression for the B̄s function. Here we are
instead interested in a simpler aspect of the method, which is that to generate NLO accurate
radiation, it uses a multiplicative correction, rather than the additive correction of the
MC@NLO method. The NLO accuracy of the KrkNLO formula can be simply demonstrated
by showing that KrkNLO is equivalent to MC@NLO at the NLO level. In fact, we can rewrite
formula (2.9) as
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The middle term is now insensitive to the soft region, because the factor in square brackets
vanishes there, so we can drop the Sudakov form factor and, neglecting terms of NNLO
size, set B̄s/B0 = 1. By doing this we recover exactly Eq. (2.3).

The KrkNLO method leads to positive weighted events. On the other hand, unlike
MC@NLO and POWHEG, its cross section at fixed underlying Born does not exactly match
the corresponding fixed order result, but differs from it by NNLO terms.3 The KrkNLO
method, however, generates weighted events, so, the unweighting efficiency may constitute
a problem if one wants to apply the method to generic processes without having to do
process-by-process adjustments. As a related problem, the shower generator may not cover
the full radiation phase space. This is the same as saying that Rs can become zero in certain
regions, in which case the method is not applicable. For these reasons, it seems difficult to
apply the method to generic processes in automated framework, something that has been
available in POWHEG and MC@NLO since a long time.

3 The new method

By comparing the MC@NLO and KrkNLO method using a common language, it becomes clear
that the two methods have much in common, and can in fact be merged in such a way that
the KrkNLO positivity is maintained, unweighted events can be generated on the fly, and no
issues arise from the limited coverage of the phase space by the parton shower code. The
merged method is defined by the following formula

d� = B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
⇥

⇢
1 +

R�Rs

Rs
✓(Rs �R)

�
d�+ ✓(R�Rs) [R�Rs] d� ,

(3.1)
where from now, for compactness, we leave out the no-radiation term from our expressions
(for completeness, they are reintroduced at the end of section 4). It is easy to see by
inspection that this formula has the same NLO accuracy as MC@NLO. In fact, the ✓ function

3
Although some authors consider this to be an undesirable feature, it does not constitute a real problem,

since choices for uncontrolled NNLO terms are made, for example, when choosing the scales, and there is

no preferred way to define an NLO result as far as the neglected NNLO terms are concerned.
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MAcNLOPS variant #2: reject first emission, not whole eventphase-space coverage even when the underlying Rs and R functions are smooth. Sampling
over a range of c values would allow one to address that issue.6

So far, the variants that we have discussed involve the rejection of events. For showers
with an ordering variable that corresponds to a genuine hardness scale, such as transverse
momentum (or any of the scales used in the PanScales showers [8]), it is also possible to
envisage a variant where instead of rejecting the event with probability Rs�R

Rs
✓(Rs � R),

one rejects the shower’s first emission with that same probability. If that first emission is
rejected, at a value of the ordering variable that we label t1, the shower then continues from
that scale t1, based on an event without the first emission. As the shower continues, each
time the shower again attempts to create a new first emission, that emission continues to be
rejected with probability Rs�R

Rs
✓(Rs � R). Once the shower has generated a first emission

that is accepted, the shower continues as normal. This ensures that the shower (with first
emission rejection) remains unitary.7 The Born normalisation factor that multiplies the
shower generation then needs to be modified to read

B̃s(�B) = B0(�B) + V (�B) +

Z
min[R(�), Rs(�)]d�rad . (4.3)

With this variant, the distribution of the hardest radiation is given by

d� = B̃s(�B) S̃(t�,�B)⇥
min(R(�), Rs(�))

B0(�B)
d�+ ✓(R�Rs) [R�Rs] d� , (4.4)

where S̃(t�,�B) is the Sudakov form factor that is effectively obtained as a result of the
emission rejection procedure,

S̃(t,�B) = exp


�

Z

t�>t

min[R(�), Rs(�)]

B0(�B)
d�rad

�
. (4.5)

As mentioned above, all the expressions in sections 3 and 4 leave out the no-radiation term.
For Eqs. (3.1) and (4.1), it is easy to verify that the no-radiation term is given by

d�no-rad = B̄s(�B)S(tcut,�B) . (4.6)

Specifically for Eq. (4.1), this comes about by oversampling the events by a factor c and then
rejecting no-radiation events with a factor 1/c. In the case of Eq. (4.2), the no-radiation
term is given by

d�no-rad = B̃s(�B)S̃(tcut,�B) . (4.7)
6
It is not clear to us that this would be a genuine problem. A worse issue is potentially present in the

MC@NLO approach (and also in Eqs. (3.1) and (4.1)) if a shower has a discontinuity in the distribution of

the hardness variable. We are not aware of this having caused significant problems in practice, possibly

because subsequent showering smoothens any discontinuities. Were it to be a problem, one solution could

be to sample over a range of shower starting scales.
7
As a matching algorithm to ensure the correct matrix element for the first emission, it bears strong

similarities to the algorithm of Refs. [27, 28]. That algorithm works within the assumption that one can

find some constant c such cRs > R over the full phase space, evading the need for an additive term.
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has the undesirable feature of negative weights.1 On the other hand, the KrkNLO method
has positive weights, but it is difficult to extend it to generic processes. We will show
that combining the two methods one could achieve both positive weights and unrestricted
applicability.

The paper is organised as follows, in section 2 we will compare the POWHEG, MC@NLO and
KrkNLO methods by formulating them in a common language. We will do this by extending
the formulation of the POWHEG and MC@NLO methods of ref. [19] also to the KrkNLO method.
In section 3 we will present the combined method, and in section 4 we will present some of
its possible variants. Finally, in section 5 we present our conclusions.

2 POWHEG, MC@NLO and KrkNLO

We assume that the phase space with radiation � can be written in terms of an underlying
Born phase space �B and three radiation variables, indicated collectively as �rad. We also
assume that the mapping from � to �B is such that in the singular (collinear or soft) limit,
the Born configuration matches the full phase space with the collinear pair merged into
a single parton or with the soft particle removed. Such mappings are easy to realise for
processes with a single singular region, while for more complex processes one must separate
the real cross section into contributions having a single singular region. In the following
illustrative discussion we ignore these complications.

We define the following quantity, a function of the underlying Born kinematics,

B̄s(�B) = B0(�B) + V (�B) +

Z
Rs(�)d�rad, (2.1)

where the full phase space � is defined as function of �B and �rad, B0 is the Born cross sec-
tion, V comprises the virtual corrections and, for hadron initiated processes, the collinear
counterterms integrated at fixed underlying Born, and Rs is a part of the real cross section
that includes all soft and collinear singularities. In other words, R � Rs is non-singular.
Notice that if Rs is taken equal to R, B̄s is the inclusive cross section at fixed underlying
Born. We imagine that renormalisation has been carried out, and that the infrared diver-
gences arising in V and in the d�rad integral of Rs are regularised in some way. Notice also
that B̄s is finite, since the singularities present in V cancel those arising integrating the Rs

term.
We also define the Sudakov form factor associated with Rs

S(t,�B) = exp


�

Z

t�>t

Rs(�)

B0(�B)
d�rad

�
, (2.2)

where � is defined in terms of the variables �B and �rad, and t is some definition of hardness,
depending upon the full phase space with radiation. One may think, for example, that t

is the relative transverse momentum of the splitting pair. If Rs was taken equal to R, the
Sudakov form factor would represent the probability for not radiating anything harder than
t.

1
Recent proposals for the reduction of the negative-weight fraction include Refs. [16–18].
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(with an implicit ✓(t � tcut) in d�). In the literature dealing with the KrkNLO method [5,
20–25], particular emphasis has been put on the use of a specific scheme for the parton
densities, which considerably simplifies the expression for the B̄s function. Here we are
instead interested in a simpler aspect of the method, which is that to generate NLO accurate
radiation, it uses a multiplicative correction, rather than the additive correction of the
MC@NLO method. The NLO accuracy of the KrkNLO formula can be simply demonstrated
by showing that KrkNLO is equivalent to MC@NLO at the NLO level. In fact, we can rewrite
formula (2.9) as
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The middle term is now insensitive to the soft region, because the factor in square brackets
vanishes there, so we can drop the Sudakov form factor and, neglecting terms of NNLO
size, set B̄s/B0 = 1. By doing this we recover exactly Eq. (2.3).

The KrkNLO method leads to positive weighted events. On the other hand, unlike
MC@NLO and POWHEG, its cross section at fixed underlying Born does not exactly match
the corresponding fixed order result, but differs from it by NNLO terms.3 The KrkNLO
method, however, generates weighted events, so, the unweighting efficiency may constitute
a problem if one wants to apply the method to generic processes without having to do
process-by-process adjustments. As a related problem, the shower generator may not cover
the full radiation phase space. This is the same as saying that Rs can become zero in certain
regions, in which case the method is not applicable. For these reasons, it seems difficult to
apply the method to generic processes in automated framework, something that has been
available in POWHEG and MC@NLO since a long time.

3 The new method

By comparing the MC@NLO and KrkNLO method using a common language, it becomes clear
that the two methods have much in common, and can in fact be merged in such a way that
the KrkNLO positivity is maintained, unweighted events can be generated on the fly, and no
issues arise from the limited coverage of the phase space by the parton shower code. The
merged method is defined by the following formula

d� = B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
⇥

⇢
1 +

R�Rs

Rs
✓(Rs �R)

�
d�+ ✓(R�Rs) [R�Rs] d� ,

(3.1)
where from now, for compactness, we leave out the no-radiation term from our expressions
(for completeness, they are reintroduced at the end of section 4). It is easy to see by
inspection that this formula has the same NLO accuracy as MC@NLO. In fact, the ✓ function

3
Although some authors consider this to be an undesirable feature, it does not constitute a real problem,

since choices for uncontrolled NNLO terms are made, for example, when choosing the scales, and there is

no preferred way to define an NLO result as far as the neglected NNLO terms are concerned.
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4 Variants of the method

Eq. (3.1) can be viewed as a special case of a family of approaches, parameterised by a
constant c � 1,

d� = B̄s(�B)S(t�,�B)⇥
cRs(�)

B0(�B)
⇥

⇢
1 +

R� cRs

cRs
✓(cRs �R)

�
d�+

+ ✓(R� cRs) [R� cRs] d� . (4.1)

This formula was obtained by replacing Rs ! cRs in all occurrences where it appears in
Eq. (3.1), except for the Sudakov form factor. First of all, we should convince ourselves
that this formula has the correct behaviour near the soft limit, and that it is NLO accurate.
This is seen immediately by writing (4.1) as

d� = B̄s(�B)S(t�,�B)⇥
cRs(�)

B0(�B)
⇥

⇢
1 +

R� cRs

cRs

�
d� ,

+ ✓(R� cRs)(R� cRs)


1�

B̄s(�B)

B0(�B)
S(t�,�B)

�
d� . (4.2)

The first line is equal to the KrkNLO formula, eq. (2.9) (leaving aside the tcut, for simplicity).
In the second line, the factor in square brackets is of order ↵S and it multiplies a term
dominated by the hard region (and thus also of order ↵S), since

✓(R� cRs)(R� cRs)  ✓(R�Rs)(R�Rs) .

Accordingly, the second line is of NNLO order, and we can conclude that formula (4.1) is
equivalent to the KrkNLO formula up to NNLO corrections. For a shower where Rs/R is
always larger than some value r, taking c � 1/r causes Eq. (4.1) to reduce to the KrkNLO
approach over all of phase space.

The implementation of formula (4.1) goes as follows. The soft events are oversampled
by a factor of c, and accepted with a probability proportional to the expression in the curly
bracket, while the hard events are generated in a standard way.

There are several reasons why it may be of use to have such a family of approaches
parameterised by c. One is that it is useful to have a parameter to help gauge systematic
uncertainties associated with terms that are beyond the accuracy of the method. In fact,
the c parameter also gauges the amount of radiation that is multiplied by the inclusive
K-factor, with respect to the amount that is added in as hard radiation. In this sense,
it would play a similar role to the hdamp parameter in POWHEG [2, 26].5 Another reason
is that the ✓-functions in Eqs. (3.1), (4.1) can, conceivably, introduce non-smoothness in

5
Currently other methods are used in the MC@NLO context for the study of matching uncertainties,

typically related to the shower starting scale. Whether the use of the c parameter uncertainty can replace

these methods is a question that can only be answered in the context of real implementations, and is beyond

the scope of the present paper.
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phase-space coverage even when the underlying Rs and R functions are smooth. Sampling
over a range of c values would allow one to address that issue.6

So far, the variants that we have discussed involve the rejection of events. For showers
with an ordering variable that corresponds to a genuine hardness scale, such as transverse
momentum (or any of the scales used in the PanScales showers [8]), it is also possible to
envisage a variant where instead of rejecting the event with probability Rs�R

Rs
✓(Rs � R),

one rejects the shower’s first emission with that same probability. If that first emission is
rejected, at a value of the ordering variable that we label t1, the shower then continues from
that scale t1, based on an event without the first emission. As the shower continues, each
time the shower again attempts to create a new first emission, that emission continues to be
rejected with probability Rs�R

Rs
✓(Rs � R). Once the shower has generated a first emission

that is accepted, the shower continues as normal. This ensures that the shower (with first
emission rejection) remains unitary.7 The Born normalisation factor that multiplies the
shower generation then needs to be modified to read

B̃s(�B) = B0(�B) + V (�B) +

Z
min[R(�), Rs(�)]d�rad . (4.3)

With this variant, the distribution of the hardest radiation is given by

d� = B̃s(�B) S̃(t�,�B)⇥
min(R(�), Rs(�))

B0(�B)
d�+ ✓(R�Rs) [R�Rs] d� , (4.4)

where S̃(t�,�B) is the Sudakov form factor that is effectively obtained as a result of the
emission rejection procedure,

S̃(t,�B) = exp


�

Z

t�>t

min[R(�), Rs(�)]

B0(�B)
d�rad

�
. (4.5)

As mentioned above, all the expressions in sections 3 and 4 leave out the no-radiation term.
For Eqs. (3.1) and (4.1), it is easy to verify that the no-radiation term is given by

d�no-rad = B̄s(�B)S(tcut,�B) . (4.6)

Specifically for Eq. (4.1), this comes about by oversampling the events by a factor c and then
rejecting no-radiation events with a factor 1/c. In the case of Eq. (4.2), the no-radiation
term is given by

d�no-rad = B̃s(�B)S̃(tcut,�B) . (4.7)
6
It is not clear to us that this would be a genuine problem. A worse issue is potentially present in the

MC@NLO approach (and also in Eqs. (3.1) and (4.1)) if a shower has a discontinuity in the distribution of

the hardness variable. We are not aware of this having caused significant problems in practice, possibly

because subsequent showering smoothens any discontinuities. Were it to be a problem, one solution could

be to sample over a range of shower starting scales.
7
As a matching algorithm to ensure the correct matrix element for the first emission, it bears strong

similarities to the algorithm of Refs. [27, 28]. That algorithm works within the assumption that one can

find some constant c such cRs > R over the full phase space, evading the need for an additive term.
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The hardest event cross section can be represented in both POWHEG and MC@NLO as

d� = B̄s(�B)S(tcut,�B)d�B + B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
✓(t� � tcut)d�+

+ [R(�)�Rs(�)] d�, (2.3)

or HACKED

d� = B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
d�+ [R(�)�Rs(�)] d� (2.4)

where d� = d�B d�rad, and tcut represents a lower limit for radiation, needed to avoid the
Landau-pole singularities. Events are generated with a probability proportional to each
term of the cross section formula. The first two terms are generated with a Monte Carlo
technique. In fact, they satisfy the shower unitarity equation

S(tcut,�B) +

Z

t�>tcut

S(t�,�B)⇥
Rs(�)

B0(�B)
d�rad = 1, (2.5)

which follows from the fact that the expression under the integral sign is an exact differential.
In POWHEG, the generation of the hardness t is uniform in the Sudakov form factor, and one
can generate events with the standard shower algorithm by equating a random number
with the Sudakov form factor, and solving for t. If the t value so obtained is above tcut,
the radiation kinematics is generated, and the event with the hardest radiation is fed to a
shower generator, which takes care of adding subsequent (less hard) radiation.

In the case of MC@NLO, the implementation of the first two terms is generally more
involved. If the shower is ordered in transverse momentum, the hardest emission is the
first, and the radiation mechanism is the same as in POWHEG, except that it is implemented
within the shower generator, rather than in the NLO program. In case of an angular
ordered shower, large angle soft radiation is generated first, and the hardest radiation
occurs somewhere down the shower.2 It was shown in ref. [2] that, in this case, by suitable
rearrangement of the Sudakov factors for each emission, one reconstructs the transverse
momentum Sudakov form factor in formula (2.3).

The last term in Eq. (2.3) is non-singular, and thus is dominated by hard radiation. It
is handled essentially in the same way in MC@NLO and POWHEG.

The NLO accuracy of Eq. (2.3) can be demonstrated by computing the expectation
value of a generic infrared safe observable O(�) as follows

hOi =

Z
d�B B̄s(�B)

(
S(tcut,�B)O(�B) +

Z

t�>tcut

S(t�,�B)⇥
Rs(�)

B0(�B)
O(�)d�rad

)
+

+

Z
[R(�)�Rs(�)]O(�)d�, (2.6a)

2
Taking t to be the angular scale of the shower means that t does not represent a hardness. As a result,

in the absence of an infrared cutoff, the first emission is dominated by the infinitely soft region (where

Rs = R) rather than by the hard region.
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(with an implicit ✓(t� tcut) in d�). Or HACKED

d� = B̄s(�B)

⇢
S(t�,�B)⇥

Rs(�)

B0(�B)

�
⇥


R(�)

Rs(�)

�
d� , (2.11)

In the literature dealing with the KrkNLO method [5, 20–25], particular emphasis has been
put on the use of a specific scheme for the parton densities, which considerably simplifies
the expression for the B̄s function. Here we are instead interested in a simpler aspect of
the method, which is that to generate NLO accurate radiation, it uses a multiplicative
correction, rather than the additive correction of the MC@NLO method. The NLO accuracy
of the KrkNLO formula can be simply demonstrated by showing that KrkNLO is equivalent
to MC@NLO at the NLO level. In fact, we can rewrite formula (2.10) as

d� = B̄s(�B)S(tcut,�B)d�B + B̄s(�B)S(t�,�B)⇥
Rs(�)

B0(�B)
⇥


R(�)

Rs(�)
� 1

�
d�+

+ B̄s(�B)S(t�,�B)
Rs(�)

B0(�B)
d� . (2.12)
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