Multiplicative-Accumulative matching of NLO calculations with parton showers

Paolo Nason and Gavin Salam, arXiv:2111.03553 Rudolf Peierls Centre for Theoretical Physics & All Souls College, University of Oxford

CMS Generator meeting, 17 January 2022

) + shower matching methods			
	MC@NLO	POWHEG	KrkNLO
applicability	any shower	any shower	only showers with shower real > NLO real everywhere
1st step of shower	shower prog.	NLO prog.	shower prog.
negative weights?	intrinsic	largely absent	absent(?)

Valuable to have more than one NLO+shower matching method

Maybe valuable to have NLO+shower matching where shower has full showering control (e.g. ongoing logarithmic-accuracy work from PanScales, Manchester-Vienna, Deductor)

But do we have to live with negative weights?

MAcNLOPS, CMS Generator Meeting, January 2022

Ν

Generate "Born" events (Φ_R)

Let Pythia/Herwig/Sherpa shower them real shower radiation $R_{\rm s}$)

True real radiation matrixelement, R, differs from shower $R_{\rm s}$

Gavin P. Salam

MAcNLOPS, CMS Generator Meeting, January 2022

True real radiation matrixelement, R, differs from shower $R_{\rm c}$

correct for this difference by adding a sample of real events with weights $R(\Phi) - R_{c}(\Phi)$ (and shower them)

Gavin P. Salam

True real radiation matrixelement, R, differs from shower R_s

correct for this difference by adding a sample of real events with weights $R(\Phi) - R_s(\Phi)$ (and shower them)

$d\sigma = \bar{B}_{s}(\Phi_{B}) S(t_{\Phi}, \Phi_{B}) \times \frac{R_{s}(\Phi)}{B_{0}(\Phi_{B})} d\Phi + [R(\Phi) - R_{s}(\Phi)] d\Phi$

MAcNLOPS, CMS Generator Meeting, January 2022

Gavin P. Salam

True real radiation matrixelement, R, differs from shower

correct for this differer adding a sample of real with weights $R(\Phi)$ –

$\mathrm{d}\sigma = \bar{B}_{\mathrm{S}}(\Phi_{\mathrm{B}}) S(t_{\Phi}, \Phi_{\mathrm{B}}) \times \frac{\mathrm{d}\sigma_{\mathrm{S}}}{B_{0}(\Phi_{\mathrm{B}})} \mathrm{d}\Phi + B_{0}(\Phi_{\mathrm{B}})$

MAcNLOPS, CMS Generator Meeting, January 2022

Gavin P. Salam

shower < true NLO events have **positive** weights

true NLOR

This is an additive (or "accumulative") correction to the shower

|ME|² for real emission

KrkNLO

"KrkNLO" papers, 2015 onwards from Jadach, Nail, Płaczek, Sapeta, Siódmok and Skrzypek, ..., pointed out (among various other things) the following.

If the shower satisfies property that $R_s(\Phi) > R(\Phi)$ for all phase-space points, you can replace additive matching (and their negative weights) by "**multiplicative**" matching: you multiply the effective shower event weight, $R_s(\Phi)$, by

which you implement by accepting the showered event with probability $R(\Phi)/R_s(\Phi)$.

$$d\sigma = \bar{B}_{s}(\Phi_{B}) \left\{ S(t_{\Phi}, \Phi_{B}) \times \frac{R_{s}(\Phi)}{B_{0}(\Phi_{B})} \right\} \times \left[\frac{R(\Phi)}{R_{s}(\Phi)} \right] d\Phi$$

 $R(\Phi)$

 $R_S(\Phi)$

• • • •

As with MC@NLO: generate "Born" events (Φ_R)

Let Pythia/Herwig/Sherpa shower them real shower radiation $R_{\rm c}$)

Gavin P. Salam

After one or more steps of the showering of the Born events, determine Φ (1-emission phase-space point).

If $R(\Phi) < R_s(\Phi)$, accept the event with probability $R(\Phi)/R_s(\phi)$

(otherwise always accept event)

 $d\sigma = \bar{B}_{s}(\Phi_{B}) S(t_{\Phi}, \Phi_{B}) \times \frac{R_{s}(\Phi)}{B_{0}(\Phi_{B})} \times \left\{ 1 + \frac{1}{B_{0}(\Phi_{B})} \right\}$

Gavin P. Salam

shower > true NLO accept with prob $R(\Phi)/R_s(\Phi)$

shower NLO Rs

shower < true NLO</pre>

|ME|² for real emission

$$\frac{R - R_{\rm S}}{R_{\rm S}} \theta (R_{\rm S} - R)$$

 $d\Phi + \theta (R - R_{\rm s}) [R - R_{\rm s}] d\Phi$

true NLOR

MAcNLOPS, CMS Generator Meeting, January 2022

Add in sample of positive-weight "real" events where shower is an underestimate, i.e. additively correct regions where $R(\Phi) > R_{\rm s}(\Phi)$ (and shower them)

shower > true NLO

accept showered Born with prob $R(\Phi)/R_{\rm s}(\Phi)$

> shower NLO Rs

shower < true NLO add sample of events with **positive** weights

true NLOR

$|\mathbf{ME}|^2$ for real emission

Statigen and Rogha De Detan in Bar Disting the service Rev $d\sigma = \bar{B}_{s}(\Phi_{B}) S(t_{\Phi}, \Phi_{B}) \times \frac{R_{s}(\Phi)}{B_{0}(\Phi_{B})} \times \left\{1 + \frac{R - R_{s}}{R_{s}}\theta(R_{s} - R)\right\} d\Phi + \theta(R - R_{s}) \left[R - R_{s}\right] d\Phi$

MAcNLOPS, CMS Generator Meeting, January 2022

This combines Multiplicative and additive (or "Accumulative") corrections to the shower

Add in sample of positive "real" events to correct where $R(\Phi) > R_s(\Phi)$

MAcNLOPS, CMS Generator Meeting, January 2022

Gavin P. Salam

shower > true NLO

accept showered Born with prob $R(\Phi)/R_{\rm s}(\Phi)$

> shower NLO R_S

shower < true NLO add sample of events with **positive** weights

true NLO R

MACNLOPS

ME |² for real emission

 $\mathrm{d}\sigma = \bar{B}_{\mathrm{s}}(\Phi_{\mathrm{B}}) S(t_{\Phi}, \Phi_{\mathrm{B}}) \times \frac{R_{\mathrm{s}}(\Phi)}{B_{0}(\Phi_{\mathrm{B}})} \times \left\{1 + \frac{R - R_{\mathrm{s}}}{R_{\mathrm{s}}}\theta(R_{\mathrm{s}} - R)\right\} \mathrm{d}\Phi + \theta(R - R_{\mathrm{s}}) \left[R - R_{\mathrm{s}}\right] \mathrm{d}\Phi$

MCatNLO

Generate sample of LHE Born events (weights specific to chosen shower)

Generate sample of LHE Real (+/-) events $R(\Phi) - R_s(\Phi)$ (specific to chosen shower) shower both samples with

chosen shower

Gavin P. Salam

MAcNLOPS, CMS Generator Meeting, January 2022

. . . .

MCatNLO

Generate sample of LHE Born events (weights specific to chosen shower)

Generate sample of LHE Real (+/-) events $R(\Phi) - R_{S}(\Phi)$ (specific to chosen shower)

> shower both samples with chosen shower

POWHEG

Generate sample of LHE **Real** (+) events, according to POWHEG first "shower" step

continue showering them with chosen shower, using event-specific starting scale

Gavin P. Salam

MAcNLOPS, CMS Generator Meeting, January 2022

. . . .

MCatNLO

Generate sample of LHE **Born** events (weights specific to chosen shower)

Generate sample of LHE **Real** (+/-)events $R(\Phi) - R_{\rm s}(\Phi)$ (specific to chosen shower)

> shower both samples with chosen shower

POWHEG

Generate sample of LHE **Real** (+) events, according to POWHEG first "shower" step

continue showering them with chosen shower, using event-specific starting scale

Gavin P. Salam

MAcNLOPS, CMS Generator Meeting, January 2022

MCatNLO

Generate sample of LHE **Born** events (weights specific to chosen shower)

Generate sample of LHE **Real** (+/-)events $R(\Phi) - R_{\rm s}(\Phi)$ (specific to chosen shower)

> shower both samples with chosen shower

POWHEG

Generate sample of LHE **Real** (+) events, according to POWHEG first "shower" step

continue showering them with chosen shower, using event-specific starting scale

Gavin P. Salam

MAcNLOPS, CMS Generator Meeting, January 2022

MACNLOPS variant #1: over-generate Born events by some factor c > 1

MAcNLOPS variant #2: reject first emission, not whole event

Iike MCatNLO and POWHEG, this variant maintains the standard NLO cross section

$$\Phi_{\rm B}) \times \frac{\min(R(\Phi), R_{\rm s}(\Phi))}{B_0(\Phi_{\rm B})} d\Phi + \theta(R - R_{\rm s}) [R - R_{\rm s}] d\Phi + V(\Phi_{\rm B}) + \int \min[R(\Phi), R_{\rm s}(\Phi)] d\Phi_{\rm rad}$$

Conclusions

- ► There are various ways to match NLO and shower beyond canonical MC@NLO / POWHEG pair
- ► New Multiplicative-Accumulate family (MAcNLOPS) leaves responsibility for the irreducible negative weights
- Should be straightforward to implement,
 - uses same ingredients already available in MC@NLO
 - rejection probability for events (or emissions)
 - phase space point when shower not ordered in hardness)

shower with the shower program, like MC@NLO, while avoiding its limitation(?) of

shower program needs to link with real matrix elements in order to calculate

 \blacktriangleright further care needed with angular-ordered showers (identification of effective Φ_R

MAcNLOPS, CMS Generator Meeting, January 2022

$$\begin{split} \bar{B}_{\rm s}(\Phi_{\rm B}) &= B_0(\Phi_{\rm B}) + V(\Phi_{\rm B}) + \int R_{\rm s}(\Phi) \mathrm{d}\Phi_{\rm rad}, \\ S(t,\Phi_{\rm B}) &= \exp\left[-\int_{t_{\Phi}>t} \frac{R_{\rm s}(\Phi)}{B_0(\Phi_{\rm B})} \mathrm{d}\Phi_{\rm rad}\right] \\ \mathrm{d}\sigma &= \bar{B}_{\rm s}(\Phi_{\rm B}) \,S(t_{\Phi},\Phi_{\rm B}) \times \frac{R_{\rm s}(\Phi)}{B_0(\Phi_{\rm B})} \mathrm{d}\Phi + [R(\Phi) - R_{\rm s}(\Phi)] \,\mathrm{d}\Phi \\ \mathrm{d}\sigma &= \bar{B}_{\rm s}(\Phi_{\rm B}) \left\{S(t_{\Phi},\Phi_{\rm B}) \times \frac{R_{\rm s}(\Phi)}{B_0(\Phi_{\rm B})}\right\} \times \left[\frac{R(\Phi)}{R_{\rm s}(\Phi)}\right] \,\mathrm{d}\Phi \\ \mathrm{d}\sigma &= \bar{B}_{\rm s}(\Phi_{\rm B}) S(t_{\Phi},\Phi_{\rm B}) \times \frac{R_{\rm s}(\Phi)}{B_0(\Phi_{\rm B})} \times \left\{1 + \frac{R - R_{\rm s}}{R_{\rm s}} \theta(R_{\rm s} - R)\right\} \,\mathrm{d}\Phi + \theta(R - R_{\rm s}) \left[R - R_{\rm s}\right] \,\mathrm{d}\Phi \\ \mathrm{d}\sigma &= \bar{B}_{\rm s}(\Phi_{\rm B}) S(t_{\Phi},\Phi_{\rm B}) \times \frac{cR_{\rm s}(\Phi)}{B_0(\Phi_{\rm B})} \times \left\{1 + \frac{R - cR_{\rm s}}{cR_{\rm s}} \theta(cR_{\rm s} - R)\right\} \,\mathrm{d}\Phi + \\ &\quad + \theta(R - cR_{\rm s}) \left[R - cR_{\rm s}\right] \,\mathrm{d}\Phi \\ \tilde{B}_{\rm s}(\Phi_{\rm B}) &= B_0(\Phi_{\rm B}) + V(\Phi_{\rm B}) + \int \min[R(\Phi), R_{\rm s}(\Phi)] \mathrm{d}\Phi_{\rm rad} \\ \mathrm{d}\sigma &= \tilde{B}_{\rm s}(\Phi_{\rm B}) \,\tilde{S}(t_{\Phi},\Phi_{\rm B}) \times \frac{\min(R(\Phi), R_{\rm s}(\Phi))}{B_0(\Phi_{\rm B})} \,\mathrm{d}\Phi + \theta(R - R_{\rm s}) \left[R - R_{\rm s}\right] \,\mathrm{d}\Phi \\ \tilde{S}(t,\Phi_{\rm B}) &= \exp\left[-\int_{t_{\Phi}>t} \frac{\min[R(\Phi), R_{\rm s}(\Phi)]}{B_0(\Phi_{\rm B})} \,\mathrm{d}\Phi_{\rm rad}\right] \end{split}$$

MAcNLOPS, CMS Generator Meeting, January 2022

Gavin P. Salam

