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What are we trying to achieve?
the Higgs boson is the last particle of the SM.  

So the SM is complete, right?
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The Lagrangian and interactions: two out of three qualitatively new!

3

ℒSM = ⋯ + |Dμϕ |2 + ψi yij ψj ϕ − V(ϕ)
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Gauge interactions, structurally 
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Higgs potential (→ 
self-interaction). 

Holds the SM 
together.  

Unobserved
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Up quarks (mass ~ 2.2 MeV) are lighter than  
down quarks (mass ~ 4.7 MeV) 

proton        (up+up+down): 2.2 + 2.2 + 4.7 + … = 938.3 MeV 
neutron (up+down+down): 2.2 + 4.7 + 4.7 + … = 939.6 MeV

4

Why do Yukawa couplings matter to everyone?  
Because, within SM conjecture, they set quark and electron masses

So protons are lighter 
than neutrons,  

→ protons are stable, 
giving us hydrogen

ψ
i y

ij ψ
j ϕ

cf. Quigg & Shrock, arXiv:0901.3958

https://arxiv.org/abs/0901.3958
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We are (indirectly) searching for new physics

5

EWPO Bosonic Yukawa

Ellis, Madigan, Mimasu, Sanz, You, 2012.02779
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H → γγ,  an indirect probe of the top Yukawa, HWW and contact ggH couplings
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today’s ATLAS and CMS 
total uncertainties (ratio to 
SM) are at the 8-9% level 

5-7%  stat. 
3-7%  syst. 
~5% theo.  

?
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what is possible experimentally?
[in a quasi-ideal world]

9



Fermilab “wine and cheese” seminar, Feb. 2022Gavin P. Salam

Z pT distribution — a showcase for LHC precision

10

1912.02844 Normalised 
distribution’s statistical 
and systematic errors 

well below 1%  
all the way to  
pT ~ 200 GeV 

Largest normalisation 
err is luminosity  
then lepton ID

736.2 ± 0.2 (stat) ± 6.4 (syst) ± 15.5 (lumi) pb σfid =

https://arxiv.org/abs/1912.02844


Luminosity: the systematic  
common to all measurements

➤ has hovered around 2% for many years 
(except LHCb) 

➤ CMS has recently shown that they can get 
it down to 1.2% 

➤ a major achievement, because it matters 
across the spectrum of precision LHC 
results

11

33

Table 3: Summary of the BCID-averaged corrections to svis (in %) obtained with the vdM scan
calibrations at

p
s = 13 TeV in 2015 and 2016. When a range is shown, it is because of possible

scan-to-scan variations. To obtain the impact on svis, each correction is consecutively included,
the fits are redone following the order below, and the result is compared with the baseline. The
impact from transverse factorizability is obtained separately (as discussed in Section 4.4).

Source Impact on svis [%]
2015 2016

Ghost and satellite charge +0.2 +0.3
Orbit drift +0.6 to +1.0 +0.2 to +1.0
Residual beam position corrections �0.6 to +0.4 �0.5 to �0.2
Beam-beam effects +0.6 +0.4
Length scale calibration �0.4 �1.3
Transverse factorizability +0.8 to +1.3 +0.6

Table 4: Summary of contributions to the relative systematic uncertainty in svis (in %) atp
s = 13 TeV in 2015 and 2016. The systematic uncertainty is divided into groups affecting

the description of the vdM profile and the bunch population product measurement (normal-
ization), and the measurement of the rate in physics running conditions (integration). The
fourth column indicates whether the sources of uncertainty are correlated between the two
calibrations at

p
s = 13 TeV.

Source 2015 [%] 2016 [%] Corr
Normalization uncertainty

Bunch population
Ghost and satellite charge 0.1 0.1 Yes
Beam current normalization 0.2 0.2 Yes

Beam position monitoring
Orbit drift 0.2 0.1 No
Residual differences 0.8 0.5 Yes

Beam overlap description
Beam-beam effects 0.5 0.5 Yes
Length scale calibration 0.2 0.3 Yes
Transverse factorizability 0.5 0.5 Yes

Result consistency
Other variations in svis 0.6 0.3 No

Integration uncertainty
Out-of-time pileup corrections

Type 1 corrections 0.3 0.3 Yes
Type 2 corrections 0.1 0.3 Yes

Detector performance
Cross-detector stability 0.6 0.5 No
Linearity 0.5 0.3 Yes

Data acquisition
CMS deadtime 0.5 <0.1 No

Total normalization uncertainty 1.3 1.0 —
Total integration uncertainty 1.0 0.7 —
Total uncertainty 1.6 1.2 —
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the master formula

12

σ = ∑
i,j

∫ dx1dx2 fi/p(x1) fj/p(x2) ̂σ(x1x2s) × [1 + 𝒪(Λ/M)p]
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σ = ∑
i,j

∫ dx1dx2 fi/p(x1) fj/p(x2) ̂σ(x1x2s) × [1 + 𝒪(Λ/M)p]

HXSWG YR 4 gg→H uncertainties
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Comparing modern PDF sets

14

PDF4LHC15 1.0000 ± 0.0184
CT18       0.9914 ± 0.0180
MSHT20     0.9930 ± 0.0108
NNPDF40    0.9986 ± 0.0058

gg-lumi, ratio to PDF4LHC15 @ mH

× 3

Amazing that MSHT20 & NNPDF40 are 
reaching %-level precision 

Differences include 
➤ methodology (replicas & NN fits, 

tolerance factors, etc.) 
➤ data inputs 
➤ treatment of charm 
At this level, QED effects probably no 
longer optional

NB: PDF4LHC21 will use CT18/MSHT20/NNPDF31
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Removing DIS data (and associated worries about  sizeable Λ2/Q2 corrections)

15

Figure 74: (Left) d̄/ū PDF ratio and (right) uV � dV PDF absolute value compared to the MSHT20
default at Q2 = 1.9 GeV2 at NNLO showing the e↵ect of removing the HERA data from the MSHT20
default global fit.

Figure 75: (Left) s + s̄ PDF ratio and (right) g PDF absolute value compared to the MSHT20 default
at Q2 = 1.9 GeV2 at NNLO showing the e↵ect of removing the HERA data from the MSHT20 default
global fit.

the fixed target data sets, with the BCDMS, NMC and E665 showing significant changes of

��
2 = �7.8,�19.0, 8.4 respectively. The NMC is particularly noteworthy here as it is known

that there is a slight tension between the NMC data below about x = 0.05 and the HERA data

in the same x range, with the former being undershot if the HERA data are fit. The HERA

data in this region constrain the quarks to be smaller than is favoured by the NMC (once they

are evolved between their scales). Consequently, once the combined HERA data set is removed

both the valence quarks and the overall light sea in the x > 0.01 region are allowed to increase,

and for the NMC data a significant improvement in �
2 is observed. These changes are also

seen in the fixed-target data set normalisations, which are all increased by about 1.5% once the

HERA data are removed. As a result of these changes, the valence quarks are also forced to

reduce at low x by the number sum rule, as observed in Fig. 72.

Any di↵erences in the valence quarks momentum distribution (by having more of their

100

Reassuring indications that results are not (substantially) affected by  
corrections from low-  DIS part of fit

Λ2/Q2

Q2



Gavin P. Salam Fermilab “wine and cheese” seminar, Feb. 2022

Removing LHC data
➤ LHC data appears to be 

dominant in constraining 
the gluon 

➤ One clear question is how 
to interpret gg-lumi 
uncertainties when 
all input cross sections at 
hadron colliders have 
larger theory uncertainties.

≲ 1 %

16

Figure 7.8. Same as Fig. 7.1 now comparing the baseline to PDFs determined removing from the dataset all LHC
data.

We conclude that on the one hand, unlike in previous NNPDF determinations, for NNPDF4.0 it is no
longer true that a DIS-only fit is competitive, and on the other hand the HERA data are no longer needed

80
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σ = ∑
i,j

∫ dx1dx2 fi/p(x1) fj/p(x2) ̂σ(x1x2s) × [1 + 𝒪(Λ/M)p]

HXSWG YR 4 gg→H uncertainties
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HXSWG YR4 0.1180 ± 0.0015

PDG 2019 0.1179 ± 0.0010

ALPHA lattice (step scaling) 0.1185 ± 0.0008

Impact of ±0.0010 on σgg→H is ±2.1% (NNPDF40+ihixs)

Lattice determinations of the strong coupling

Luigi Del Debbioa, Alberto Ramosb,1

a
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

b
School of Mathematics and Hamilton Mathematics Institute, Trinity College Dublin, Dublin 2, Ireland

Abstract

Lattice QCD has reached a mature status. State of the art lattice computations include
u, d, s (and even the c) sea quark e↵ects, together with an estimate of electromagnetic and
isospin breaking corrections for hadronic observables. This precise and first principles
description of the standard model at low energies allows the determination of multiple
quantities that are essential inputs for phenomenology and not accessible to perturbation
theory.

One of the fundamental parameters that are determined from simulations of lattice
QCD is the strong coupling constant, which plays a central role in the quest for precision
at the LHC. Lattice calculations currently provide its best determinations, and will play a
central role in future phenomenological studies. For this reason we believe that it is timely
to provide a pedagogical introduction to the lattice determinations of the strong coupling.
Rather than analysing individual studies, the emphasis will be on the methodologies and
the systematic errors that arise in these determinations. We hope that these notes
will help lattice practitioners, and QCD phenomenologists at large, by providing a self-
contained introduction to the methodology and the possible sources of systematic error.

The limiting factors in the determination of the strong coupling turn out to be di↵er-
ent from the ones that limit other lattice precision observables. We hope to collect enough
information here to allow the reader to appreciate the challenges that arise in order to
improve further our knowledge of a quantity that is crucial for LHC phenomenology.

Keywords: QCD, renormalization, strong coupling, Lattice field theory.

Preprint: IFIC/20-56

Email addresses: luigi.del.debbio@ed.ac.uk (Luigi Del Debbio), alberto.ramos@ific.uv.es
(Alberto Ramos)

1Present address: Instituto de F́ısica Corpuscular (IFIC), CSIC-Universitat de Valencia 46071 -
Valencia, SPAIN

Preprint submitted to Physics Reports January 14, 2021
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Until we get FCC-ee Z hadronic width measurement, I don’t see 
any way forward that isn’t (step scaling) lattice-based

https://arxiv.org/abs/2101.04762


The strong coupling
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HXSWG YR4 0.1180 ± 0.0015

PDG 2019 0.1179 ± 0.0010

ALPHA lattice (step scaling) 0.1185 ± 0.0008

e+e–  C-parameter [SCET] 0.1123 ± 0.0015

e+e–  Thrust [SCET] 0.1135 ± 0.0011

Aside from EW fit and ALPHA lattice, most determinations 
depend, in some way or other, on measurements that are 

uncomfortably close / sensitive to non-perturbative physics,  
cf. terms , where (Λ/Q)p Λ ∼ ΛQCD ∼ 1 GeV
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C-param fits with different assumptions for Λ/Q correction (between 2 & 3-jet limits)

➤ measurement essentially looks at rate of 
3rd jet emission in  

➤ 0.1123 ± 0.0015 ↔ assumption about 
the structure of Λ/Q corrections, based 
on the 2-jet limit

e+e− → qq̄

20

G. Luisoni, P. F. Monni, G. P. Salam: C-parameter hadronisation in the symmetric 3-jet limit and impact on ↵s fits 5

Exp. Q (GeV) Fit range N. bins Ref.

ALEPH 91.2 0.27 < C < 0.69 22 [49]
ALEPH 133.0 0.20 < C < 0.675 6 [49]
ALEPH 161.0 0.16 < C < 0.675 7 [49]
ALEPH 172.0 0.16 < C < 0.675 7 [49]
ALEPH 183.0 0.16 < C < 0.675 7 [49]
ALEPH 189.0 0.16 < C < 0.675 7 [49]
ALEPH 200.0 0.125 < C < 0.675 8 [49]
ALEPH 206.0 0.125 < C < 0.675 8 [49]
JADE 44.0 0.61 < C < 0.68 2 [50]

Table 1. Data set considered for the simultaneous �2 fit of ↵s

and ↵0.

Ref. [5], but is largely su�cient for determining how the
↵s fit result depends on ⇣(C).

The theory predictions are obtained using 50 bins in
the 0  C  1 range, subsequently interpolated in order to
be evaluated in correspondence to the experimental data
bins. The fit is performed by minimising the �2 function
defined as

�2 =
X
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where Vij is the covariance matrix that encodes the cor-
relation between the bins Ci and Cj . The general form of
the covariance matrix is Vij = Sij + Eij , where Sij =
��2

stat, i�ij is the diagonal matrix of the (uncorrelated)
statistical errors in the experimental di↵erential distribu-
tion, while Eij contains the experimental systematic co-
variances. The diagonal entries of Eii = ��2

syst,i are given
by the experimental systematic uncertainty on the i-th
bin. For the o↵-diagonal elements, which are not publicly
available, a common choice (used also in Refs. [4,5,18]) is
to consider a minimal-overlap model, which defines Eij as

Eij = min
�
��2

syst,i, ��
2

syst,j

�
. (23)

For ease of comparison, we adopt the same choice, though
we note that for the normalised distributions that we fit
here, the true covariance matrix would also include some
degree of anti-correlation. The �2 minimisation is carried
out with the TMinuit routine distributed with ROOT and
the whole analysis was implemented in the C++ code used
for a similar fit in Ref. [18]. Results with a diagonal co-
variance matrix, i.e. without any correlations, are given in
Appendix C. They yield almost identical central results
for ↵s and ↵0, smaller �2 values, and an increase in the
experimental errors of O(10%� 20%), which however re-
main small compared to theoretical uncertainties.

In order to estimate the theoretical uncertainties, we
perform the following variations:

• the renormalisation scale µR is randomly varied in the
range Q/2  µR  2Q, while the infrared scale µI is
set to 2 GeV;

Fig. 2. Fit results for ↵s and ↵0 for di↵erent models of ⇣(C).
The points indicate the fit corresponding to the central setup
of scales and parameters for a given model. The ellipses show
the ��2 = 1 contours associated with the experimental un-
certainty. The shaded areas represent the theory uncertainties
due to the variation of additional theoretical parameters as
described in the text.

• for µR = Q, the resummation scale fraction xC defined
in Appendix D (default value xC = 1/2) is randomly
varied by a factor 3/2 in either direction, namely in
the range 1/3  xC  3/4, following the prescription
of Ref. [9];

• for µR = Q and xC = 1/2, the Milan factor M is
randomly varied within 20% of its central value [41]
(M ' 1.49) to account for non-inclusive e↵ects in the
h�Ci shift (7) beyond O(↵2

s);
• keeping all of the above parameters at their central

values, the parameter p in the modified logarithm de-
fined in Eq. (41) of Appendix D (default value p = 6)
is replaced by p = 5 and p = 7. This choice for p is
discussed in Appendix D.

The theory error is defined as the envelope of all the above
variations. When we quote overall results below, we add
the theoretical and experimental errors in quadrature.

We test several models for ⇣(C) as given in Eq. (21)
and shown in Fig. 1. Specifically, we consider the constant
⇣0 choice, the ⇣a,n model for n = 1, 2, 3, the ⇣b,n model for
n = 1, 2, 3, and the ⇣c model (recall ⇣a,1 ⌘ ⇣b,1).

The results of the fits are given in Fig. 2 and Table 2.
Fig. 2 shows results for ↵s and ↵0: the points give the cen-
tral result for each ⇣(C) choice, while the corresponding
shaded areas represent the envelope of results obtained
varying scales and parameters in the theoretical calcula-
tion, i.e. our overall theoretical uncertainty. Each point
is accompanied by the ��2 = 1 ellipse, whose projec-
tion along each of the axes defines the 1� experimental
uncertainty. Table 2 provides the numerical values of the
central results and overall errors for each ⇣(C) choice, and
additionally includes the �2 result from the fit, Eq. (22),
divided by the number of degrees of freedom.

Luisoni, Monni & GPS, 2012.00622 

๏ E.g. dispersive model: O(1/Q) => shift in the observable 
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C-param fits with different assumptions for Λ/Q correction (between 2 & 3-jet limits)

➤ measurement essentially looks at rate of 
3rd jet emission in  

➤ 0.1123 ± 0.0015 ↔ assumption about 
the structure of Λ/Q corrections, based 
on the 2-jet limit 

➤ Other patches show different 
interpolations between 2-jet and newly 
calculated symmetric-3-jet limit

e+e− → qq̄
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Exp. Q (GeV) Fit range N. bins Ref.

ALEPH 91.2 0.27 < C < 0.69 22 [49]
ALEPH 133.0 0.20 < C < 0.675 6 [49]
ALEPH 161.0 0.16 < C < 0.675 7 [49]
ALEPH 172.0 0.16 < C < 0.675 7 [49]
ALEPH 183.0 0.16 < C < 0.675 7 [49]
ALEPH 189.0 0.16 < C < 0.675 7 [49]
ALEPH 200.0 0.125 < C < 0.675 8 [49]
ALEPH 206.0 0.125 < C < 0.675 8 [49]
JADE 44.0 0.61 < C < 0.68 2 [50]

Table 1. Data set considered for the simultaneous �2 fit of ↵s

and ↵0.

Ref. [5], but is largely su�cient for determining how the
↵s fit result depends on ⇣(C).

The theory predictions are obtained using 50 bins in
the 0  C  1 range, subsequently interpolated in order to
be evaluated in correspondence to the experimental data
bins. The fit is performed by minimising the �2 function
defined as
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where Vij is the covariance matrix that encodes the cor-
relation between the bins Ci and Cj . The general form of
the covariance matrix is Vij = Sij + Eij , where Sij =
��2

stat, i�ij is the diagonal matrix of the (uncorrelated)
statistical errors in the experimental di↵erential distribu-
tion, while Eij contains the experimental systematic co-
variances. The diagonal entries of Eii = ��2

syst,i are given
by the experimental systematic uncertainty on the i-th
bin. For the o↵-diagonal elements, which are not publicly
available, a common choice (used also in Refs. [4,5,18]) is
to consider a minimal-overlap model, which defines Eij as

Eij = min
�
��2

syst,i, ��
2

syst,j

�
. (23)

For ease of comparison, we adopt the same choice, though
we note that for the normalised distributions that we fit
here, the true covariance matrix would also include some
degree of anti-correlation. The �2 minimisation is carried
out with the TMinuit routine distributed with ROOT and
the whole analysis was implemented in the C++ code used
for a similar fit in Ref. [18]. Results with a diagonal co-
variance matrix, i.e. without any correlations, are given in
Appendix C. They yield almost identical central results
for ↵s and ↵0, smaller �2 values, and an increase in the
experimental errors of O(10%� 20%), which however re-
main small compared to theoretical uncertainties.

In order to estimate the theoretical uncertainties, we
perform the following variations:

• the renormalisation scale µR is randomly varied in the
range Q/2  µR  2Q, while the infrared scale µI is
set to 2 GeV;

Fig. 2. Fit results for ↵s and ↵0 for di↵erent models of ⇣(C).
The points indicate the fit corresponding to the central setup
of scales and parameters for a given model. The ellipses show
the ��2 = 1 contours associated with the experimental un-
certainty. The shaded areas represent the theory uncertainties
due to the variation of additional theoretical parameters as
described in the text.

• for µR = Q, the resummation scale fraction xC defined
in Appendix D (default value xC = 1/2) is randomly
varied by a factor 3/2 in either direction, namely in
the range 1/3  xC  3/4, following the prescription
of Ref. [9];

• for µR = Q and xC = 1/2, the Milan factor M is
randomly varied within 20% of its central value [41]
(M ' 1.49) to account for non-inclusive e↵ects in the
h�Ci shift (7) beyond O(↵2

s);
• keeping all of the above parameters at their central

values, the parameter p in the modified logarithm de-
fined in Eq. (41) of Appendix D (default value p = 6)
is replaced by p = 5 and p = 7. This choice for p is
discussed in Appendix D.

The theory error is defined as the envelope of all the above
variations. When we quote overall results below, we add
the theoretical and experimental errors in quadrature.

We test several models for ⇣(C) as given in Eq. (21)
and shown in Fig. 1. Specifically, we consider the constant
⇣0 choice, the ⇣a,n model for n = 1, 2, 3, the ⇣b,n model for
n = 1, 2, 3, and the ⇣c model (recall ⇣a,1 ⌘ ⇣b,1).

The results of the fits are given in Fig. 2 and Table 2.
Fig. 2 shows results for ↵s and ↵0: the points give the cen-
tral result for each ⇣(C) choice, while the corresponding
shaded areas represent the envelope of results obtained
varying scales and parameters in the theoretical calcula-
tion, i.e. our overall theoretical uncertainty. Each point
is accompanied by the ��2 = 1 ellipse, whose projec-
tion along each of the axes defines the 1� experimental
uncertainty. Table 2 provides the numerical values of the
central results and overall errors for each ⇣(C) choice, and
additionally includes the �2 result from the fit, Eq. (22),
divided by the number of degrees of freedom.

Luisoni, Monni & GPS, 2012.00622 

https://arxiv.org/abs/2012.00622
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Exp. Q (GeV) Fit range N. bins Ref.
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ALEPH 133.0 0.20 < C < 0.675 6 [49]
ALEPH 161.0 0.16 < C < 0.675 7 [49]
ALEPH 172.0 0.16 < C < 0.675 7 [49]
ALEPH 183.0 0.16 < C < 0.675 7 [49]
ALEPH 189.0 0.16 < C < 0.675 7 [49]
ALEPH 200.0 0.125 < C < 0.675 8 [49]
ALEPH 206.0 0.125 < C < 0.675 8 [49]
JADE 44.0 0.61 < C < 0.68 2 [50]

Table 1. Data set considered for the simultaneous �2 fit of ↵s

and ↵0.

Ref. [5], but is largely su�cient for determining how the
↵s fit result depends on ⇣(C).

The theory predictions are obtained using 50 bins in
the 0  C  1 range, subsequently interpolated in order to
be evaluated in correspondence to the experimental data
bins. The fit is performed by minimising the �2 function
defined as
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where Vij is the covariance matrix that encodes the cor-
relation between the bins Ci and Cj . The general form of
the covariance matrix is Vij = Sij + Eij , where Sij =
��2

stat, i�ij is the diagonal matrix of the (uncorrelated)
statistical errors in the experimental di↵erential distribu-
tion, while Eij contains the experimental systematic co-
variances. The diagonal entries of Eii = ��2

syst,i are given
by the experimental systematic uncertainty on the i-th
bin. For the o↵-diagonal elements, which are not publicly
available, a common choice (used also in Refs. [4,5,18]) is
to consider a minimal-overlap model, which defines Eij as

Eij = min
�
��2

syst,i, ��
2

syst,j

�
. (23)

For ease of comparison, we adopt the same choice, though
we note that for the normalised distributions that we fit
here, the true covariance matrix would also include some
degree of anti-correlation. The �2 minimisation is carried
out with the TMinuit routine distributed with ROOT and
the whole analysis was implemented in the C++ code used
for a similar fit in Ref. [18]. Results with a diagonal co-
variance matrix, i.e. without any correlations, are given in
Appendix C. They yield almost identical central results
for ↵s and ↵0, smaller �2 values, and an increase in the
experimental errors of O(10%� 20%), which however re-
main small compared to theoretical uncertainties.

In order to estimate the theoretical uncertainties, we
perform the following variations:

• the renormalisation scale µR is randomly varied in the
range Q/2  µR  2Q, while the infrared scale µI is
set to 2 GeV;

Fig. 2. Fit results for ↵s and ↵0 for di↵erent models of ⇣(C).
The points indicate the fit corresponding to the central setup
of scales and parameters for a given model. The ellipses show
the ��2 = 1 contours associated with the experimental un-
certainty. The shaded areas represent the theory uncertainties
due to the variation of additional theoretical parameters as
described in the text.

• for µR = Q, the resummation scale fraction xC defined
in Appendix D (default value xC = 1/2) is randomly
varied by a factor 3/2 in either direction, namely in
the range 1/3  xC  3/4, following the prescription
of Ref. [9];

• for µR = Q and xC = 1/2, the Milan factor M is
randomly varied within 20% of its central value [41]
(M ' 1.49) to account for non-inclusive e↵ects in the
h�Ci shift (7) beyond O(↵2

s);
• keeping all of the above parameters at their central

values, the parameter p in the modified logarithm de-
fined in Eq. (41) of Appendix D (default value p = 6)
is replaced by p = 5 and p = 7. This choice for p is
discussed in Appendix D.

The theory error is defined as the envelope of all the above
variations. When we quote overall results below, we add
the theoretical and experimental errors in quadrature.

We test several models for ⇣(C) as given in Eq. (21)
and shown in Fig. 1. Specifically, we consider the constant
⇣0 choice, the ⇣a,n model for n = 1, 2, 3, the ⇣b,n model for
n = 1, 2, 3, and the ⇣c model (recall ⇣a,1 ⌘ ⇣b,1).

The results of the fits are given in Fig. 2 and Table 2.
Fig. 2 shows results for ↵s and ↵0: the points give the cen-
tral result for each ⇣(C) choice, while the corresponding
shaded areas represent the envelope of results obtained
varying scales and parameters in the theoretical calcula-
tion, i.e. our overall theoretical uncertainty. Each point
is accompanied by the ��2 = 1 ellipse, whose projec-
tion along each of the axes defines the 1� experimental
uncertainty. Table 2 provides the numerical values of the
central results and overall errors for each ⇣(C) choice, and
additionally includes the �2 result from the fit, Eq. (22),
divided by the number of degrees of freedom.

Luisoni, Monni & GPS, 2012.00622 
Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, 2108.08897
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JADE 44.0 0.61 < C < 0.68 2 [50]

Table 1. Data set considered for the simultaneous �2 fit of ↵s

and ↵0.

Ref. [5], but is largely su�cient for determining how the
↵s fit result depends on ⇣(C).

The theory predictions are obtained using 50 bins in
the 0  C  1 range, subsequently interpolated in order to
be evaluated in correspondence to the experimental data
bins. The fit is performed by minimising the �2 function
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where Vij is the covariance matrix that encodes the cor-
relation between the bins Ci and Cj . The general form of
the covariance matrix is Vij = Sij + Eij , where Sij =
��2

stat, i�ij is the diagonal matrix of the (uncorrelated)
statistical errors in the experimental di↵erential distribu-
tion, while Eij contains the experimental systematic co-
variances. The diagonal entries of Eii = ��2

syst,i are given
by the experimental systematic uncertainty on the i-th
bin. For the o↵-diagonal elements, which are not publicly
available, a common choice (used also in Refs. [4,5,18]) is
to consider a minimal-overlap model, which defines Eij as

Eij = min
�
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�
. (23)

For ease of comparison, we adopt the same choice, though
we note that for the normalised distributions that we fit
here, the true covariance matrix would also include some
degree of anti-correlation. The �2 minimisation is carried
out with the TMinuit routine distributed with ROOT and
the whole analysis was implemented in the C++ code used
for a similar fit in Ref. [18]. Results with a diagonal co-
variance matrix, i.e. without any correlations, are given in
Appendix C. They yield almost identical central results
for ↵s and ↵0, smaller �2 values, and an increase in the
experimental errors of O(10%� 20%), which however re-
main small compared to theoretical uncertainties.

In order to estimate the theoretical uncertainties, we
perform the following variations:

• the renormalisation scale µR is randomly varied in the
range Q/2  µR  2Q, while the infrared scale µI is
set to 2 GeV;

Fig. 2. Fit results for ↵s and ↵0 for di↵erent models of ⇣(C).
The points indicate the fit corresponding to the central setup
of scales and parameters for a given model. The ellipses show
the ��2 = 1 contours associated with the experimental un-
certainty. The shaded areas represent the theory uncertainties
due to the variation of additional theoretical parameters as
described in the text.

• for µR = Q, the resummation scale fraction xC defined
in Appendix D (default value xC = 1/2) is randomly
varied by a factor 3/2 in either direction, namely in
the range 1/3  xC  3/4, following the prescription
of Ref. [9];

• for µR = Q and xC = 1/2, the Milan factor M is
randomly varied within 20% of its central value [41]
(M ' 1.49) to account for non-inclusive e↵ects in the
h�Ci shift (7) beyond O(↵2

s);
• keeping all of the above parameters at their central

values, the parameter p in the modified logarithm de-
fined in Eq. (41) of Appendix D (default value p = 6)
is replaced by p = 5 and p = 7. This choice for p is
discussed in Appendix D.

The theory error is defined as the envelope of all the above
variations. When we quote overall results below, we add
the theoretical and experimental errors in quadrature.

We test several models for ⇣(C) as given in Eq. (21)
and shown in Fig. 1. Specifically, we consider the constant
⇣0 choice, the ⇣a,n model for n = 1, 2, 3, the ⇣b,n model for
n = 1, 2, 3, and the ⇣c model (recall ⇣a,1 ⌘ ⇣b,1).

The results of the fits are given in Fig. 2 and Table 2.
Fig. 2 shows results for ↵s and ↵0: the points give the cen-
tral result for each ⇣(C) choice, while the corresponding
shaded areas represent the envelope of results obtained
varying scales and parameters in the theoretical calcula-
tion, i.e. our overall theoretical uncertainty. Each point
is accompanied by the ��2 = 1 ellipse, whose projec-
tion along each of the axes defines the 1� experimental
uncertainty. Table 2 provides the numerical values of the
central results and overall errors for each ⇣(C) choice, and
additionally includes the �2 result from the fit, Eq. (22),
divided by the number of degrees of freedom.
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the non-perturbative part at 
hadron colliders

23

σ = ∑
i,j

∫ dx1dx2 fi/p(x1) fj/p(x2) ̂σ(x1x2s) × [1 + 𝒪(Λ/M)p]
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What is value of p in ?(Λ/Q)p

➤ LEP event-shape (C-parameter, thrust) fit troubles came about because 
 

➤ Jet physics at LHC is dirty because  (hadronisation & MPI) 

➤ Hadron-collider inclusive and rapidity-differential Drell-Yan cross sections are 
believed to have  (Higgs hopefully also), so leptonic / photonic decays should 
be clean, aside from isolation. 

 
[Beneke & Braun, hep-ph/9506452; Dasgupta, hep-ph/9911391] 

➤ But at LHC, we’re also interested in Z, W and Higgs production with non-zero  
Nobody knew if we have  with  (a disaster) or  (all is fine)

p = 1
Λ ∼ 0.5 GeV → (Λ/20GeV) ∼ 2.5 %

p = 1

p = 2

Λ ∼ 0.5 GeV → (Λ/125GeV)2 ∼ 0.002 %

pT
(Λ/pT)p p = 1 p = 2

24
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What is value of p in ?(Λ/Q)p

➤ Explicit calculations with an 
effective gluon mass (λ) can 
provide a strong indication 

➤ Flatness in plot for  indicates 
absence of  (linear) 
contribution 

➤ arguably the most important result 
of the past 18 months, because it 
lays foundations for precision 
physics at non-zero 

λ → 0
p = 1

pT
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Figure 9: T (�) (defined in eq. (2.16)) as a function of the gluon mass � for the total Z

production cross section with the cut pT,Z > pcT, with pcT = 20GeV (left) and pcT = 40GeV

(right). The green points are the results of our computations for several values of �. The

fit 1 and 2 lines are obtained with the fit function in eq. (4.2), where in fit 1 all parameters

are fitted, while in fit 2 the coe�cient of the linear term b is set to zero. The point

corresponding to � = 5GeV has not been included in the fits.

coe�cient has a negligible impact on the fitting functions, its size is at least an order of

magnitude smaller than the coe�cient of the dominant quadratic term, and its value is

consistent with zero. Thus, we find no evidence of the presence of a linear renormalon in

the Z boson transverse momentum distribution, and furthermore we find that the value of

the corresponding coe�cient, if non-vanishing, is much smaller than the coe�cients of the

quadratic terms.

pcT = 20GeV pcT = 40GeV

fit 1 fit 2 fit 1 fit 2

a = 644.60± 0.02 a = 644.63± 0.02 a = 72.237± 0.005 a = 72.241± 0.004

b = 0.009± 0.004 b = 0 b = 0.024± 0.017 b = 0

c = �0.063± 0.008 c = �0.047± 0.004 c = �0.11± 0.06 c = �0.028± 0.021

d = 0.341± 0.005 d = 0.341± 0.007 d = 0.50± 0.08 d = 0.59± 0.05

�2/ndf = 0.12 �2/ndf = 0.23 �2/ndf = 1.13 �2/ndf = 1.36

Table 1: Results of the fit of the T (�) function, defined in eq. (2.16) and illustrated in

Fig. 9. The fit function is given in eq. (4.2). In the first fit, corresponding to the blue lines

in the figures, b in unconstrained, while in the second fit, corresponding to the red lines, b

has been set to 0. The last line corresponds to the associated reduced �2.

We also performed a more exclusive analysis, imposing an additional cut over the

rapidity of the Z boson yZ, besides the one over the transverse momentum. The results

are shown in fig. 10 and in Tab. 2. Again we do not find numerical evidence of a linear

sensitivity to �, implying that the doubly di↵erential distribution in rapidity and transverse

– 17 –

Ferraro Ravasio, Limatola & Nason, 2011.14114 
+ analytic demonstration in Caola, Ferrario Ravasio, Limatola, Melnikov & Nason, 2108.08897

https://arxiv.org/abs/2108.08897
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σ = ∑
i,j

∫ dx1dx2 fi/p(x1) fj/p(x2) ̂σ(x1x2s) × [1 + 𝒪(Λ/M)p]
Standard QCD+EW perturbation theory, 
plus a conceptual surprise

the perturbative part
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GLUON FUSION — THE ERROR BUDGET
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Figure 2: Cummulative contributions to the total relative uncertainty as a function of the
collider energy. according to eqs. (26)-(28).

In combination we find

δσPP→H+X = δ(PDF+αS) + δ(theory) = +3.63pb
−4.72pb

(
+7.46%
−9.7%

)
. (39)

To derive the various sources of uncertainties we followed the prescriptions
outlined above. In fig. 2 we show how the relative size of the various sources
of uncertainty varies as a function of the hadron collider energy.

In comparison to the numerical cross section predictions derived in ref. [3]
we observe only minor changes. The difference arise solely due to the exact
computation of the N3LO QCD corrections in the heavy top quark effective
theory obtained in ref. [16]. The deviations are well within the uncertainty
that was associated with the truncation of the threshold expansion used for
the results of ref. [3]. This particular source of uncertainty is now removed.

Finally, we use iHixs to derive state of the art predictions for the gluon
fusion Higgs production cross section at different collider energies. We strictly
follow the recommendations of [3, 4]. Figure 3 shows the state-of-the art
predictions and uncertainty estimates for the inclusive cross section obtained

18

[Dulat, Lazopoulos, Mistlberger ’18]

Sources of Uncertainties: 
Remove one source of uncertainty!

[Czakon, Harlander, Klappert, Niggetiedt ’20]

Future: 

๏ light-quark mass effects

‣ large logs to resum?

 
Reduce uncertainty:  ∼ 1 % → 0.6 %
[Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer ’20]

Future: 

๏ quark-induced EW contributions 

๏ large ?

๏  dependence in QCD amplitude? 

pH
T

mt

๏     —  more data & accurate determinations

๏   —  missing N3LO PDFs  (AP kernels)

δ(PDF + αs)

δ(PDF − TH)

G. Salam

[adapted from Alexander Huss @ Higgs 2021 
see his slides for much more discussion]

4-loop splitting (low moments): Moch, Rujil, Ueda, Vermaseren & Vogt ‘21 
Drell-Yan @ N3LO: Duhr, Dulat & Mistlberger, ’20, ‘21 

still to be incorporated into PDF fits 

}QCD theory  
uncertainties 

https://indico.cern.ch/event/1030068/contributions/4408795/attachments/2330670/3971655/Higgs2021_Huss.pdf
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Previous slide was for Higgs (“inclusive”) total cross section 
Starting point for any hadron-collider analysis: acceptance (fiducial) cuts

E.g. ATLAS/CMS  cuts 

➤ Higher-  photon:  (ATLAS) or  (CMS) 

➤ Lower-  photon:  

➤ Both photons: additional rapidity and isolation cuts 

Essential for good reconstruction of the photons and for rejecting large low-  
backgrounds. 

Theory-experiment comparisons with identical “fiducial” cuts often considered 
the Gold Standard of collider physics

H → γγ

pt pt,γ > 0.35mγγ mγγ /3

pt pt,γ > 0.25mγγ

pt

28
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Recent surprise: H→γγ fiducial N3LO σ uncertainties ~2  greater than inclusive N3LO σ uncertaities×
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3

N3LO
NNLO × KN3LO
N3LO
NNLO × KN3LO

FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Chen, Gehrmann, Glover, Huss, Mistlberger & Pelloni, 2102.07607

https://arxiv.org/abs/2102.07607
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3

N3LO
NNLO × KN3LO
N3LO
NNLO × KN3LO

FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Chen, Gehrmann, Glover, Huss, Mistlberger & Pelloni, 2102.07607

“Gold standard” fiducial cross 
section gives much worse 

prediction 

Why?  
And can this be solved?

https://arxiv.org/abs/2102.07607
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HHiggs with zero 
transverse mom.

γ+

❌ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Fails cuts

HHiggs with non-zero 
transverse mom.

γ+ ✅ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Passes cuts

Numbers are for ATLAS H→ γγ pt cuts, CMS cuts are similar

Let us place the Higgs, of mass mh, at zero rapidity, yh = 1

2
ln E+pz

E�pz
= 0. When the

Higgs boson has transverse momentum pt,h, we can parameterise the momenta of the two

photons (labelled + and �) as a function of polar and azimuthal angles ✓ and �,

p±(pt,h, ✓,�) =
1

2

n
±

q
m2

h + p
2
t,h

sin ✓ cos�+ pt,h , ±mh sin ✓ sin� , ±mh cos ✓ ,
q
m2

h + p
2
t,h

± pt,h sin ✓ cos�
o
, (2.1)

where the components are given in the order x, y, z, E, the beams are along the ±z

directions and, without loss of generality, we have taken the Higgs boson transverse mo-

mentum to be along the x direction. In this parametrisation, ✓ and � are simply the usual

Collins–Soper angles [40]. When discussing pt cuts, it is su�cient to consider the domain

0  ✓ 
⇡

2
, �

⇡

2
 � 

⇡

2
, (2.2)

where we have pt,+ � pt,�. We will refer to the higher (lower)-pt photon as the harder

(softer) one. In this domain, an identical (“symmetric”) transverse momentum cut on both

photons, pt,+, pt,� � pt,cut, reduces to a requirement on the softer photon, pt,� � pt,cut.

For other regions of ✓ and �, the argument would remain identical, simply taking care as

to which of the two photons has the smaller transverse momentum.

For a given pt,h, the fraction f(pt,h) of Higgs boson decays where both photons pass

the cut is given by

f(pt,h) =

Z
⇡/2

�⇡/2

d�

⇡

Z
⇡/2

0

sin ✓d✓⇥(pt,� > pt,cut) . (2.3)

We can perform a simple integration over phase space, independently of the Higgs produc-

tion matrix element, because of the spin-0 nature of the Higgs boson. To evaluate f(pt,h),

it is convenient to work in the small-pt,h limit, where we have

pt,±(pt,h, ✓,�) =
mh

2
sin ✓ ±

1

2
pt,h cos�+

p
2
t,h

4mh

�
sin ✓ cos2 �+ csc ✓ sin2 �

�
+O3 , (2.4)

where the notation On is a shorthand that we introduce to indicate that we neglect terms

p
n
t,h and higher (and, later, the n

th power of any other factor in which we expand). In

Eq. (2.4), we have retained terms up to order p
2
t,h/m

2
h because we will make use of the

second-order term later. However, to keep the rest of this section as simple as possible, we

will now work with just the first two terms, and the requirement pt,� > pt,cut translates to

sin ✓ >
2pt,cut
mh

+ cos�
pt,h

mh

+O2 , (2.5)

or equivalently

cos ✓ < f0 �
2

f0

pt,cut

mh

cos�
pt,h

mh

+O2 , f0 =

s

1�
4p2

t,cut

m2
h

. (2.6)

– 5 –

Expect acceptance to increase with increasing pt,H
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resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��
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See e.g. Frixione & Ridolfi ‘97 
Ebert & Tackmann ’19 

idem + Michel & Stewart ‘20 
Alekhin et al ’20

effect of  cut sets in at  pt,− 0.1mH

 and  are coefficients whose values 
depend on the cuts
f0 f1
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Resummed 
results

Behaviour of perturbative series in various log approximations

➤ At DL & LL (DL+running coupling) factorial divergence sets in from first orders 

➤ Poor behaviour of N3LL is qualitatively similar to that seen by Billis et al ‘21 

➤ Theoretically similar to a power-suppressed ambiguity ~  
[inclusive cross sections expected to have ]

(ΛQCD/mH)0.205

Λ2/m2

33

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, μ=mH/2

numbers we will take ✏ ! 0, however we will also plot the ✏ dependence of the result to

gauge the e↵ect of a pt,h cuto↵ in a projection-to-Born type [53] subtraction approach for

perturbative calculations, as used in Ref. [11]. (In practice, such calculations impose a

cuto↵ m
2

min
on the invariant mass of parton pairs, and a cut m2

min
. ✏

2 is required to fully

cover transverse momenta down to a scale ✏.)

For asymmetric cuts with the ATLAS thresholds of pt,+ > 0.35mh and pt,� > 0.25mh

(using not just the f1 part of the acceptance, but its full structure), we obtain the following

results for the acceptances for each of the perturbative models,

�asym � f0�inc

�0f0
' 0.15↵s � 0.29↵2

s
+ 0.71↵3

s
� 2.39↵4

s
+ 10.31↵5

s
+ . . . ' 0.06 @DL,

' 0.15↵s � 0.23↵2
s
+ 0.44↵3

s
� 1.15↵4

s
+ 3.86↵5

s
+ . . . ' 0.06 @LL,

' 0.18↵s � 0.15↵2
s
+ 0.29↵3

s
+ . . . ' 0.10 @NNLL,

' 0.18↵s � 0.15↵2
s
+ 0.31↵3

s
+ . . . ' 0.12 @N3LL.

(2.23)

In these results, the ↵n
s subscript indicates that the corresponding term is the ↵n

s contribu-

tion to the result, while the right-hand side of the equality corresponds to the acceptance

as determined from the resummation (in the case of the LL result, we stop the integration

at the Landau pole). The DL and LL results clearly show how the series start to diverge

towards higher orders. In the LL case, the terms grow a little more slowly, and numerically

fitting the structure of the series to high orders leads to the conclusion that (for nf = 5) the

smallest term in the series scales as (⇤/Q)0.205 rather than the (⇤/Q)23/144 ' (⇤/Q)0.160

seen at DL level. The investigations reported in Appendix C suggest that the (⇤/Q)0.205

scaling may be robust with respect to b-space versus pt space complications, as well as to

other subleading e↵ects.

Next, we examine the NNLL and N3LL results in Eq. (2.23). The all-order results are

twice as large in the NNLL and N3LL cases as compared to the DL and LL cases, which is

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect, for example by increasing the width of

the resummed scale variation band). The pattern of ✏-dependence in Fig. 3 confirms the

expectation from Eq. (2.20) that the fixed-order result is highly sensitive to unphysically

low pt,h values.8

8One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

– 13 –
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Solution #1: only ever calculate σfid with help of ptH resummation
➤ Billis, Dehnadi, Ebert, Michel & 

Tackmann, 2102.08039, argue you 
should evaluate the fiducial cross 
section only after resummation of 
the ptH distribution. 

➤ For legacy measurements,  
resummation is only viable solution 

➤ Our view: not an ideal solution 

➤ Fiducial σ is a hard cross section 
and shouldn’t need resummation 

➤ losing the ability to use fixed order on its own would be a big blow to the field (e.g. flexibility; 
robustness of seeing fixed-order & resummation agree) 

➤ sensitivity to variation of acceptance at low  → complications (e.g. sensitivity to heavy-quark 
effects in resummation and PDFs — not consistently treated in any N3LL resummation today)

pt,H

34

4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.

16

18

20

22

24

26

28

30

FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

Billis, Dehnadi, Ebert, Michel & Tackmann, 2102.08039 

Resummation

https://arxiv.org/abs/2102.08039
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Solution #2a: for future measurements, make simple changes to the cuts

35

one may place an explicit cut on the softer photon, pt,� > pt,cut��. The analysis is similar

to that for the asymmetric cut in section 2.2 and with the condition � ⌧ mh, the result

that emerges is that Eq. (3.6) is replaced by

f
sum(pt,h) = f0 + f

sum

2 ·
p
2
t,h

m2
h

+O4 �
4pt,cut
⇡mhf0

�(pt,h, 2�)

mh

(1 +O2) . (3.7)

Note the same function � that appeared in Eq. (2.17), but now as �(pt,h, 2�) instead

of �(pt,h,�), so that the transition intervenes for pt,h > 2�, i.e. at twice the value that

occurred with standard asymmetric cuts. It is simple to understand why: to have pt,� =

pt,cut � � and pt,+ + pt,� = 2pt,cut, then it is necessary to have pt,+ � pt,� = 2�, which

implies pt,h � 2�.

In general, when we refer to sum cuts, we will always understand them to involve an

additional requirement on the pt of the softer decay product, and similarly for all the other

cuts that we discuss below.

3.2 Product cuts

Another simple solution to engineering an acceptance with a quadratic dependence on pt,h

is to consider the (square-root) of the product of the two photon transverse momenta

pt,prod(pt,h, ✓,�) =
p
pt,+pt,� =

mh

2
sin ✓ +

p
2
t,h

4mh

sin2 �� cos2 ✓ cos2 �

sin ✓
+O4 . (3.8)

Again, the fact that pt,prod has no linear dependence on pt,h will have the consequence

that a cut pt,prod > pt,cut will have an acceptance with only quadratic dependence on pt,h.

Specifically, the acceptance is given by

f
prod(pt,h) = f0 + f

prod

2

✓
pt,h

mh

◆
2

+O4 , f
prod

2
=

p
2
t,cut

m2
hf0

. (3.9)

The coe�cient of the quadratic dependence, fprod

2
, is somewhat smaller than with sum

cuts: for example, for pt,cut = 0.35mh, we have f
prod

2
/f0 ' 0.24, i.e. about 3 times smaller

than f
sum

2
/f0.

As in the previous subsection, a cut just on pt,prod may not be su�cient experimentally,

since the constraint it places on the softer photon is rather weak. However, it is once again

possible to combine a pt,prod cut with a cut on the softer photon, pt,� > pt,cut ��, and for

small � one obtains a result structurally very similar to Eq. (3.7):

f
prod(pt,h) = f0 + f

prod

2

✓
pt,h

mh

◆
2

+O4 �
4pt,cut
⇡mhf0

�(pt,h, 2�+O2)

mh

(1 +O2) . (3.10)

In particular, for small pt,h one obtains the same acceptance as without the pt,� cut, and the

transition for pt,h & 2� has the same form at first order in pt,h/mh. One small di↵erence is

that the transition is not exactly at 2�, but rather slightly higher, at�(1+1/(1��/pt,cut)).

– 16 –

➤ Simplest option is to replace the cut on the leading photon with a cut on the 
product of the two photon ’s 

➤ E.g.  (and still keep softer photon cut ) 

➤ The product has no linear dependence on  

[Several other options are possible, but this  
combines simplicity and good performance]

pt

pt,γ+ × pt,γ− > (0.35mH)2 pt,γ− > 0.25mH

pt,H
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Replace cut on leading photon → cut on product of photon pt’s

36
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linear →  
quadratic
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Using product cuts dampens the factorial divergence

→ 
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NB: the cut on the softer photon is still maintained
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Resummed 
results

Behaviour of perturbative series with product cuts

➤ Factorial growth of series strongly suppressed 

➤ N3LO truncation agrees well with all-order result 

➤ Per mil agreement between fixed-order and resummation gives confidence that all 
is under control

37

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, μ=mH/2

trated with the following results for the perturbative series, first for the sum cuts,

�sum � f0�inc

�0f0
' 0.013↵s � 0.007↵2

s
+ 0.005↵3

s
� 0.004↵4

s
+ 0.004↵5

s
+ . . . ' 0.009 @DL,

' 0.013↵s � 0.005↵2
s
+ 0.001↵3

s
� 0.001↵4

s
+ 0.000↵5

s
+ . . . ' 0.010 @LL,

' 0.016↵s + 0.007↵2
s
� 0.004↵3

s
+ . . . ' 0.019 @NNLL,

' 0.016↵s + 0.007↵2
s
� 0.001↵3

s
+ . . . ' 0.021 @N3LL,

(3.13)

and next for product cuts,

�prod � f0�inc

�0f0
' 0.005↵s � 0.002↵2

s
+ 0.002↵3

s
� 0.001↵4

s
+ 0.001↵5

s
+ . . . ' 0.003 @DL,

' 0.005↵s � 0.002↵2
s
+ 0.000↵3

s
� 0.000↵4

s
+ 0.000↵5

s
+ . . . ' 0.003 @LL,

' 0.005↵s + 0.002↵2
s
� 0.001↵3

s
+ . . . ' 0.005 @NNLL,

' 0.005↵s + 0.002↵2
s
� 0.001↵3

s
+ . . . ' 0.006 @N3LL.

(3.14)

The improvement in convergence relative to the corresponding results for asymmetric cuts,

Eq. (2.23) is striking.

Fig. 5, which is to be compared to its analogue for asymmetric cuts, i.e. Fig. 3, shows

the sensitivity to the infrared cuto↵ in Eq. (2.22), as well as the impact of scale variation.

N3LO (from N3LL) and the full N3LL resummation now agree well and the N3LO result

is much less sensitive to the minimum pt,h in the integration, converging at a few GeV,

rather than at MeV scales for asymmetric cuts. These are precisely the features that we had

anticipated in the introduction to this section. Note also that the residual scale uncertainty

is now essentially negligible (at least by today’s standards for Higgs physics), and that the

overall size of the fiducial acceptance correction is much smaller than for asymmetric cuts.

Note that in Eqs. (3.13) and (3.14), at N3LL the coe�cient of the ↵2
s term is now positive,

whereas it is negative at DL and LL. The most likely explanation for the change of sign

is that it is related to the interplay between the acceptance cuts and the large (positive)

NLO K-factor for Higgs production.

Of the three quadratic cuts discussed so far, overall the best choice appears to be the

product cuts, for several reasons:

1. The coe�cient of the quadratic dependence is small (though staggered cuts give a

smaller coe�cient for 2ptcut/mh < 1/
p
2).

2. The transition point to quasi-linear pt,h dependence, at pt,h ' 2�, is the highest of the

three (sum cuts transition at a similar, though slightly lower value of pt,h). Having a

high transition point is of value because it means that the substantial pt,h dependence

occurs in a region where the perturbative prediction for the pt,h spectrum is more

likely to be reliable, providing confidence in the use of pure fixed-order perturbation

theory to calculate acceptances.

– 19 –
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beyond the fixed-order formula
parton shower Monte Carlos

38
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Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

39

ATLAS VH: 2008.02508,

https://arxiv.org/abs/2008.02508
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Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)

39

ATLAS VH: 2008.02508,

For large-R jets, the uncertainties in the energy and mass scales are […] as 
described in [81]

https://arxiv.org/abs/2008.02508
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(a) (b)

Figure 31: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 50–120 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.
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Figure 32: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 120–300 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.
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For large-R jets, the uncertainties in the energy and mass scales are […] as 
described in [81]
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(a) (b)

Figure 31: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 50–120 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.
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Figure 32: Breakdown of the combined JMS uncertainty shown in Figure 30 as a function of jet transverse momentum
pT for the jet mass bin 120–300 GeV. Contributions are shown for each of the nuisance parameters of the (a) Rtrk and
(b) forward-folding methods. The vertical axis reflects the uncertainty introduced by a given nuisance parameter in
combination, incorporating the weight of the method from which it originates. This weight is dominated at high pT
by the Rtrk method. The lines shown are smoothed using a sliding Gaussian kernel.
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Take example of ATLAS boosted VH — stat (28%) ~ syst (24%)
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jet energy calibration affects ~1500 papers

40
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Figure 30. Residual jet-flavor correction factor as a function of jet pT, corr from ������ 6.4 tune Z2*, derived
on top of inclusive JEC and defined relative to the QCD flavor mixture (left). The neutrinos are excluded
from particle jets, which brings c- and b-jet response in between that of light quarks and gluons. The lines
show the parameterizations used for residual jet-flavor corrections. Di�erence in light-quark and gluon jet
response as a function of jet pT, corr, as predicted by ������ 6.4 and ������++ 2.3 (right).

Figure 30 (left) shows the inverse of the response for di�erent flavors versus pT, relative to the
one for the QCD flavor mixture. The relative behavior of the di�erences has a weak dependence
on pT, but the absolute di�erences become smaller at high pT. This can be explained by the
asymptotic rise of the neutral hadron response towards unity at high pT and detector acceptance
e�ects becoming less significant for high-pT jets.

While ������ 6.4 and ������++ 2.3 agree well on quark flavor response, there are significant
di�erences in the gluon response modeling. A useful metric for the JES sensitivity to flavor response
modeling is the di�erence in light-quark (uds) and gluon jet response, shown in figure 30 (right).
The flavor sensitivity of the CMS PF algorithm is much reduced with respect to the CALO jets
reconstruction, as was demonstrated in ref. [13].

7.3 Flavor uncertainties

We investigate the jet fragmentation and flavor response di�erences by comparing ������ 6.4 tune
Z2* and ������++ 2.3 tune EE3C in balanced QCD dijet events. These two tunes have been shown
to cover di�erences between data and simulation in many studies of jet structure and fragmentation,
in particular for the variables used for quark and gluon tagging [49]. The jet flavors are tagged with
the matching parton flavor, based on the physics definition. As shown in figure 31, we observe
the largest response di�erences for the gluon jets, while the light-quark and heavy-flavor jets are in
good agreement in both MCs.

The parameterized response di�erences as a function of ⌘ and pT, combined with the flavor
fractions in figure 28, are propagated through the fitting procedure used for data-based residual
corrections to evaluate the systematic uncertainties from jet flavor. Jets in the barrel reference
region |⌘ | < 1.3 have flavor uncertainty only when the flavor mixture di�ers from the Z/�+jet
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term is the largest of the pile-up uncertainties and is determined by the maximum deviation in measured
density between di�erent in situ measurements under the same pile-up conditions. The flavour dependence
uncertainties are derived from simulation and account for relative flavour fractions and di�ering responses
to quark- and gluon-initiated jets. These uncertainties are described in more detail in Refs. [5, 6] and were
mentioned in Section 5.2.3 in the context of the multijet balance analysis. An additional uncertainty applied
only to b-initiated jets covers the di�erence in response between jets from light- versus heavy-flavour
quarks. The punch-through uncertainty accounts for mis-modelling of the GSC correction to jets which
pass through the calorimeter and into the muon system, taking the di�erence in jet response between data
and MC simulation in bins of muon detector activity as the systematic uncertainty. Both are discussed in
more detail in Ref. [6]. Finally, the high-pT ‘single particle’ uncertainty is derived from studies of the
response to individual hadrons and is used to cover the region beyond 2.4 TeV, where the MJB analysis
no longer has statistical power [27]. When calibrating MC samples simulated using AFII, an additional
non-closure uncertainty is applied to account for the di�erence in jet response between these samples and
those which used full detector simulation.

The total jet energy scale uncertainty is shown in Figure 20(a) as a function of jet pT for fixed ⌘jet = 0 and
in Figure 20(b) as a function of jet ⌘ for fixed pjet

T = 60 GeV. A dijet-like composition of the sample (that
is, predominantly gluons) is assumed in computing the flavour uncertainties. The uncertainties in the ⌘
intercalibration analysis are labelled ‘relative in situ JES’ with the non-closure uncertainty creating the
asymmetric peaks around ⌘ = ±2.5. Uncertainties in all other in situ measurements are combined into the
‘absolute in situ JES’ term, which also includes the single-particle uncertainty.
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Figure 20: Fractional jet energy scale systematic uncertainty components for anti-kt R = 0.4 jets (a) as a function
of jet pT at ⌘ = 0 and (b) as a function of ⌘ at pT = 60 GeV, reconstructed from particle-flow objects. The total
uncertainty, determined as the quadrature sum of all components, is shown as a filled region topped by a solid black
line. Flavour-dependent components shown here assume a dijet flavour composition.
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Largest uncertainty source is  
poor understanding of 

[parton shower simulations of] 
quark v. gluon-induced jet responsessimulated jet response 

(quark-gluon difference)

jet energy calibration 
uncertainties

Pythia Z2*

Herwig++ EE3C

https://arxiv.org/abs/1607.03663
https://arxiv.org/abs/2007.02645
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Resummation @N3LL, but parton showers only LL? Now evolving to NLL
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Karlberg, GPS, Scyboz, Verheyen, 2103.16526 + Hamilton 2111.01161  
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Will e+e– colliders make precision easy?
➤ Up to  reduction in 

uncertainties 

➤ Interpreting 0.3% for  
will require substantial 
improvements in parametric 
inputs 

➤ Much of the statistics involves 
hadronic modes — how well 
will we be able to exploit them? 

➤ Agreement between  and 
LHC will be powerful validation 
of hadron colliders as precision 
machines

∼ × 10

H → bb̄

e+e−
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FCC-ee: The Lepton Collider 305

Table 1.1. Relative statistical uncertainty on �HZ⇥BR(H! XX) and �⌫⌫̄H⇥BR(H! XX),
as expected from the FCC-ee data, obtained from a fast simulation of the CLD detector
and consolidated with extrapolations from full simulations of similar linear-collider detectors
(SiD and CLIC).

p
s (GeV) 240 365

Luminosity (ab�1) 5 1.5
�(�BR)/�BR (%) HZ ⌫⌫ H HZ ⌫⌫ H
H! any ±0.5 ±0.9
H! bb̄ ±0.3 ±3.1 ±0.5 ±0.9
H! cc̄ ±2.2 ±6.5 ±10
H! gg ±1.9 ±3.5 ±4.5
H!W+W� ±1.2 ±2.6 ±3.0
H! ZZ ±4.4 ±12 ±10
H! ⌧⌧ ±0.9 ±1.8 ±8
H! �� ±9.0 ±18 ±22
H! µ

+
µ
� ±19 ±40

H! invisible <0.3 <0.6

Notes. All numbers indicate 68% CL intervals, except for the 95% CL sensitivity in the
last line. The accuracies expected with 5 ab�1 at 240 GeV are given in the middle column,
and those expected with 1.5 ab�1 at

p
s = 365 GeV are displayed in the last column.

pair of Z bosons. Under the same coupling assumption, this number is proportional
to the ratio �HZ ⇥ �(H! ZZ)/�H, hence to g4

HZZ
/�H. The measurement of gHZZ

described above thus allows �H to be extracted. The numbers of events with exclu-
sive decays of the Higgs boson into bb̄, cc̄, gg, ⌧+⌧�, µ+µ�, W+W�, ��, Z�, and
invisible Higgs boson decays (tagged with the presence of just one Z boson and miss-
ing mass in the event) measure �HZ ⇥ �(H! XX)/�H with precisions indicated in
Table 1.1.

With �HZ and �H known, the numbers of events are proportional to the square
of the gHXX coupling involved. A significantly improved measurement of �H and of
gHWW can be achieved from the WW-fusion process at

p
s = 365 GeV. In practice,

the width and the couplings are determined with a global fit in the  framework,
which closely follows the logic of reference [50]. The results of this fit are summarised
in Table 1.2 and are compared to the same fit applied to HL-LHC projections [51]
and to those of other e+e� colliders [52–54] exploring the 240–380 GeV centre-of-
mass energy range.

In addition to the unique electroweak precision measurement programme pre-
sented in Section 1.2, the FCC-ee also provides the best model-independent preci-
sions for all couplings accessible from Higgs boson decays, among the e+e� collider
projects at the EW scale. With larger luminosities delivered to several detectors at
several centre-of-mass energies (240, 350, and 365 GeV), the FCC-ee improves over
the model-dependent HL-LHC precisions by an order of magnitude for all non-rare
decays. With a sub-per-cent precision for all these decays, the FCC-ee is therefore
able to test the quantum nature of the Higgs boson. The FCC-ee also determines
the Higgs boson width with a precision of 1.6%, which in turn allows the HL-LHC
measurements to be interpreted in a model-independent way as well. Other e+e�
colliders at the EW scale are limited by the precision with which the HZ or the
WW fusion cross sections can be measured, i.e. by the luminosity delivered either
at 240–250 GeV, or at 365–380 GeV, or both.
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Conclusions
➤ Across much of Higgs physics, theory / MC uncertainties are among the dominant 

systematic uncertainties — addressing them will be key to benefitting from  
statistics of the next 15 years. 

➤ Perturbative calculations are making amazing strides 
→ technically immensely challenging, and making remarkable progress 
→ there are still conceptual surprises, e.g. impact of fiducial cuts 

➤ Other aspects (parameters, PDFs, parton showers, non-perturbative contributions) 
force us to address conceptually complicated questions,  
→ major progress on understanding structure of non-perturbative contributions 
→ prospects for taking parton showers beyond “traditional” Leading Log accuracy

× 20
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PDF4LHC21 v. PDF4LHC15
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Comparing PDF4LHC21 and PDF4LHC15

Emanuele R. Nocera The PDF4LHC2021 combination 21st January 2022 16 / 20

Comparing PDF4LHC21 and PDF4LHC15

Emanuele R. Nocera The PDF4LHC2021 combination 21st January 2022 17 / 20

partonic luminosities luminosity uncertainties
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perturbative series for fiducial cross sections
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resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��
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To understand qualitative perturbative 
behaviour consider simple (double-log) 
approx for  distributionpt
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Sensitivity to low Higgs pt (and also scale bands): standard cuts

49Figure 3: The N3LL resummed result and its truncation at N3LO for the fiducial cor-

rections to the Higgs cross section, as defined in Eq. (2.22), for asymmetric pt,� cuts,

pt,+ > 0.35mh and pt,� > 0.25mh. The results are shown as a function of ✏, the mini-

mum Higgs pt used in the integration (conceptually analogous to a technical cuto↵ in a

projection-to-Born fixed-order calculation). The bands are the result of varying renormali-

sation and factorisation scales by a factor of two around mh/2. The N3LL distribution and

expansion used to obtain these results were kindly supplied by the authors of the RadISH

framework [44].

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect). The pattern of ✏-dependence in Fig. 3

confirms the expectation from Eq. (2.20) that the fixed-order result is highly sensitive to

unphysically low pt,h values.7

One may ask whether a badly divergent perturbative series for a fiducial cross section

is a problem: after all, there are various ways of evaluating the fiducial cross section via

the matching of resummations and fixed order, including the pt,h dependence acceptance

7One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

truncated result that is much closer to the full N3LL result, and with a reduced scale uncertainty.

– 13 –

➤ fixed-order result very 
sensitive to minimum  
value explored in phase-
space integration 

➤ only converges once you 
explore down to 

 

➤ i.e. extremely difficult to get 
reliable fixed-order result 
and once you have it, it is of 
dubious physical meaning

pt,H

pt,H ∼ 1 MeV
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Replace cut on leading photon → cut on product of photon pt’s
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NB: the cut on the softer photon is still maintained
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Replace cut on leading photon → cut on product of photon pt’s

50

Contents

�fid =

Z
d�dl

dpt,h
f(pt,h)dpt,h (0.1)

= �tot

"
f0 + f1

1X

n=1

(�1)
n+1 (2n)!

2(n!)

✓
2CA↵s

⇡

◆n

+ · · ·

#
(0.2)

d�dl

dpt,h
=

�tot
pt,h

1X

n=1

(�1)
n�1

2 log
2n�1 mh

2pt,h

(n� 1)!

✓
2CA↵s

⇡

◆n

(0.3)

f(pt,h) = f0 + f2

✓
pt,h
mh

◆2

+O

 
p2t,h
m2

h

!
(0.4)

– 1 –

linear →  
quadratic

Contents

�fid =

Z
d�dl

dpt,h
f(pt,h)dpt,h (0.1)

= �tot

"
f0 + f1

1X

n=1

(�1)
n+1 (2n)!

2(n!)

✓
2CA↵s

⇡

◆n

+ · · ·
#

(0.2)

– 1 –

Using product cuts dampens the factorial divergence
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NB: the cut on the softer photon is still maintained
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fixed-order sensitivity to low ptH is gone

➤ fixed-order becomes insensitive to 
 values below a few GeV 

➤ overall size of (non-Born part of) 
fiducial acceptance corrections 
much smaller 

➤ resummation and fixed order agree 
at per-mil level

pt,H

51

Figure 4: Comparison of the pt,h-dependent acceptances for the sum, product and stag-

gered cuts. For the staggered cuts, pt,y+ corresponds to the transverse momentum of the

photon at higher rapidity. As in Fig. 2, the points corresponds to Monte Carlo evaluations

of the acceptances. Lines use series expansions to fourth order and bands (where visible)

show the size of the fourth order term.

Figure 5: The N3LL resummed result and its N3LO truncation, for sum cuts (left) and

product cuts (right), as a function of ✏, the minimum pt,h in Eq. (2.22). Note the di↵erent

scale relative to Fig. 3.

clearly sees the transition to linear pt,h dependence for pt,h & 2� in the case of the sum

and product cuts and for pt,h > � for the staggered cuts.

The perturbative convergence of the acceptance with sum and product cuts is illus-
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