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QCD lecture 1 (p. 2)

What is QCD QCD

QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It’s central to all modern colliders.
(And QCD is what we’re made of)



QCD lecture 1 (p. 3)

What is QCD The ingredients of QCD

◮ Quarks (and anti-quarks): they come in 3 colours

◮ Gluons: a bit like photons in QED
But there are 8 of them, and they’re colour charged

◮ And a coupling, αs, that’s not so small and runs fast
At LHC, in the range 0.08(@ 5 TeV) to O (1)(@ 0.5 GeV)



QCD lecture 1 (p. 4)

What is QCD Aims of this course

I’ll try to give you a feel for:

How QCD works

How theorists handle QCD at high-energy colliders

How experimenters can work with QCD at high-energy

colliders
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What is QCD Lagrangian + colour

Quarks — 3 colours: ψa =





ψ1

ψ2

ψ3





Quark part of Lagrangian:

Lq = ψ̄a(iγ
µ∂µδab − gsγ

µtCabA
C
µ −m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1ab . . . t
8
ab

corresponding to 8 gluons A1
µ . . .A

8
µ.

A representation is: tA = 1
2λ

A,

λ
1 =





0 1 0
1 0 0
0 0 0



 , λ
2 =





0 −i 0
i 0 0
0 0 0



 , λ
3 =





1 0 0
0 −1 0
0 0 0



 , λ
4 =





0 0 1
0 0 0
1 0 0



 ,

λ
5 =





0 0 −i

0 0 0
i 0 0



 , λ
6 =





0 0 0
0 0 1
0 1 0



 , λ
7 =





0 0 0
0 0 −i

0 i 0



 , λ
8 =







1√
3

0 0

0 1√
3

0

0 0 −2√
3






,

Let’s write down QCD in full detail

(There’s a lot to absorb here — but it should become more
palatable as we return to individual elements later)
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What is QCD Lagrangian: gluonic part

Field tensor: FA
µν = ∂µA

A
ν − ∂νA

A
ν − gs fABCA

B
µA

C
ν [tA, tB ] = ifABC t

C

fABC are structure constants of SU(3) (antisymmetric in all indices —
SU(2) equivalent was ǫABC ). Needed for gauge invariance of gluon part of
Lagrangian:

LG = −
1

4
FµνA FAµν
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Basic methods Solving QCD

Two main approaches to solving it

◮ Numerical solution with discretized space time (lattice)

◮ Perturbation theory: assumption that coupling is small

Also: effective theories
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Basic methods

Lattice
Lattice QCD

◮ Put all the quark and gluon fields
of QCD on a 4D-lattice

NB: with imaginary time

◮ Figure out which field
configurations are most likely (by
Monte Carlo sampling).

◮ You’ve solved QCD

image credits: fdecomite [Flickr]

http://www.flickr.com/photos/fdecomite/2615572026/


QCD lecture 1 (p. 9)

Basic methods

Lattice
Lattice hadron masses

Lattice QCD is great at cal-
culation static properties of a
single hadron.

E.g. the hadron mass spec-
trum

Durr et al ’08
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Basic methods

Lattice
Lattice for LHC?

How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing:
1

14 TeV
∼ 10−5

fm

Lattice extent:

◮ non-perturbative dynamics for quark/hadron near rest takes place on

timescale t ∼
1

0.5 GeV
∼ 0.4 fm/c

◮ But quarks at LHC have effective boost factor ∼ 104

◮ So lattice extent should be ∼ 4000 fm

Total: need ∼ 4× 108 lattice units in each direction, or 3× 1034 nodes total.
Plus clever tricks to deal with high particle multiplicity,

imaginary v. real time, etc.
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Basic methods

Perturbation theory
Perturbation theory

Relies on idea of order-by-order expansion small coupling, αs ≪ 1

αs + α
2
s

︸︷︷︸

small

+ α
3
s

︸︷︷︸

smaller

+ . . .
︸︷︷︸

negligible?

Interaction vertices of Feynman rules:
A, µ

ba

−igst
A
baγ

µ

A, µ

B, ν

C, ρ

p

q

r

−gs f
ABC [(p − q)ρgµν

+(q − r)µgνρ

+(r − p)νgρµ]

B, ν

D, σ

C, ρ

A, µ

−ig2
s f

XAC f XBD [gµνgρσ −
gµσgνγ ] + (C , γ) ↔

(D, ρ) + (B , ν) ↔ (C , γ)

These expressions are fairly complex,
so you really don’t want to have to deal
with too many orders of them!
i.e. αs had better be small. . .
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Basic methods

Perturbation theory
What do Feynman rules mean physically?

A, µ

b a

ψ̄b(−igst
A
baγ

µ)ψa

A, µ

b a

( 0 1 0 )

︸ ︷︷ ︸

ψ̄b





0 1 0
1 0 0
0 0 0





︸ ︷︷ ︸

t1
ab





1
0
0





︸ ︷︷ ︸

ψa

A gluon emission repaints the quark colour.
A gluon itself carries colour and anti-colour.
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Basic methods

Perturbation theory
What does “ggg” Feynman rule mean?

A, µ

B, ν

C, ρ

p

q

r

−gs f
ABC [(p − q)ρgµν

+(q − r)µgνρ

+(r − p)νgρµ]

A, µ

B, ν

C, ρ

p

q

r

A gluon emission also repaints the gluon colours.

Because a gluon carries colour + anti-colour, it emits ∼
twice as strongly as a quark (just has colour)



QCD lecture 1 (p. 14)

Basic methods

Perturbation theory
Quick guide to colour algebra

Tr(tAtB) = TRδ
AB , TR = 1

2

A B

∑

A tAabt
A
bc = CF δac , CF =

N2
c − 1

2Nc

=
4

3
a c

∑

C ,D f ACD f BCD = CAδ
AB , CA = Nc = 3

A B

tAabt
A
cd =

1

2
δbcδad −

1

2Nc

δabδcd (Fierz)
1
2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD



QCD lecture 1 (p. 14)

Basic methods

Perturbation theory
Quick guide to colour algebra

Tr(tAtB) = TRδ
AB , TR = 1

2

A B

∑

A tAabt
A
bc = CF δac , CF =

N2
c − 1

2Nc

=
4

3
a c

∑

C ,D f ACD f BCD = CAδ
AB , CA = Nc = 3

A B

tAabt
A
cd =

1

2
δbcδad −

1

2Nc

δabδcd (Fierz)
1
2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD



QCD lecture 1 (p. 14)

Basic methods

Perturbation theory
Quick guide to colour algebra

Tr(tAtB) = TRδ
AB , TR = 1

2

A B

∑

A tAabt
A
bc = CF δac , CF =

N2
c − 1

2Nc

=
4

3
a c

∑

C ,D f ACD f BCD = CAδ
AB , CA = Nc = 3

A B

tAabt
A
cd =

1

2
δbcδad −

1

2Nc

δabδcd (Fierz)
1
2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD



QCD lecture 1 (p. 14)

Basic methods

Perturbation theory
Quick guide to colour algebra

Tr(tAtB) = TRδ
AB , TR = 1

2

A B

∑

A tAabt
A
bc = CF δac , CF =

N2
c − 1

2Nc

=
4

3
a c

∑

C ,D f ACD f BCD = CAδ
AB , CA = Nc = 3

A B

tAabt
A
cd =

1

2
δbcδad −

1

2Nc

δabδcd (Fierz)
1
2 2N

−1

b a

c d

=

Nc ≡ number of colours = 3 for QCD



QCD lecture 1 (p. 15)

Basic methods

Perturbation theory
How big is the coupling?

All couplings run (QED, QCD, EW), i.e. they depend on the momentum
scale (Q2) of your process.

The QCD coupling, αs(Q
2), runs fast:

Q2 ∂αs

∂Q2
= β(αs) , β(αs) = −α2

s (b0 + b1αs + b2α
2
s + . . .) ,

b0 =
11CA − 2nf

12π
, b1 =

17C 2
A − 5CAnf − 3CFnf

24π2
=

153 − 19nf
24π2

Note sign: Asymptotic Freedom, due to gluon to self-interaction
2004 Novel prize: Gross, Politzer & Wilczek

◮ At high scales Q, coupling becomes small
➥quarks and gluons are almost free, interactions are weak

◮ At low scales, coupling becomes strong
➥quarks and gluons interact strongly — confined into hadrons

Perturbation theory fails.
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Basic methods

Perturbation theory
Running coupling (cont.)

Solve Q2 ∂αs

∂Q2
= −b0α

2
s ⇒ αs(Q

2) =
αs(Q

2
0 )

1 + b0αs(Q2
0 ) ln

Q2

Q2
0

=
1

b0 ln
Q2

Λ2

Λ ≃ 0.2 GeV (aka ΛQCD) is the
fundamental scale of QCD, at which
coupling blows up.

◮ Λ sets the scale for hadron masses
(NB: Λ not unambiguously
defined wrt higher orders)

◮ Perturbative calculations valid for
scales Q ≫ Λ.
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Basic methods

Perturbation theory
QCD perturbation theory (PT) & LHC?

◮ The “new physics” at colliders is searched for
at scales Q ∼ pt ∼ 50 GeV − 5 TeV

The coupling certainly is small there!

◮ But we’re colliding protons, mp ≃ 0.94 GeV
The coupling is large!

When we look at QCD events (this one is inter-
preted as e+e− → Z → qq̄), we see:

◮ hadrons (PT doesn’t hold for them)

◮ lots of them — so we can’t say 1 quark/gluon
∼ 1 hadron, and we limit ourselves to 1 or 2
orders of PT.
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Basic methods

Perturbation theory

Neither lattice QCD nor perturbative QCD can offer

a full solution to using QCD at colliders

What the community has settled on is perturbative QCD

inputs + non-perturbative modelling/factorisation

These lectures:

◮ Examine how perturbation theory allows us to understand why QCD
events look the way they do.

◮ Look at the methods available to carry out QCD predictions at hadron
colliders

◮ Discuss how knowledge of QCD can help us search for new physics
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e+e− → qq̄

Soft-collinear emission
Soft gluon amplitude

Start with γ∗ → qq̄:

Mqq̄ = −ū(p1)ieqγµv(p2)
−ie γ µ

p1

p2

Emit a gluon:

Mqq̄g = ū(p1)igs ǫ/t
A i

p/1 + /k
ieqγµv(p2)

− ū(p1)ieqγµ
i

p/2 + /k
igs ǫ/t

Av(p2)

Make gluon soft ≡ k ≪ p1,2; ignore terms suppressed by powers of k :

Mqq̄g ≃ ū(p1)ieqγµt
Av(p2) gs

(
p1.ǫ

p1.k
−

p2.ǫ

p2.k

)

p/v(p) = 0,
p//k + /kp/ = 2p.k
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ū(p1)igs ǫ/t
A i

p/1 + /k
ieqγµv(p2) = −igs ū(p1)ǫ/

p/1 + /k

(p1 + k)2
eqγµt

Av(p2)

Use /A/B = 2A.B − /B /A:

= −igs ū(p1)[2ǫ.(p1 + k)− (p/1 + /k)ǫ/]
1

(p1 + k)2
eqγµt

Av(p2)

Use ū(p1)p/1 = 0 and k ≪ p1 (p1, k massless)

≃ −igs ū(p1)[2ǫ.p1]
1

(p1 + k)2
eqγµt

Av(p2)

= −igs
p1.ǫ

p1.k
ū(p1)eqγµt

Av(p2)
︸ ︷︷ ︸

pure QED spinor structure
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e+e− → qq̄

Soft-collinear emission
Squared amplitude

|M2
qq̄g | ≃

∑

A,pol

∣
∣
∣
∣
ū(p1)ieqγµt

Av(p2) gs

(
p1.ǫ

p1.k
−

p2.ǫ

p2.k

)∣
∣
∣
∣

2

= −|M2
qq̄|CF g

2
s

(
p1
p1.k

−
p2
p2.k

)2

= |M2
qq̄ |CFg

2
s

2p1.p2
(p1.k)(p2.k)

Include phase space:

dΦqq̄g |M
2
qq̄g | ≃ (dΦqq̄|M

2
qq̄|)

d3~k

2E (2π)3
CF g

2
s

2p1.p2
(p1.k)(p2.k)

Note property of factorisation into hard qq̄ piece and soft-gluon emission
piece, dS.

dS = EdE dcos θ
dφ

2π
·
2αsCF

π

2p1.p2
(2p1.k)(2p2.k)

θ ≡ θp1k
φ = azimuth
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θ ≡ θp1k
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QCD lecture 1 (p. 21)

e+e− → qq̄

Soft-collinear emission
Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E , θ,

2p1.p2
(2p1.k)(2p2.k)

=
1

E 2(1− cos2 θ)

So final expression for soft gluon emission is

dS =
2αsCF

π

dE

E

dθ

sin θ

dφ

2π

NB:

◮ It diverges for E → 0 — infrared (or soft) divergence

◮ It diverges for θ → 0 and θ → π — collinear divergence

Soft, collinear divergences derived here in specific context of e+e− → qq̄
But they are a very general property of QCD
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QCD lecture 1 (p. 22)

e+e− → qq̄

Total X-sct
Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

p1

p2

−ie γ µ −ie γ µ ie γµk ,ε

2

+ x

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)

σtot = σqq̄

(

1 +
2αsCF

π

∫
dE

E

∫
dθ

sin θ
R(E/Q, θ)

−
2αsCF

π

∫
dE

E

∫
dθ

sin θ
V (E/Q, θ)

)

◮ R(E/Q, θ) parametrises real matrix element for hard emissions, E ∼ Q.

◮ V (E/Q, θ) parametrises virtual corrections for all momenta.
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QCD lecture 1 (p. 23)

e+e− → qq̄

Total X-sct
Total X-section (cont.)

σtot = σqq̄

(

1 +
2αsCF

π

∫
dE

E

∫
dθ

sin θ
(R(E/Q, θ)− V (E/Q, θ))

)

◮ From calculation: limE→0 R(E/Q, θ) = 1.

◮ For every divergence R(E/Q, θ) and V (E/Q, θ) should cancel:

lim
E→0

(R − V ) = 0 , lim
θ→0,π

(R − V ) = 0

Result:

◮ corrections to σtot come from hard (E ∼ Q), large-angle gluons

◮ Soft gluons don’t matter:
◮ Physics reason: soft gluons emitted on long timescale ∼ 1/(Eθ2) relative to

collision (1/Q) — cannot influence cross section.
◮ Transition to hadrons also occurs on long time scale (∼ 1/Λ) — and can also

be ignored.

◮ Correct renorm. scale for αs: µ ∼ Q — perturbation theory valid.
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e+e− → qq̄

Total X-sct
total X-section (cont.)

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour’ of perturbation series:

σtot = σqq̄

(

1 + 1.045
αs(Q)

π
+ 0.94

(
αs(Q)

π

)2

− 15

(
αs(Q)

π

)3

+ · · ·

)

(Coefficients given for Q = MZ )
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