QCD (for Colliders) Lecture 3

Gavin Salam, CERN

Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Qhy Nhon, Vietnam

the real world?

GLUON EMISSION FROM A QUARK

Consider an emission with
$>$ energy $E<\sqrt{ }$ s ("soft")
$>$ angle $\boldsymbol{\theta} \ll 1$
("collinear" wrt quark)
Examine correction to some hard process with cross section σ_{0}

$$
d \sigma \simeq \sigma_{0} \times \frac{2 \alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}
$$

This has a divergence when $\mathrm{E} \rightarrow 0$ or $\theta \rightarrow 0$ [in some sense because of quark propagator going on-shell]

Suppose we're not inclusive - e.g. calculate probability of emitting a gluon

Probability P_{g} of emitting gluon from a quark with energy Q :

$$
P_{g} \simeq \frac{2 \alpha_{s} C_{F}}{\pi} \int^{Q} \frac{d E}{E} \int^{1} \frac{d \theta}{\theta} \Theta\left(E \theta>Q_{0}\right)
$$

We cut off the integral for transverse momenta ($p_{T} \simeq E \theta$) below some non-perturbative threshold Q_{0}.

On the grounds that perturbation theory doesn't apply for $p_{T} \sim \Lambda_{Q C D}$ i.e. language of quarks and gluons becomes meaningless

With this cutoff, the result is

$$
P_{g} \simeq \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \frac{Q}{Q_{0}}+\mathcal{O}\left(\alpha_{s} \ln Q\right)
$$

this is called a "double logarithm"
[it crops up all over the place in QCD]

Suppose we're not inclusive - e.g. calculate probability of emitting a gluon

Probability P_{g} of emitting gluon from a quark with energy Q :

$$
P_{g} \simeq \frac{2 \alpha_{s} C_{F}}{\pi} \int_{Q_{0}}^{Q} \frac{d E}{E} \int_{\frac{Q_{0}}{E}}^{1} \frac{d \theta}{\theta}
$$

We cut off the integral for transverse momenta $\left(p_{T} \simeq E \theta\right)$ below some non-perturbative threshold Q_{0}.

On the grounds that perturbation theory doesn't apply for $p_{T} \sim \Lambda_{Q C D}$ i.e. language of quarks and gluons becomes meaningless

With this cutoff, the result is

$$
P_{g} \simeq \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \frac{Q}{Q_{0}}+\mathcal{O}\left(\alpha_{s} \ln Q\right)
$$

this is called a "double logarithm"
 [it crops up all over the place in QCD]

Suppose we're not inclusive - e.g. calculate probability of emitting a gluon

Suppose we take $\mathrm{Q}_{0} \sim \Lambda_{\mathrm{QCD}}$, what do we get?

$$
\text { Let's use } \alpha_{s}=\alpha_{s}(Q)=1 /(2 b \ln Q / \Lambda)
$$

[Actually over most of integration range this is optimistically small]

$$
P_{g} \simeq \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \frac{Q}{Q_{0}} \rightarrow \frac{C_{F}}{2 b \pi} \ln \frac{Q}{\Lambda_{Q C D}} \rightarrow \frac{C_{F}}{4 b^{2} \pi \alpha_{s}}
$$

Put in some numbers:
$\mathrm{Q}=100 \mathrm{GeV}, \Lambda_{\mathrm{QCD}} \simeq 0.2 \mathrm{GeV}, \mathrm{C}_{\mathrm{F}}=4 / 3, \mathrm{~b}\left(\equiv \mathrm{~b}_{0}\right) \simeq 0.6$

$$
P_{g} \simeq 2.2
$$

This is supposed to be an $O\left(\alpha_{s}\right)$ correction.
But the final result $\sim 1 / \alpha_{s}$
QCD hates to not emit gluons!

correct way of doing it: with running coupling inside the integral

Adding running coupling is straightforward: just use $\alpha_{s}\left(p_{t}\right)$ with $p_{\mathrm{t}} \simeq \mathrm{E} \theta$, in the integrand:

$$
P_{g}=\frac{2 C_{F}}{\pi} \int_{Q_{0}}^{Q} \frac{d p_{t}}{p_{t}} \alpha_{s}\left(p_{t}\right) \int_{p_{t} / Q}^{1} \frac{d z}{z}=\frac{C_{F}}{\pi b_{0}}\left(\ln \frac{Q}{\Lambda} \ln \ln \frac{Q}{\Lambda}+\cdots\right)
$$

Structure of answer changes a bit: it's larger than $1 / a_{s}(Q)$, by a factor $\ln \ln \mathrm{Q} / \Lambda$.

But to keep expressions simple in these lectures we'll often restrict ourselves to a fixed-coupling approximation.

Picturing a QCD event

Start off with a qqbar system

Picturing a QCD event

a gluon gets emitted at small angles

Picturing a QCD event

it radiates a further gluon

Picturing a QCD event

and so forth

Picturing a QCD event

meanwhile the same happened on the other side

Picturing a QCD event

then a non-perturbative transition occurs

Picturing a QCD event

giving a pattern of hadrons that "remembers" the gluon branching (hadrons mostly produced at small angles wrt qqbar directions - two "jets")

resummation and parton showers

the previous slides applied in practice

Resummation

Analytical, or semi-numerical, calculation of dominant logarithmically enhanced terms, to all orders in the strong coupling. Applies when you place a strong constraint on abservable.

Calculations are often specific to a single observable.

Parton shower Monte Carlo

Simulation of emission of arbitrary number of particles, usually ordered in angle or pt_{t}.

Underlying algorithm should reproduce many of the singular limits of multi-particle QCD amplitudes, including virtual corrections.

Can be used to calculate arbitrary observables.

Resummation: one way of seeing the underlying key idea

Calculate cross section for some observable $v\left(p_{1}, \ldots p_{m}\right)$, a function of the event momenta, to be less than some cut V .

Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons.

$$
\begin{aligned}
& \sigma(v(\text { emissions })<V)= \\
& \qquad \begin{aligned}
& \sigma_{0} \lim _{\epsilon \rightarrow 0} \sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=1}^{m}\left(\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=m+1}^{m+n}\left(-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times \\
& \times \Theta\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right)
\end{aligned}
\end{aligned}
$$

Resummation: one way of seeing the underlying key idea

Calculate cross section for some observable $v\left(p_{1}, \ldots p_{m}\right)$, a function of the event momenta, to be less than some cut V .

Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons.

Any number of real gluons (independent of each other if

$$
\sigma(v(\text { emissions })<V)=\quad \text { angles are all very different })
$$

$$
\begin{aligned}
& \sigma_{0} \lim _{\epsilon \rightarrow 0} \sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=1}^{m}\left(\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=m+1}^{m+n}\left(-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times \\
& \times \Theta\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right)
\end{aligned}
$$

Resummation: one way of seeing the underlying key idea

Calculate cross section for some observable $v\left(p_{1}, \ldots p_{m}\right)$, a function of the event momenta, to be less than some cut V .

Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons.

Any number of real gluons
$\sigma(v($ emissions $)<V)=\quad \begin{aligned} & \text { (independent of each other if } \\ & \text { angles are all very different) }\end{aligned}$
$\sigma_{0} \lim _{\epsilon \rightarrow 0} \sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=1}^{m}\left(\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times$
$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=m+1}^{m+n}\left(-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right)$
$\times \Theta\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right)$
Any number of virtual gluons

Resummation: one way of seeing the underlying key idea

Calculate cross section for some observable $v\left(p_{1}, \ldots p_{m}\right)$, a function of the event momenta, to be less than some cut V .

Illustrate structure in soft limit, fixed coupling, ignore secondary emissions from soft gluons.

Any number of real gluons (independent of each other if
$\sigma(v($ emissions $)<V)=\quad$ angles are all very different $)$
$\sigma_{0} \lim _{\epsilon \rightarrow 0} \sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=1}^{m}\left(\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times$

$$
\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=m+1}^{m+n}\left(-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times
$$

Any number of virtual gluons

$$
\times \Theta\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right)
$$

Resummation example result

- It's common to ask questions like "what is the probability that a Z boson is produced with transverse momentum $<p_{T}$ "
- Answer is given (\sim) by a "Sudakov form factor", i.e. the probability of not emitting any gluons with transverse momentum $>\mathrm{p}_{\mathrm{T}}$.

$$
P\left(Z \text { trans.mom. }<p_{T}\right) \simeq \exp \left[-\frac{2 \alpha_{s} C_{F}}{\pi} \ln ^{2} \frac{M_{Z}}{p_{T}}\right]
$$

> when p_{T} is small, the logarithm is large and compensates for the smallness of $a_{s}-$ so you need to resum log-enhanced terms to all orders in a_{s}.

What do we know about resummation?

- You'll sometimes see mention of "NNLL" or similar
> This means next-next-to-leading logarithmic
> Most common definition of Leading logarithmic (LL): you sum all terms with $\mathrm{p}=\mathrm{n}+1$ (for $\mathrm{n}=1 \ldots \infty$) in

$$
\exp \left[-\sum_{n, p} \alpha_{s}^{n} \ln ^{p} \frac{M_{H}}{p_{T}}\right]
$$

> NLL: include all terms with $\mathrm{p}=\mathrm{n}$ (for $\mathrm{n}=1 \ldots \infty$)
> NNLL: include all terms with $\mathrm{p}=\mathrm{n}-1$ (for $\mathrm{n}=1 \ldots \infty$)
In real life, the function that appears in the resummation is sometimes instead a Fourier or Mellin transform of an exponential

Resummation of Higgs p_{T} spectrum (same formula, with $C_{F} \rightarrow C_{A}$)

Resummation of $2 p_{T}$ spectrum v. data

| NNLO | RadISH+NNLOJET |
| :--- | :--- | :--- |
| N^{3} LL+NNLO | $8 \mathrm{TeV}, p p \rightarrow Z\left(\rightarrow \ell^{+} \ell^{-}\right)+X$ |
| I | $0.0<\mid Y_{\ell \ell l}<2.4,66<M_{\ell \ell}<116 \mathrm{GeV}$ |
| NNLL+NLO | NNPDF3.0 (NNLO) |

(Threshold resummation)

> If you produce a system near threshold, i.e. mass M close to the pp centre-of-mass energy $\sqrt{ }$ s, there are so-called "threshold logarithms", which modify the total cross section.
> Steeply falling PDFs may also result in threshold logarithms. Driven by a quantity N,

$$
N=\frac{d \ln \sigma}{d \ln s}
$$

> Resummation involves terms $\left(\alpha_{s} \ln ^{2} N\right)^{n}$, often enhance σ
$>$ Valid if $N \gg 1$.
> In practice, for some applications (e.g. top, Higgs production), $M \ll \sqrt{ }$ and $N \sim 2$. Opinions differ about validity of threshold resummation in this regime
resummation v. parton showers (the basic idea, ignoring secondary emsn. from gluons)
> a resummation predicts one observable to high accuracy
> a parton shower takes the same idea of a Sudakov form factor and uses it to generate emissions
> from probability of not emitting gluons above a certain p_{T}, you can deduce p_{T} distribution of first emission

1. use a random number generator (r) to sample that p_{T} distribution
deduce p_{T} by solving $r=\exp \left[-\frac{2 \alpha_{s} C_{A}}{\pi} \ln ^{2} \frac{p_{T, \text { max }}^{2}}{p_{T}^{2}}\right]$
2. repeat for next emission, etc., until p_{T} falls below some nonperturbative cutoff
very similar to radioactive decay, with time $\sim 1 / \rho_{T}$ and a decay rate $\sim \rho_{T} \log 1 / \rho_{\top}$

A toy shower

(fixed coupling, primary branching only, only p_{T}, no energy conservation, no PDFs, etc.)

```
#!/usr/bin/env python
# an oversimplified (QED-like) parton shower
# for Zuoz lectures (2016) by Gavin P. Salam
from random import random
from math import pi, exp, log, sqrt
ptHigh = 100.0
ptCut = 1.0
alphas = 0.12
CA=3
def main():
    for iev in range(0,10):
        print "\nEvent", iev
        event()
def event():
    # start with maximum possible value of Sudakov
    sudakov = 1
    while (True):
        # scale it by a random number
        sudakov *= random()
        # deduce the corresponding pt
        pt = ptFromSudakov(sudakov)
        # if pt falls below the cutoff, event is finished
        if (pt < ptCut): break
        print " primary emission with pt = ", pt
def ptFromSudakov(sudakovValue):
    """Returns the pt value that solves the relation
        Sudakov = sudakovValue (for 0 < sudakovValue < 1)
    """
    norm = (2*CA/pi)
    # r = Sudakov = exp(-alphas * norm * L^2)
    # --> log(r) = -alphas * norm * L^2
    # --> L^2 = log(r)/(-alphas*norm)
    L2 = log(sudakovValue)/(-alphas * norm)
    pt = ptHigh * exp(-sqrt(L2))
    return pt
main()
```


A toy shower

(fixed coupling, primary branching only, only PT, no energy conservation, no PDFs, etc.)

```
#!/usr/bin/env python
# an oversimplified (QED-like) parton shower
# for Zuoz lectures (2016) by Gavin P. Salam
from random import random
from math import pi, exp, log, sqrt
ptHigh = 100.0
ptCut = 1.0
alphas = 0.12
CA=3
def main():
    for iev in range(0,10):
        print "'\nEvent", iev
        event()
def event():
    # start with maximum possible value of Sudakov
    sudakov = 1
    while (True):
        # scale it by a random number
        sudakov *= random()
        # deduce the corresponding pt
        pt = ptFromSudakov(sudakov)
        # if pt falls below the cutoff, event is finished
        if (pt < ptCut): break
        print " primary emission with pt = ", pt
def ptFromSudakov(sudakovValue):
    """"Returns the pt value that solves the relation
        Sudakov = sudakovValue (for 0 < sudakovValue < 1)
    norm = (2*CA/pi)
    # r = Sudakov = exp(-alphas * norm * L^2)
    # --> log(r) = -alphas * norm * L^2
    # --> L^2 = log(r)/(-alphas*norm)
    L2 = log(sudakovValue)/(-alphas * norm)
    pt = ptHigh * exp(-sqrt(L2))
    return pt
main()
```

```
% python ./toy-shower.py
Event 0
    primary emission with pt = 58.4041962726
    primary emission with pt = 3.61999582015
    primary emission with pt = 2.31198814996
Event 1
    primary emission with pt = 32.1881228375
    primary emission with pt = 10.1818306204
    primary emission with pt = 10.1383134201
    primary emission with pt = 7.24482350383
    primary emission with pt = 2.35709074796
    primary emission with pt = 1.0829758034
Event 2
    primary emission with pt = 64.934992001
    primary emission with pt = 16.4122436094
    primary emission with pt = 2.53473253194
Event 3
    primary emission with pt = 37.6281171491
    primary emission with pt = 22.7262873764
    primary emission with pt = 12.0255817868
    primary emission with pt = 4.73678636215
    primary emission with pt = 3.92257832288
Event 4
    primary emission with pt = 21.5359449851
    primary emission with pt = 4.01438733798
    primary emission with pt = 3.33902663941
    primary emission with pt = 2.02771620824
    primary emission with pt = 1.05944759028
```


A toy shower

(fixed coupling, primary branching only, only p_{T}, no energy conservation, no PDFs, etc.)

```
#!/usr/bin/env python
# an oversimplified (QED-like) parton shower
# for Zuoz lectures (2016) by Gavin P. Salam
from random import random
from math import pi, exp, log, sqrt
ptHigh = 100.0
ptCut = 1.0
alphas = 0.12
CA=3
def main():
    for iev in range(0,10):
        print "\\nEvent", iev
        event()
def event():
    # start with maximum possible value of Sudakov
    sudakov = 1
    while (True):
        # scale it by a random number
        sudakov *= random()
        # deduce the corresponding pt
        pt = ptFromSudakov(sudakov)
        # if pt falls below the cutoff, event is finished
        if (pt < ptCut): break
        print " primary emission with pt = ", pt
def ptFromSudakov(sudakovValue):
        """'Returns the pt value that solves the relation
        Sudakov = sudakovValue (for 0 < sudakovValue < 1)
    norm = (2*CA/pi)
    # r = Sudakov = exp(-alphas * norm * L^2)
    # --> log(r) = -alphas * norm * L^2
    # --> L^2 = log(r)/(-alphas*norm)
    L2 = log(sudakovValue)/(-alphas * norm)
    pt = ptHigh * exp(-sqrt(L2))
    return pt
main()
% python ./toy-shower.py
Event 0
    primary emission with pt = 58.4041962726
    primary emission with pt = 3.61999582015
    primary emission with pt = 2.31198814996
Event 1
    primary emission with pt = 32.1881228375
    primary emission with pt = 10.1818306204
    primary emission with pt = 10.1383134201
    primary emission with pt = 7.24482350383
    primary emission with pt = 2.35709074796
    primary emission with pt = 1.0829758034
Event 2
    primary emission with pt = 64.934992001
    primary emission with pt = 16.4122436094
    primary emission with pt = 2.53473253194
```

If you want to play: replace $\mathrm{C}_{\mathrm{A}}=3$ (emission from gluons) with $C_{F}=4 / 3$ (emission from quarks) and see how pattern of emissions changes (multiplicity, pT $_{T}$ of hardest emission, etc.)

Secondary, tertiary gluons: many showers use colour dipoles (Pythia, Sherpa \& option in Herwig)

Event record from a real-world shower (Herwig6 — old shower with compact record)

combining
 showers \& fixed order

essential for accurate cross sections

 \mathcal{E} multijet states
E.g. jet multiplicity in events with a W v. Pythia

CMS

shower MCs on their own cannot reproduce pattern of hard multijet states
(there are topologies that are almost inaccessible via showering)

MLM matching

Z+parton

MLM matching

shower Z+parton

MLM matching

MLM matching

shower Z+parton

shower Z+2partons

MLM matching

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

MLM matching

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

MLM matching

MLM matching

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

MLM matching

> Hard jets above scale Qmerge have distributions given by tree-level ME

- Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales

An alternative approach is called CKKW (similar in spirit, Sudakov put in manually) 3_{7}

Combining NLO accuracy with parton showers (1)

MC@NLO ideas

- Expand your Monte Carlo branching to first order in α_{s} Rather non-trivial - requires deep understanding of MC
- Calculate differences wrt true $\mathcal{O}\left(\alpha_{s}\right)$ both in real and virtual pieces
- If your Monte Carlo gives correct soft and/or collinear limits, those differences are finite
- Generate extra partonic configurations with phase-space distributions proportional to those differences and shower them

$$
\mathrm{MC@NLO}=\mathrm{MC} \times\left(1+\alpha_{\mathrm{s}}\left(\sigma_{1 V}-\sigma_{1 V}^{M C}\right)+\alpha_{\mathrm{s}} \int d E\left(\sigma_{1 R}(E)-\sigma_{1 R}^{M C}(E)\right)\right)
$$

All weights finite, but can be ± 1

> almost any process can be generated automatically in MadGraph5_aMCatNLO (+ Pythia); also in Sherpa \& Herwig

Combining NLO accuracy with parton showers (2)

POWHEG ideas

Aims to work around MC@NLO limitations

- the (small fraction of) negative weights
- the tight interconnection with a specific MC

Principle

- Write a simplified Monte Carlo that generates just one emission (the hardest one) which alone gives the correct NLO result.

> Essentially uses special Sudakov $\Delta\left(k_{t}\right)=\exp \left(-\int\right.$ exact real-radition probability above $\left.k_{t}\right)$

- Lets your default parton-shower do branchings below that k_{t}.

most processes available in the POWHEGBox (+Pythia or Herwig; or natively in Herwig)

Recent developments and research directions

> (Much) more efficient ways of combining tree-level and showers: Vincia
> Getting shower samples that are simultaneously NLO accurate at different multiplicities (FxFx, Sherpa NLO matching)

- Showers that are NNLO accurate: MiNLO', Geneva, UNNLOPS
> Understanding the underlying resummation accuracy of showers (going beyond LL, leading colour) - and its interplay with merging / matching

> Modern tools give good predictions for multijet rates with vector bosons
$>$ (up to ~ 4 jets, sometimes beyond)

not in handout

arXiv:1610.09978
> Modern tools give good predictions for multijet rates with top quarks

hadronisation \& MPI

essential models for realistic events i.e. events with hadrons

two main models for the parton-hadron transition ("hadronisation")

String Fragmentation
(Pythia and friends)

Cluster Fragmentation (Herwig) (\& Sherpa)
Pictures from ESW book
two main models for the parton-hadron transition ("hadronisation")

String Fragmentation
(Pythia and friends)

Cluster Fragmentation (Herwig) (\& Sherpa)
Pictures from ESW book
multi-parton interactions (MPI, a.k.a. underlying event)

Underlying event properties v. MCs

Why do we see jets?

Gluon emission

$$
\int \alpha_{s} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

Non-perturbative physics

$$
\alpha_{s} \sim 1
$$

Why do we see jets?

While you can see jets with your eyes, to do quantitative physics, you need an algorithmic procedure that defines what exactly a jet is

make a choice, specify a Jet Definition

 calorimeter towers,

- Which particles do you put together into a same jet?
- How do you recombine their momenta (4-momentum sum is the obvious choice, right?)
"Jet [definitions] are legal contracts between theorists and experimentalists"

They're also a way of organising the information in an event I000's of particles per events, up to $40.000,000$ events per second
what should a jet definition achieve?

Jet \mid Def ${ }^{n}$

Jet \mid Def ${ }^{n}$

parton shower
Jet \mid Def n

Jet \mid Def ${ }^{n}$

projection to jets should be resilient to QCD effects

Reconstructing jets is an ambiguous task

Reconstructing jets is an ambiguous task

2 clear jets

Reconstructing jets is an ambiguous task

2 clear jets

3 jets?

Reconstructing jets is an ambiguous task

2 clear jets

3 jets?
or 4 jets?

Jet definition ingredients

Jet algorithm

A set of rules that you apply to combine particles into jets
Jet algorithm parameters
Thresholds that help specify when two particles belong to the same jet or not.

Most hadron collider jet algorithms have two threshold parameters:
> Jet angular radius parameter R : particles closer in angle than R get recombined
(NB: usually implemented as a condition on the distance parameter on the standard hadron collider rapidity-azimuth $[y, \varphi]$ cylinder)
> Transverse momentum threshold: jets should have $\mathrm{p}_{\mathrm{T}}>\mathrm{p}_{\mathrm{T}, \text { min }}$
the main jet algorithm at the LHC

$$
\begin{gathered}
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \\
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{gathered}
$$

A Sequential recombination algorithm

Involves calculating "clustering distance" between pairs of particles

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find smallest of $d_{i j}, d_{i B}$
2. If $i j$, recombine them
3. If $i B$, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left

Only use jets with $p_{t}>p_{t, \text { min }}$

Jet clustering: anti- k_{t}

anti- \boldsymbol{k}_{t} algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2}} \\
& \text { [here } R=2.0 \\
& p_{\text {T,min }}=20 \mathrm{GeV} \\
& \text { at LHC: } R=0.4-1.0] \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- \boldsymbol{k}_{t} algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \text { at } \quad p_{T, \min }=20 \mathrm{GeV}} \begin{array}{l}
R=0.4-1.0] \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2}} \quad \begin{array}{r}
\text { [here } R=2.0 \\
p_{T} \text {,min }=20 \mathrm{GeV}
\end{array} \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- \boldsymbol{k}_{t} algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 . \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

Jet clustering: anti- k_{t}

anti- \boldsymbol{k}_{t} algorithm

How do different sequential recombination jet algorithms build up the jet?

$$
\begin{gathered}
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 . \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{gathered}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2}} \quad \begin{array}{l}
\text { Lhere } R=2.0 \\
p_{T \text { Tmin }}=20 \mathrm{GeV} \\
\text { at LH: } R=0.4-1 .
\end{array} \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 . \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{aligned}
$$

Jet clustering: anti- k_{t}

Jet clustering: anti- k_{t}

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 .
\end{array} \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 . \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, m i n}=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 . \\
\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{array}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- \boldsymbol{k}_{t} algorithm

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2}} \quad \begin{array}{r}
\text { [here } R=2.0 \\
p_{T, \text { min }}=20 \mathrm{GeV}
\end{array} \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- $\boldsymbol{k}_{\boldsymbol{t}}$ algorithm

How do different sequential recombination jet algorithms build up the jet?

Anti-kt gradually makes its way through the secondary blob: only hierarchy in clustering is distance from hard core.

$$
\begin{aligned}
& d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}} \\
& d_{i B}=\frac{1}{p_{t i}^{2} \quad \quad \quad \quad p_{T, \min }=20 \mathrm{GeV}} \quad \begin{array}{l}
\text { at } L H C: R=0.4-1 .
\end{array} \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2} \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
\end{aligned}
$$

Jet clustering: anti- k_{t}

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{l}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

$$
R=1
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{c}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

anti- k_{t} in action [full simulated event]

$$
\begin{aligned}
& \begin{array}{l}
\text { Clustering grows } \\
\text { around hard cores }
\end{array} \quad d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=\frac{1}{p_{t i}^{2}}
\end{aligned}
$$

Anti- k_{t} gives circular jets ("cone-like") in a way that's infrared safe

conclusions

ATLAS H \rightarrow WW* ANALYSIS [1604.02997]

3 Signal and background models

The ggF and VBF production modes for $H \rightarrow W W^{*}$ are modelled at next-to-leading order (NLO] in the strong coupling α_{S} with the Powheg MC generator [22-25], nterfaced with Pythia8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the Pytнia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV , which is close to the measured value. The Powheg ggF model takes into account finite quark masses and a running-width Breit-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson p_{T} distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2.1 program [30]. Events with ≥ 2 jets are further reweighted to reproduce the p_{T}^{H} spectrum predicted by the NLO Powheg simulation of Higgs boson production in association with two jets ($H+2$ jets) [31]. Interference with continuum $W W$ production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets hre reconstructed from topological clusters of calorimeter cells [50-52] using the anti- k_{t} algorithm with a radius parameter of $R=0.4$ [53]. Jet energies are corrected for the effects of calorimeter non-

WHAT DO ATLAS \& CMS USE MOST FREQUENTLY?

WHAT DO ATLAS \& CMS USE MOST FREQUENTLY?

in the last 2 lectures we've seen a good number of the tools used at LHC

CONCLUSIONS

- A huge number of ingredients goes into hadron-collider predictions and studies (α_{s}, PDFs, matrix elements, resummation, parton showers, non-perturbative models, jet algorithms, etc.)
> a key idea is the separation of (time) scales, "factorisation"
- short timescales: the hard process
> long timescales: hadronic physics
> in between: parton showers, resummation, DGLAP
> as long as you ask the right questions (e.g. look at jets, not individual hadrons), you can exploit this separation for quantitative, accurate, collider physics
> maximising accuracy and information extracted is today's research frontier

Extra resources

Introductory level

QCD lecture notes from CERN schools, e.g.
> Peter Skands, arXiv:1207.2389
> GPS, arXiv:1011.5131
More advanced
Slides from QCD and Monte Carlo specific schools
> CTEQ schools: https://www.physics.smu.edu/scalise/cteq/\#Summer
> MCNet schools: http://www.montecarlonet.org/index.php?p=MCSchool/main\&sub=MCSchools

Books

> QCD and collider physics, Ellis, Stirling \& Webber

- The Black Book of Quantum Chromodynamics, Campbell, Huston \& Krauss

EXTRA SLIDES

GLUON V. HADRON MULTIPLICITY

It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory:

$$
\begin{aligned}
\left\langle N_{g}\right\rangle & \sim \sum_{n} \frac{1}{(n!)^{2}}\left(\frac{C_{A}}{\pi b} \ln \frac{Q}{\Lambda}\right)^{n} \\
& \sim \exp \sqrt{\frac{4 C_{A}}{\pi b} \ln \frac{Q}{\Lambda}}
\end{aligned}
$$

Compare to data for hadron multiplicity $(Q \equiv \sqrt{s})$

Including some other higher-order terms and fitting overall normalisation

Agreement is amazing!

charged hadron multiplicity in $e^{+} e^{-}$events adapted from ESW

Resummation of p_{T} steps along the way

$$
\begin{aligned}
& v\left(p_{1}, \ldots, p_{m}\right)=\left|\sum_{i=1}^{m} \vec{p}_{T, i}\right| \simeq \max \left(p_{T 1}, \ldots, p_{T m}\right) \\
& \Theta\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right)=\prod_{i=1}^{m} \Theta\left(V-p_{T i}\right) \\
& \sum_{m=0}^{\infty} \frac{1}{m!} \prod_{i=1}^{m}\left(\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \times\left(V-v\left(p_{1}, \ldots, p_{m}\right)\right) \\
& =\exp \left[\frac{2 \alpha_{s} C_{F}}{\pi} \int_{\epsilon} \frac{d E}{E} \int_{\epsilon} \frac{d \theta}{\theta} \Theta(V-E \theta)\right] \\
& \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=m+1}^{m+n}\left(-\frac{2 \alpha_{s} C_{F}}{\pi} \int_{\epsilon} \frac{d E_{i}}{E_{i}} \int_{\epsilon} \frac{d \theta_{i}}{\theta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \\
& =\exp \left[-\frac{2 \alpha_{s} C_{F}}{\pi} \int_{\epsilon} \frac{d E}{E} \int_{\epsilon} \frac{d \theta}{\theta}\right]
\end{aligned}
$$

