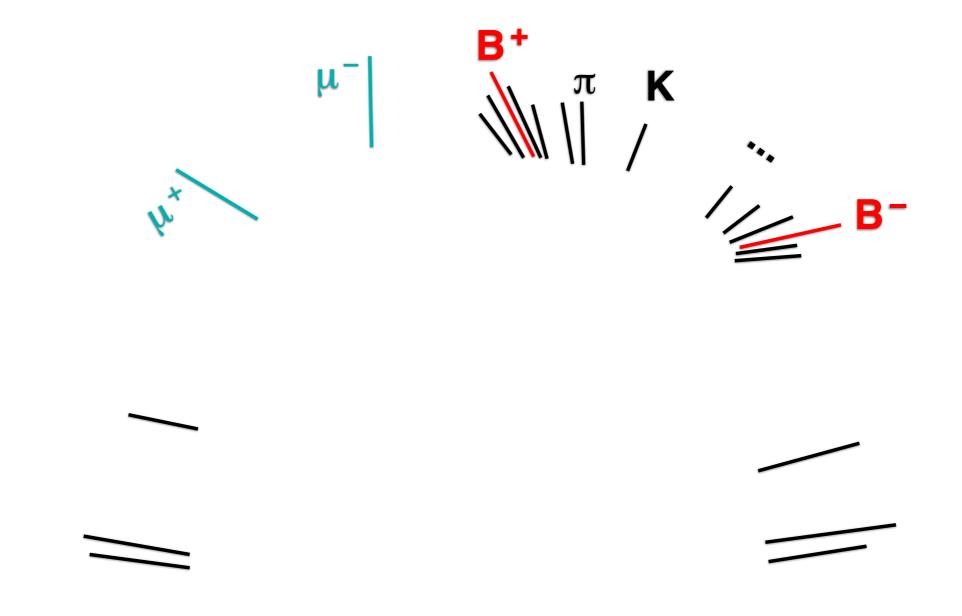
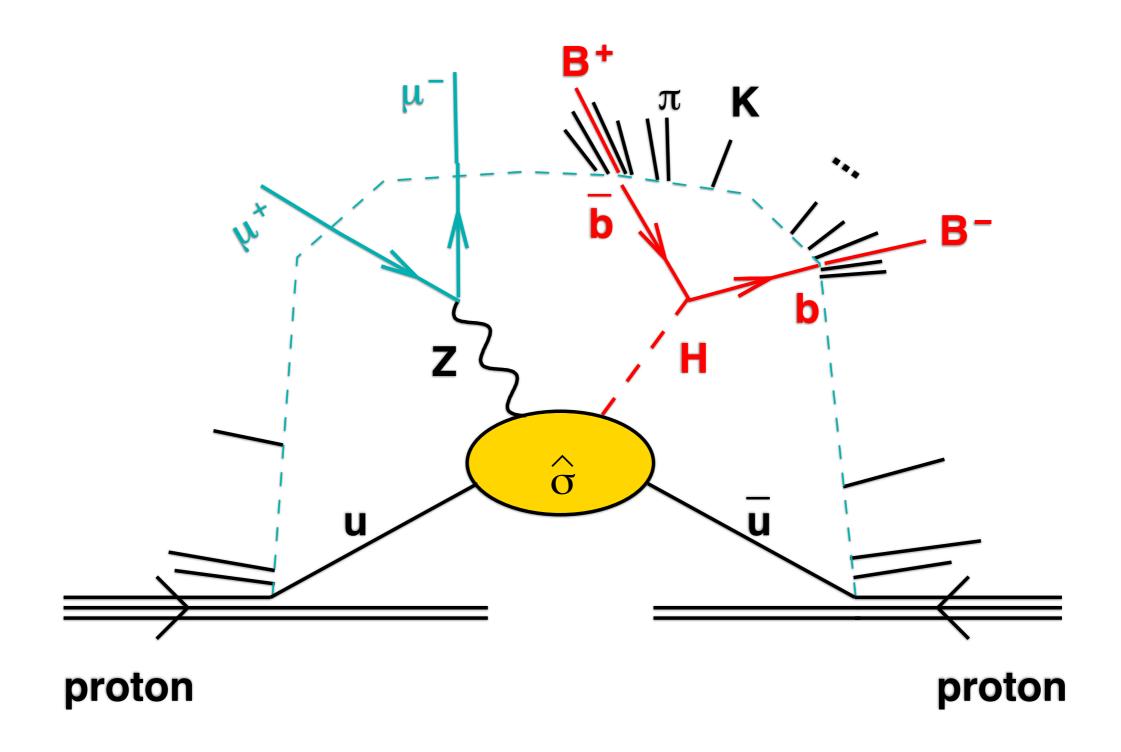
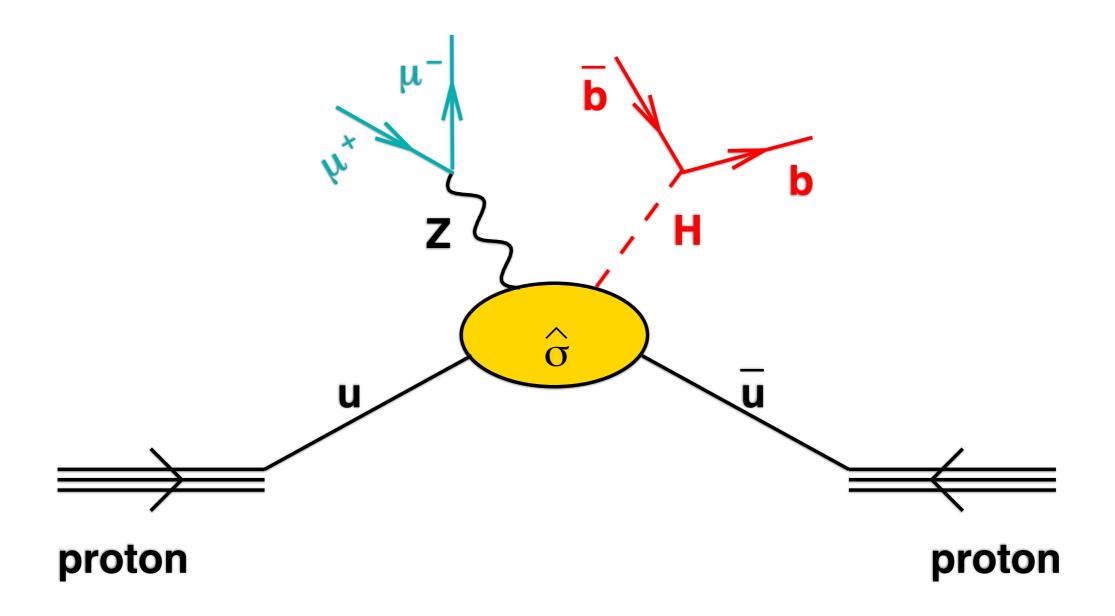

Introduction to QCD at high-energy colliders Lectures 6 & 7: Parton Distribution Functions


Gavin Salam, Oxford, February 2024 as part of the QCD PhD course with Fabrizio Caola, Jack Helliwell, Peter Skands

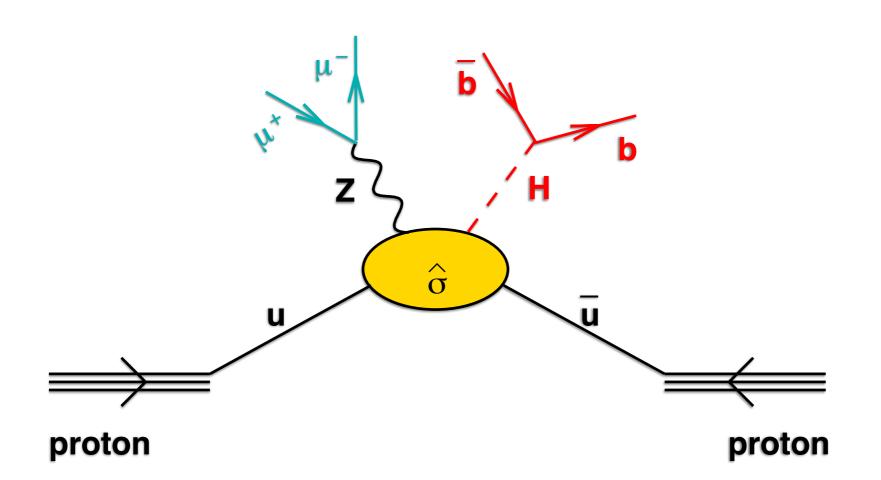
A proton-proton collision: INITIAL STATE



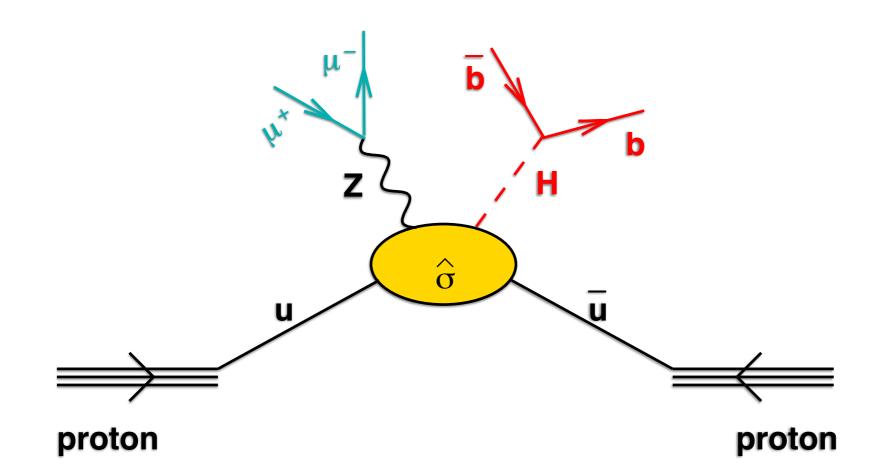
A proton-proton collision: FINAL STATE



(actual final-state multiplicity ~ several hundred hadrons)

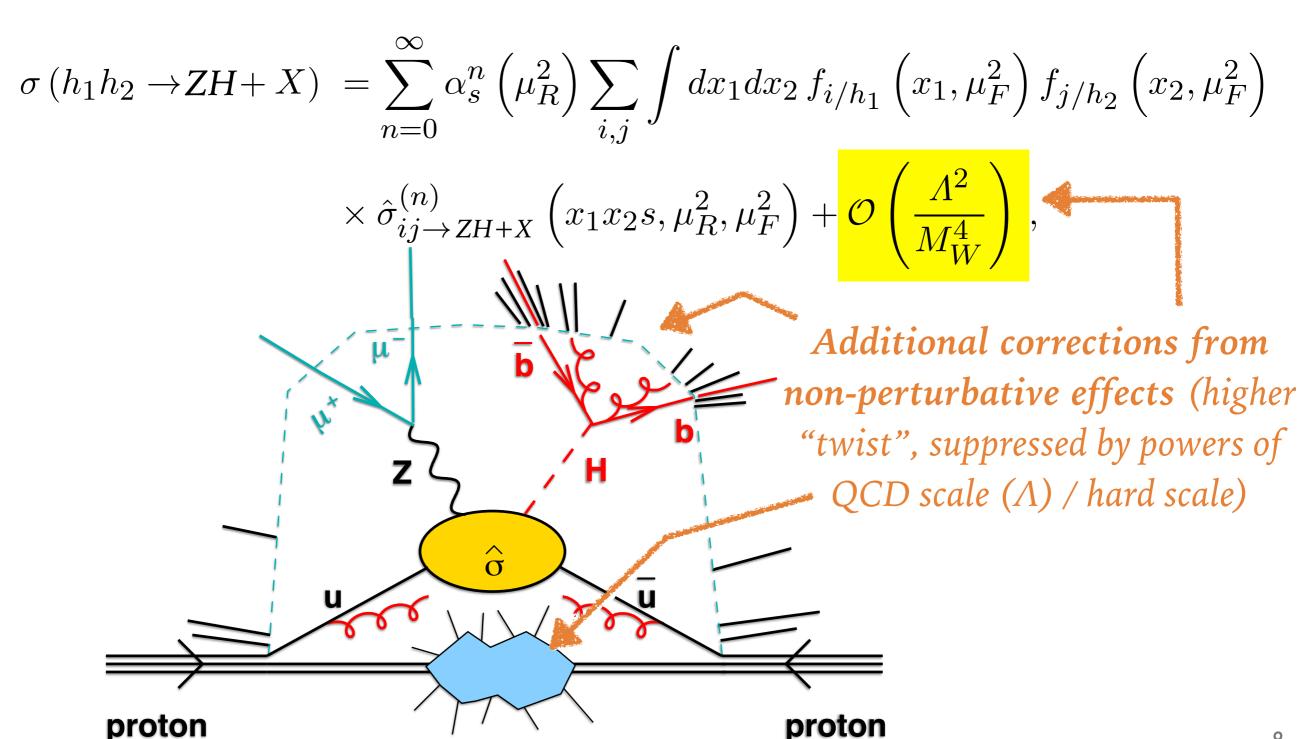

A proton-proton collision: FILLING IN THE PICTURE

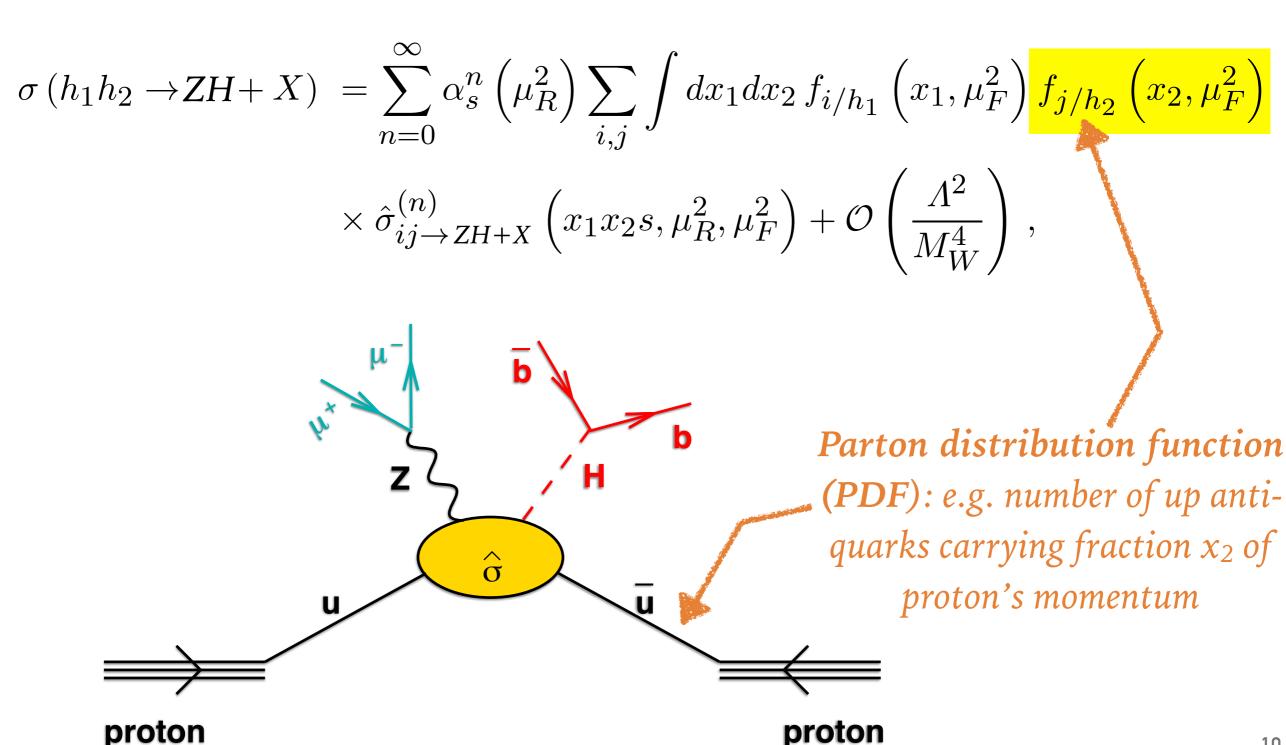
A proton-proton collision: SIMPLIFYING IN THE PICTURE

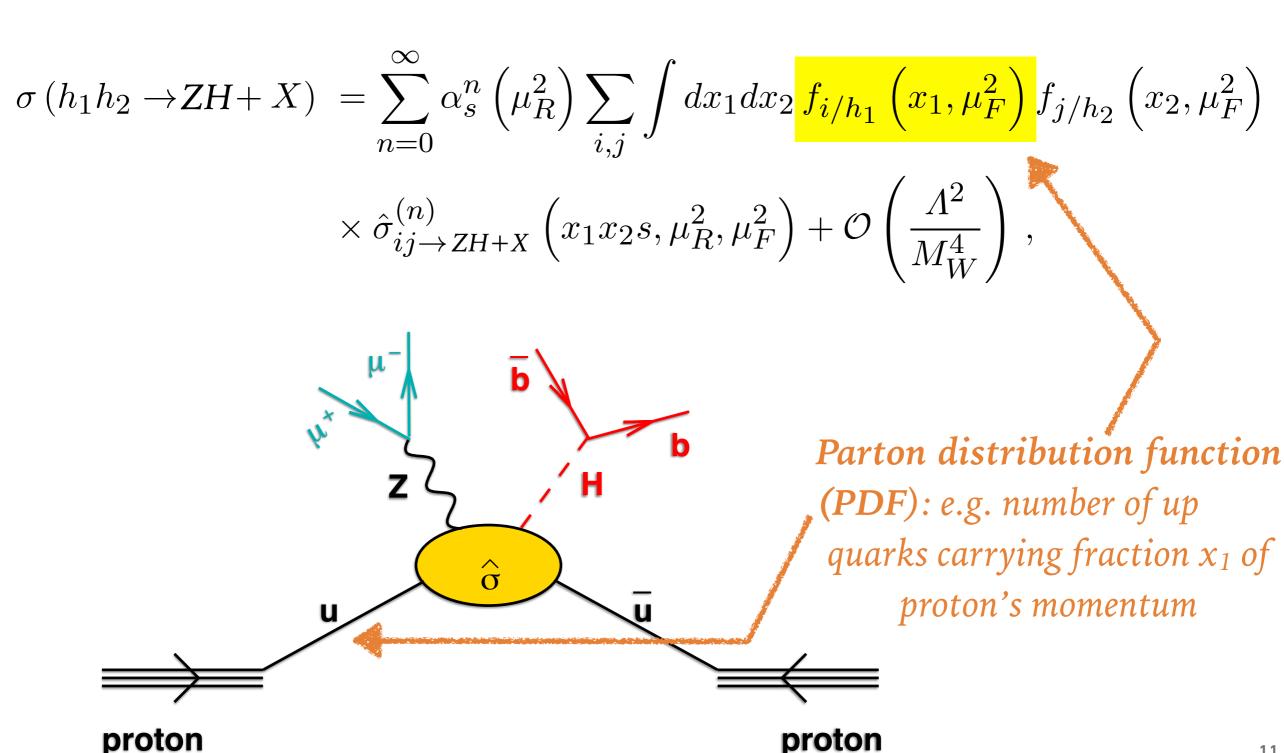

$$\sigma(h_{1}h_{2} \to ZH + X) = \sum_{n=0}^{\infty} \alpha_{s}^{n} \left(\mu_{R}^{2}\right) \sum_{i,j} \int dx_{1} dx_{2} f_{i/h_{1}} \left(x_{1}, \mu_{F}^{2}\right) f_{j/h_{2}} \left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{ij \to ZH + X}^{(n)} \left(x_{1}x_{2}s, \mu_{R}^{2}, \mu_{F}^{2}\right) + \mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),$$

Perturbative sum over powers of the strong coupling: typically we know first 2-4 orders

$$\sigma(h_{1}h_{2} \to ZH + X) = \sum_{n=0}^{\infty} \alpha_{s}^{n} \left(\mu_{R}^{2}\right) \sum_{i,j} \int dx_{1} dx_{2} f_{i/h_{1}} \left(x_{1}, \mu_{F}^{2}\right) f_{j/h_{2}} \left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{ij \to ZH + X}^{(n)} \left(x_{1}x_{2}s, \mu_{R}^{2}, \mu_{F}^{2}\right) + \mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),$$

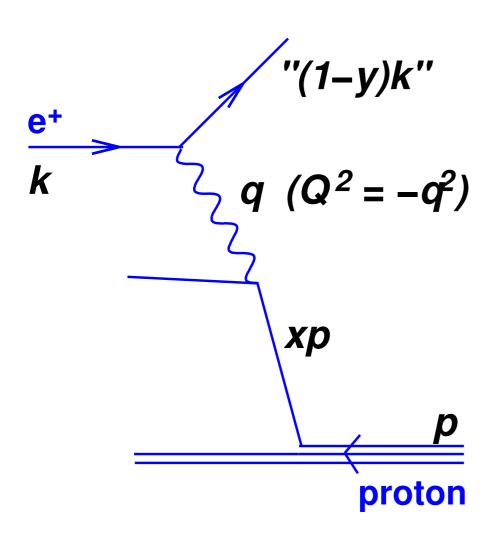

$$\sigma\left(h_{1}h_{2}\rightarrow ZH+X\right) = \sum_{n=0}^{\infty}\alpha_{s}^{n}\left(\mu_{R}^{2}\right)\sum_{i,j}\int dx_{1}dx_{2}\,f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right)f_{j/h_{2}}\left(x_{2},\mu_{F}^{2}\right)$$


$$\times\stackrel{\hat{\sigma}_{ij\rightarrow ZH+X}^{(n)}}{\hat{\sigma}_{ij\rightarrow ZH+X}}\left(x_{1}x_{2}s,\mu_{R}^{2},\mu_{F}^{2}\right) + \mathcal{O}\left(\frac{A^{2}}{M_{W}^{4}}\right),$$


$$At \ each \ perturbative \ order \ n$$

$$we \ have \ a \ specific \ "hard matrix \ element" \ (sometimes \ several \ for \ different \ subprocesses)$$

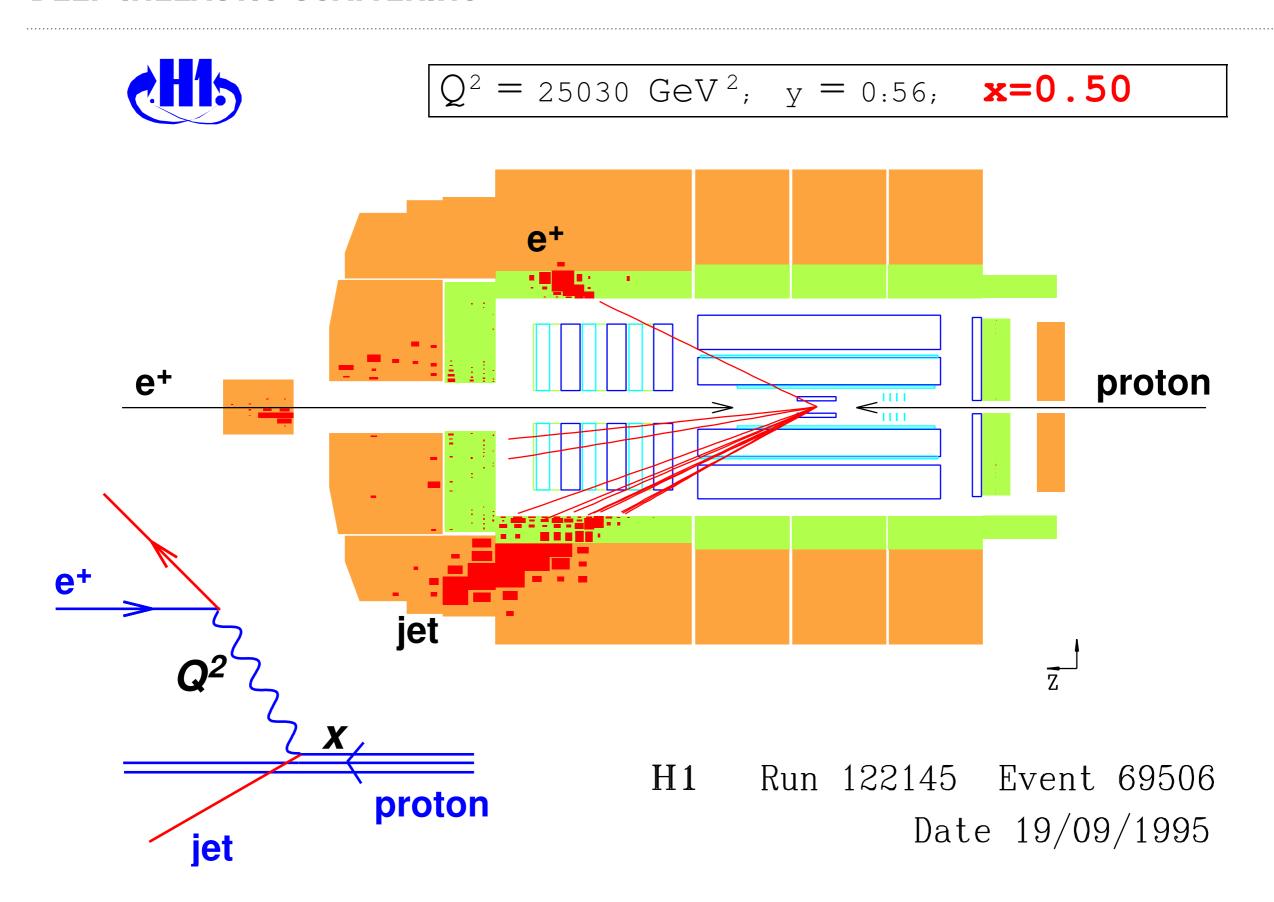
$$\stackrel{\hat{\sigma}}{\Rightarrow} \stackrel{\hat{\sigma}}{\Rightarrow} \stackrel{\hat$$



PARTON DISTRIBUTION FUNCTIONS (PDFs)

DEEP INELASTIC SCATTERING

Hadron-hadron is complex because of two incoming partons — so start with simpler Deep Inelastic Scattering (DIS).



Kinematic relations:

$$x = \frac{Q^2}{2p.q};$$
 $y = \frac{p.q}{p.k};$ $Q^2 = xys$ $\sqrt{s} = \text{c.o.m. energy}$

- ▶ Q^2 = photon virtuality \leftrightarrow *transverse resolution* at which it probes proton structure
- x = longitudinal momentum fraction of struck parton in proton
- y = momentum fraction lost by electron (in proton rest frame)

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING

Write DIS X-section to zeroth order in α_s ('quark parton model'):

$$\frac{d^2\sigma^{em}}{dxdQ^2} \simeq \frac{4\pi\alpha^2}{xQ^4} \left(\frac{1 + (1 - y)^2}{2} F_2^{em} + \mathcal{O}(\alpha_s) \right)$$

$$\propto F_2^{em} \qquad [structure function]$$

$$F_2 = x(e_u^2 u(x) + e_d^2 d(x)) = x\left(\frac{4}{9}u(x) + \frac{1}{9}d(x)\right)$$

[u(x), d(x)]: parton distribution functions (PDF)]

<u>NB:</u>

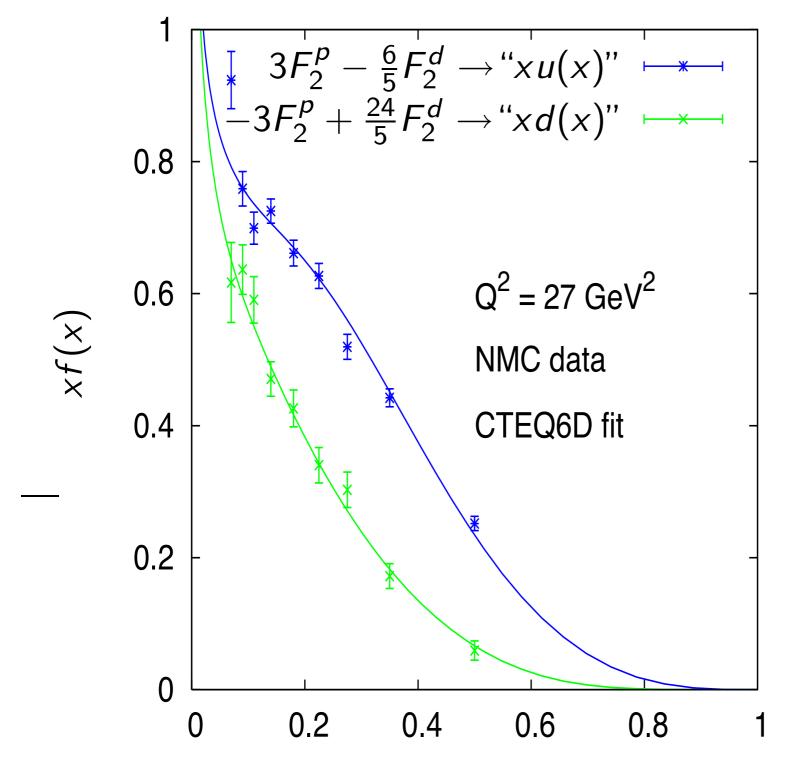
- use perturbative language for interactions of up and down quarks
- but distributions themselves have a non-perturbative origin.

F₂ combines up and down-quark distributions: how do we separate them?

Assumption (SU(2) isospin): neutron is just proton with $u \Leftrightarrow d$: proton = uud; neutron = ddu $\left[-2 \times \frac{1}{3} + 2 \times \frac{1}{3} = 0\right]$

Isospin:
$$u_n(x) = d_p(x)$$
, $d_n(x) = u_p(x)$

$$F_2^p = \frac{4}{9}u_p(x) + \frac{1}{9}d_p(x)$$


$$F_2^n = \frac{4}{9}u_n(x) + \frac{1}{9}d_n(x) = \frac{4}{9}d_p(x) + \frac{1}{9}u_p(x)$$

Linear combinations of F_2^p and F_2^n give separately $u_p(x)$ and $d_p(x)$.

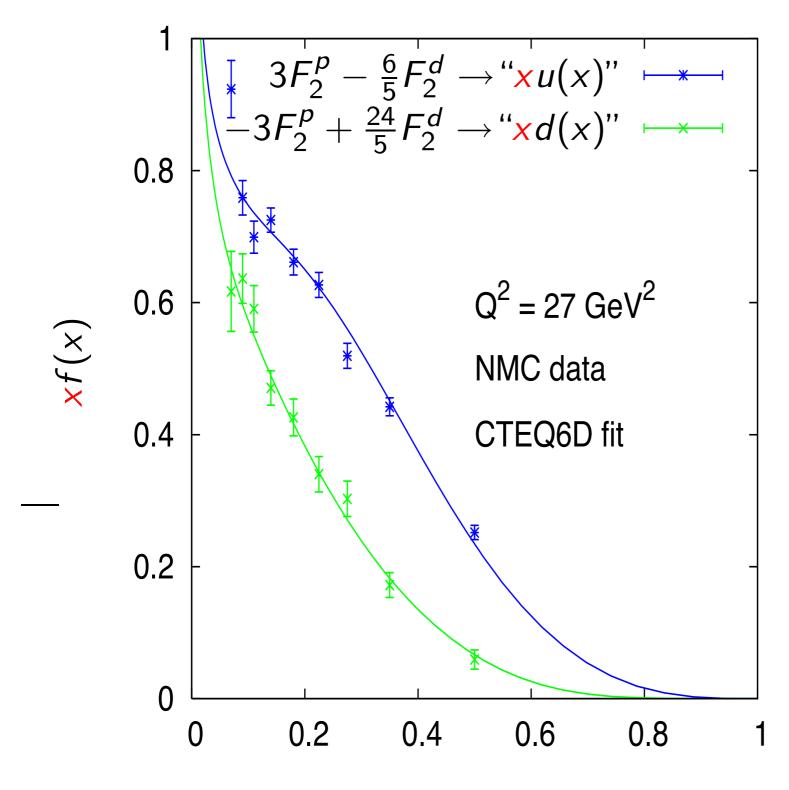
Experimentally, get
$$F_2^n$$
 from deuterons: $F_2^d = \frac{1}{2}(F_2^p + F_2^n)$

Beware: isospin symmetry is a good approximation, but it is not exact

An example: NMC proton & deuteron data

Combine $F_2^p \& F_2^d$ data, deduce u(x), d(x):

▶ Definitely more up than down (✓)


How much *u* and *d*?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- $u(x) \sim d(x) \sim x^{-1.25}$

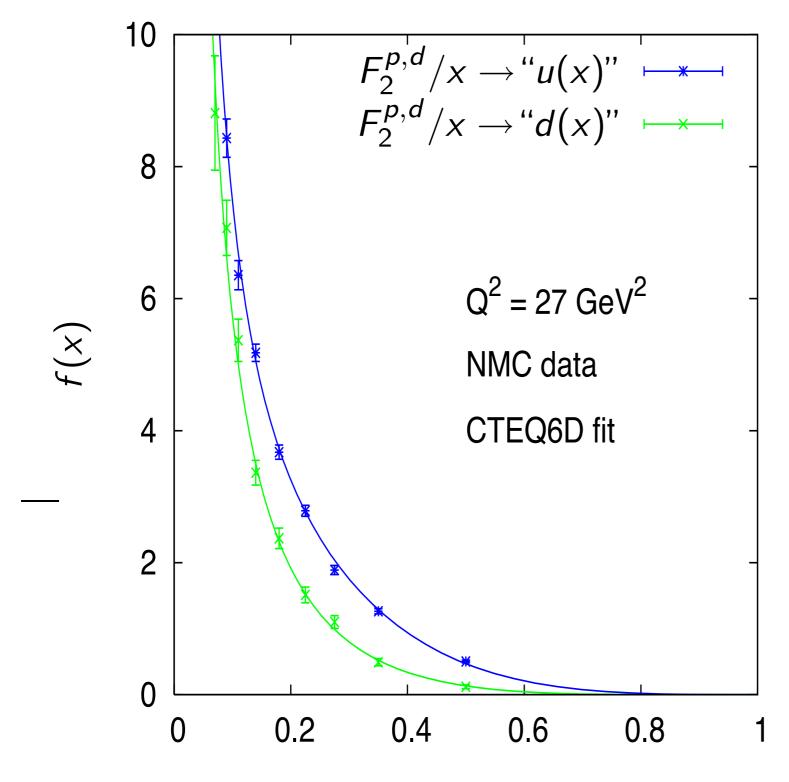
non-integrable divergence

So why do we say proton = uud?

An example: NMC proton & deuteron data

Combine $F_2^p \& F_2^d$ data, deduce u(x), d(x):

▶ Definitely more up than down (✓)


How much u and d?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- ► $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

So why do we say proton = uud?

An example: NMC proton & deuteron data

Combine $F_2^p \& F_2^d$ data, deduce u(x), d(x):

▶ Definitely more up than down (✓)

How much u and d?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- ► $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

So why do we say proton = uud?

Anti-quarks in proton

How can there be infinite number of quarks in proton?

pear:

Antiquarks also have distributions, $\bar{u}(x)$, $\bar{d}(x)$

$$F_2 = \frac{4}{9}(xu(x) + x\bar{u}(x)) + \frac{1}{9}(xd(x) + x\bar{d}(x))$$

NB: photon interaction \sim square of charge \rightarrow +ve

- ▶ Previous transparency: we were actually looking at $\sim u + \bar{u}$, d + d
- Number of extra quark-antiquark pairs can be infinite, so

$$\int dx \left(u(x) + \bar{u}(x)\right) = \infty$$

as long as they carry little momentum (mostly at low x)

When we say proton has 2 up quarks & 1 down quark we mean

$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

 $u - \bar{u} = u_V$ is known as a *valence* distribution.

When we say proton has 2 up quarks & 1 down quark we mean

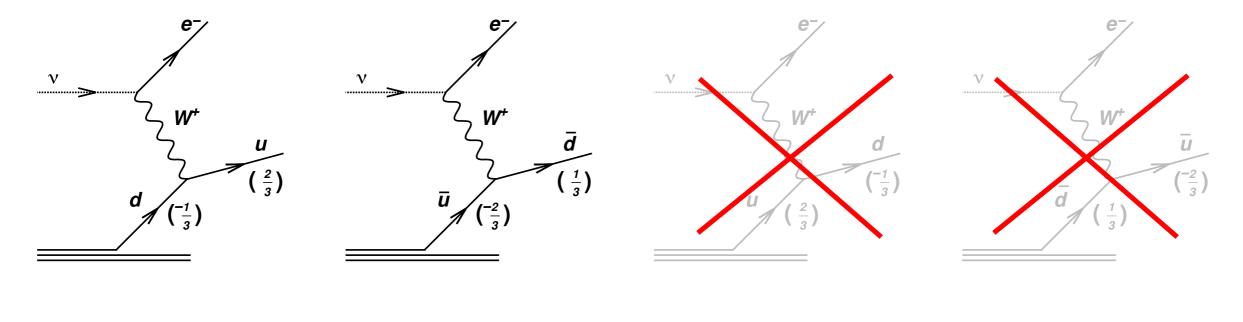
$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

 $u - \bar{u} = u_V$ is known as a *valence* distribution.

How do we measure *difference* between u and \bar{u} ? Photon interacts identically with both \rightarrow no good...

Question: what interacts differently with particle & antiparticle?

When we say proton has 2 up quarks & 1 down quark we mean


$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

 $u - \bar{u} = u_V$ is known as a *valence* distribution.

How do we measure *difference* between u and \bar{u} ? Photon interacts identically with both \rightarrow no good...

Question: what interacts differently with particle & antiparticle?

Answer: W^+ or W^-

$$\frac{d^{2}\sigma^{W^{\pm}p}}{dxdQ^{2}} \propto \left(\frac{1 + (1 - y)^{2}}{2} F_{2}^{W^{\pm}p} \pm \frac{2y - y^{2}}{2} x F_{3}^{W^{\pm}p} + \mathcal{O}(\alpha_{s})\right)$$

$$F_2^{W^+p} = 2x(d(x) + \bar{u}(x)), \qquad F_3^{W^+p} = 2(d(x) - \bar{u}(x))$$

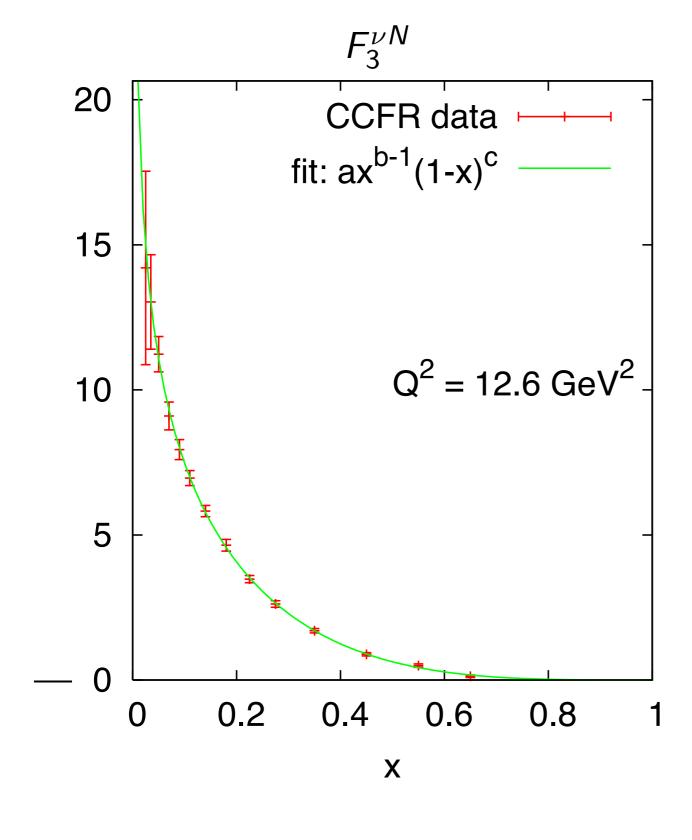
$$F_2^{W^-p} = 2x(u(x) + \bar{d}(x)), \qquad F_3^{W^-p} = 2(u(x) - \bar{d}(x))$$

Combination of νp and $\bar{\nu} p$ scattering in principle provides all necessary information for getting separately u, d, \bar{u} and \bar{d} .

Problem: experiments with neutrinos are difficult (small cross sections).

Look at collisions on *nuclei* (e.g. Fe) to increase cross section, and use isospin symmetry $(d_n = u_p)$ to relate $F_3^{W^+p}$, $F_3^{W^+n}$

$$F_3^{W^+N} = \frac{1}{2} (F_3^{W^+p} + F_3^{W^+n}) = d_p(x) - \bar{u}_p(x) + d_n(x) - \bar{u}_n(x)$$
$$= d_p(x) - \bar{u}_p(x) + u_p(x) - \bar{d}_p(x)$$
$$= d_V(x) + u_V(x)$$


E.g.: use this to check total number of valence quarks is 3:

$$\int dx \, F_3^{W^+N}(x) = \int dx \, (d_V(x) + u_V(x)) = 3$$

Gross LLewellyn Smith sum rule

[Beware: nucleus is only ≈ sum of protons & neutrons]

data from neutrino-nucleus scattering

► $xF_3^{\nu N} \simeq x(u_V + d_V)$ vanishes for $x \to 0$

Regge theory: $xu_V, xd_V \sim x^{0.5}$

• $F_3^{\nu N} \simeq u_V + d_V$ should be integrable

$$\Rightarrow \int dx F_3^{\nu N} = 2.50 \pm 0.08$$

CCFR, $Q^2 = 3 \text{ GeV}^2$ We expected 3 (uud)...

QCD corrections

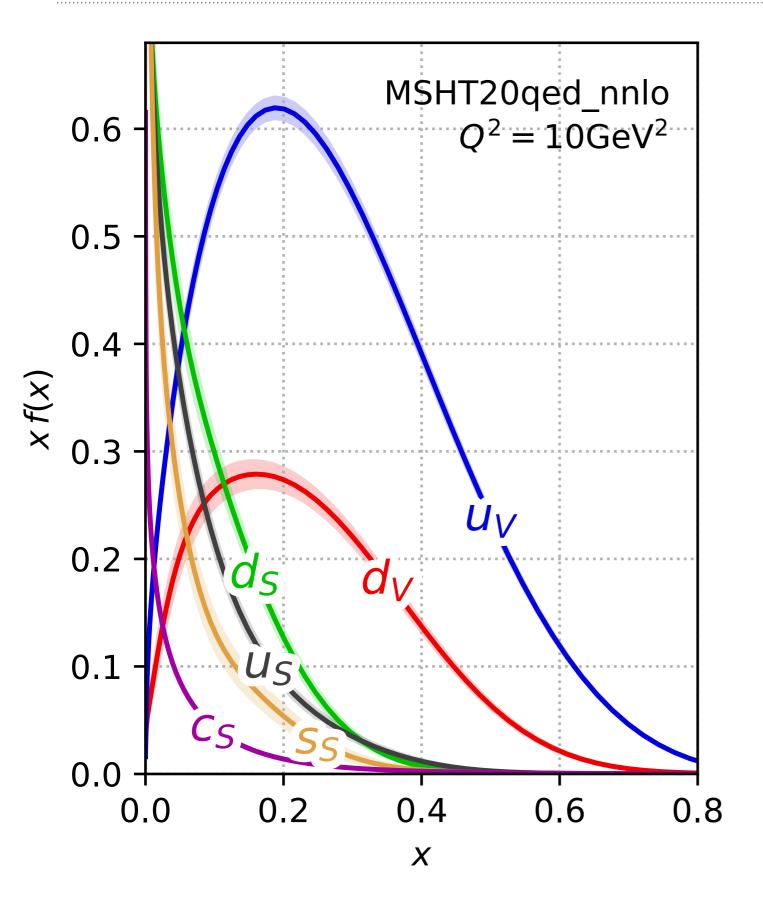
We believe proton really does have 3 valence quarks!

But interaction with W^+ receives higher order QCD corrections:

$$\int dx \, F_3^{\nu N} = 3 \, \left(1 - \frac{\alpha_s}{\pi} - 3.25 \frac{\alpha_s^2}{\pi^2} - 12.2 \frac{\alpha_s^3}{\pi^3} + \cdots \right)$$

$$\simeq 2.52 \qquad \left[\alpha_s (3 \text{ GeV}^2) \simeq 0.34 \right]$$

Bardeen et al. '78


Gorishny & Larin '86

Larin & Vermaseren '91

Reconstruct number of valence quarks from data:

Data $(2.50 \pm 0.08) \Rightarrow 2.98 \pm 0.10$ valence quarks

An overview of quark PDFs

Modern PDF fits use a range of data (see later)

➤ valence quarks $(u_V = u - \bar{u})$ are *hard*

$$x \to 1 : xq_V(x) \sim (1 - x)^n$$

 $x \to 0 : xq_V(x) \sim x^{\lambda}$
with $n \simeq 3$, $\lambda \simeq 0.5$

> sea quarks

$$(u_S = 2\bar{u}, s_S = s + \bar{s}, ...)$$

are **soft**, i.e. mostly at low x ,
with $n \simeq 7$, $\lambda \simeq -0.2$

(values of n, λ semi-predicted from quark counting rules and Regge theory)

Momentum sum rule

Sum of momentum carried in all constituents should be 1:

	\sum_{i} \int_{0}
momentum	
0.104	Only
0.000	Office

$u_{\rm V}$	0.262
d_{S}	0.078
$u_{\rm S}$	0.064
s_S	0.046

otal	0.570
Otai	0.57

CS

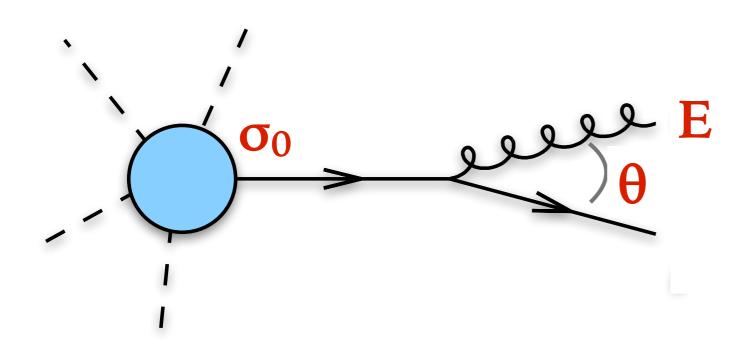
0.015

	c 1			
\sum_{i}	\int_{0}	$dx xq_i(x)$	=	1

Where is missing momentum?

Only parton we've neglected so far is the

gluon


Not directly probed by photon or W^{\pm} Approaches to measuring it include

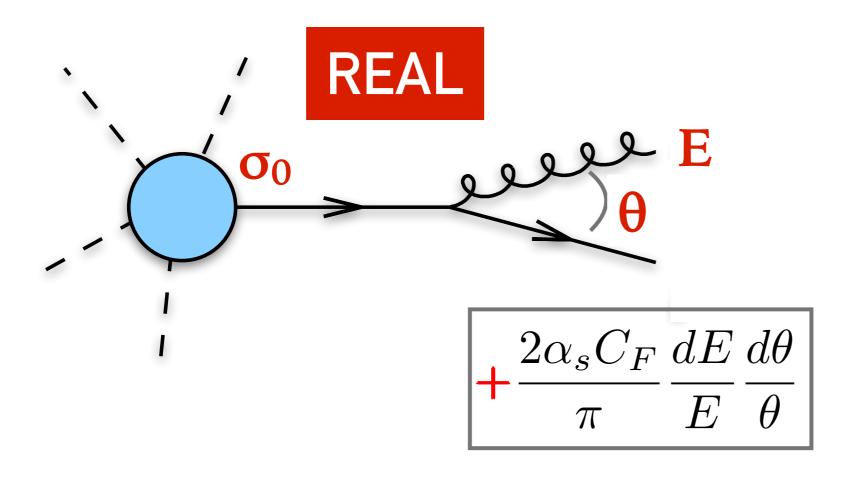
- 1) at hadron colliders (e.g. jets)
- 2) through DGLAP evolution equations

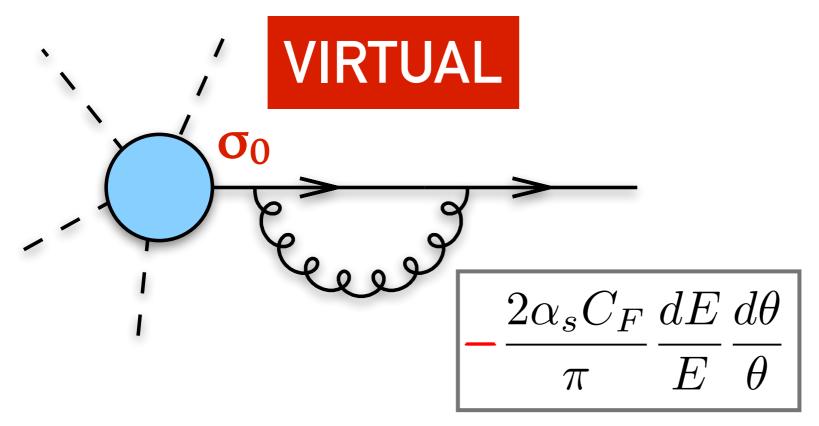
DGLAP evolution

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation

GLUON EMISSION FROM A QUARK

Consider an emission with


- ➤ energy $\mathbf{E} \ll \sqrt{\mathbf{s}}$ ("soft")
- ➤ angle $\theta \ll 1$ ("collinear" wrt quark)


Examine correction to some hard process with cross section σ_0

$$d\sigma \simeq \sigma_0 \times \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}$$

This has a divergence when E→0 or θ→0 [in some sense because of quark propagator going on-shell]

How come we get finite cross sections?

Divergences are present in both real and virtual diagrams.

If you are "inclusive", i.e. your measurement doesn't care whether a soft/collinear gluon has been emitted then the real and virtual divergences cancel.

Beyond inclusive cross sections: infrared and collinear (IRC) safety

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under the branching

$$ec{p_i}
ightarrow ec{p_j} + ec{p_k}$$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small [infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

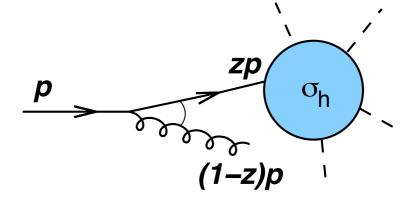
Examples

Multiplicity of gluons is not IRC safe

[modified by soft/collinear splitting]

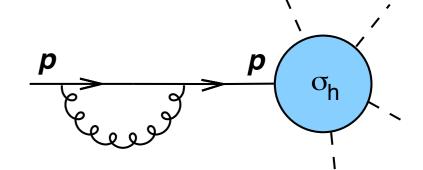
Energy of hardest particle is not IRC safe

[modified by collinear splitting]


Energy flow into a cone is IRC safe

[soft emissions don't change energy flow, collinear emissions don't change its direction]

Higher order corrections from initial state splittings?


For initial state splitting, hard process occurs *after splitting*, and momentum entering hard process is modified: $p \rightarrow zp$.

$$\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

For virtual terms, momentum entering hard process is unchanged

$$\sigma_{V+h}(\mathbf{p}) \simeq -\sigma_h(\mathbf{p}) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

Total cross section gets contribution with two different hard X-sections

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_s C_F}{\pi} \int \frac{dk_t^2}{k_t^2} \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]$$

NB: We assume σ_h involves momentum transfers $\sim Q \gg k_t$, so ignore extra transverse momentum in σ_h

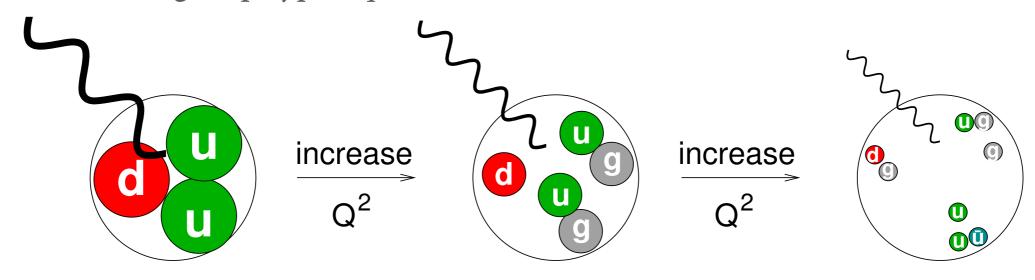
Higher order corrections from initial state splittings?

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}}}_{\text{infinite}} \underbrace{\int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]}_{\text{finite}}$$

- ▶ In soft limit $(z \to 1)$, $\sigma_h(zp) \sigma_h(p) \to 0$: soft divergence cancels.
- ▶ For $1 z \neq 0$, $\sigma_h(zp) \sigma_h(p) \neq 0$, so z integral is non-zero but finite.

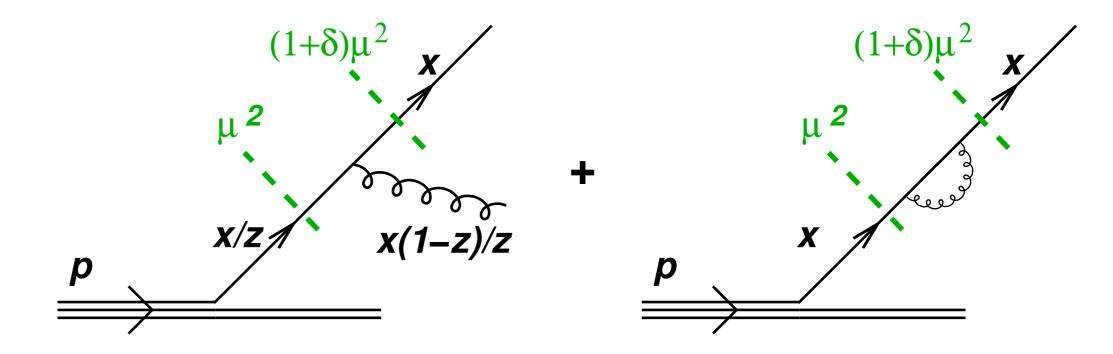
BUT: k_t integral is just a factor, and is *infinite*

This is a collinear $(k_t \to 0)$ divergence. Cross section with incoming parton is not collinear safe!


This always happens with coloured initial-state particles So how do we do QCD calculations in such cases?

Parton distributions and DGLAP

➤ Write up-quark distribution in proton as


$$u(x,\mu_F^2)$$

- ➤ Perturbative collinear (IR) divergence absorbed into the parton distribution (NB divergence not physical: non-perturbative physics provides a physical cutoff)
- $\triangleright \mu_F$ is the **factorisation scale** a bit like the renormalisation scale (μ_R) for the running coupling.
- ➤ As you vary the factorisation scale, the parton distributions evolve with a renormalisation-group type equation

DGLAP EQUATION

take derivative wrt factorization scale μ^2

$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \, p_{qq}(z) \, \frac{q(x/z,\mu^2)}{z} - \frac{\alpha_s}{2\pi} \int_0^1 dz \, p_{qq}(z) \, q(x,\mu^2)$$

 p_{qq} is real $q \leftarrow q$ splitting kernel: $p_{qq}(z) = C_F \frac{1+z^2}{1-z}$

DGLAP EQUATION

Awkward to write real and virtual parts separately. Use more compact notation:

$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \underbrace{\int_x^1 dz \, P_{qq}(z) \, \frac{q(x/z,\mu^2)}{z}}_{P_{qq}\otimes q}, \qquad P_{qq} = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

This involves the *plus prescription*:

$$\int_{x}^{1} dz \, [g(z)]_{+} f(z) = \int_{x}^{1} dz \, g(z) f(z) - \int_{0}^{1} dz \, g(z) f(1)$$

z=1 divergences of g(z) cancelled if f(z) sufficiently smooth at z=1

DGLAP EQUATION

Proton contains both quarks and gluons — so DGLAP is a *matrix in flavour*

space:

$$\frac{d}{d \ln Q^2} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} P_{q \leftarrow q} & P_{q \leftarrow g} \\ P_{g \leftarrow q} & P_{g \leftarrow g} \end{pmatrix} \otimes \begin{pmatrix} q \\ g \end{pmatrix}$$
[In general, matrix spanning all flavors, anti-flavors, $P_{qq'} = 0$ (LO), $P_{\bar{q}g} = P_{qg}$]

Splitting functions are:

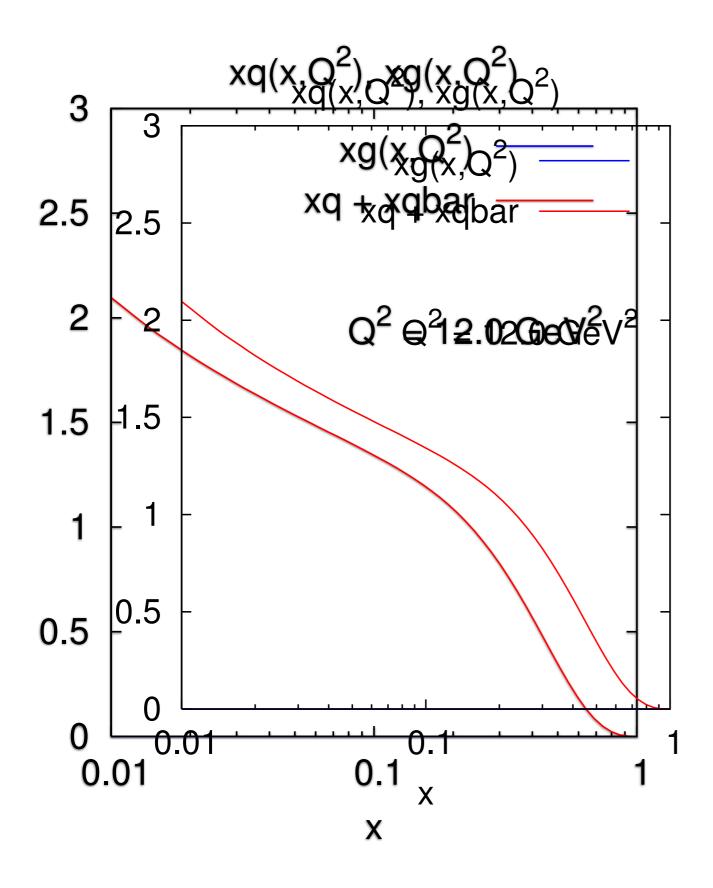
$$P_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right], \qquad P_{gq}(z) = C_F \left[\frac{1 + (1-z)^2}{z} \right],$$

$$P_{gg}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \delta(1-z) \frac{(11C_A - 4n_f T_R)}{6}.$$

Have various symmetries / significant properties, e.g.

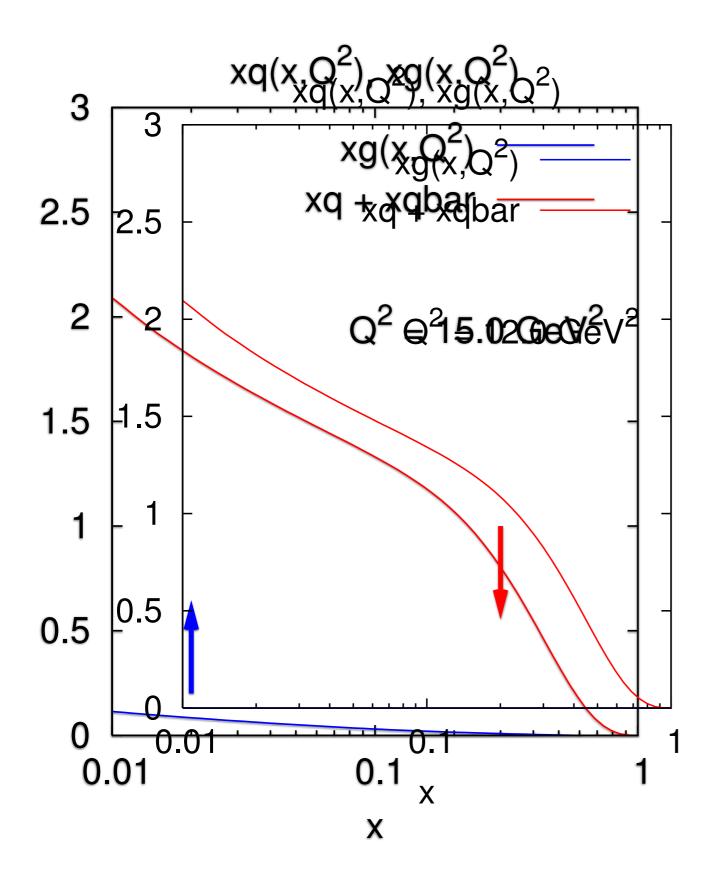
 $ightharpoonup P_{qg}, P_{gg}$: symmetric $z \leftrightarrow 1-z$

(except virtuals)

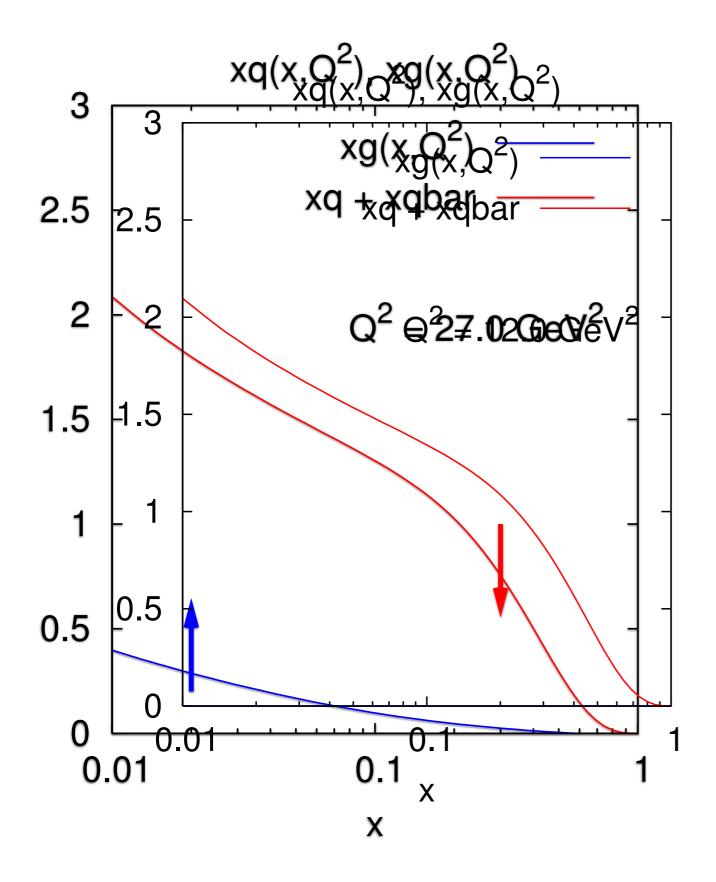

 $ightharpoonup P_{qq}, P_{gg}$: diverge for $z \to 1$

soft gluon emission

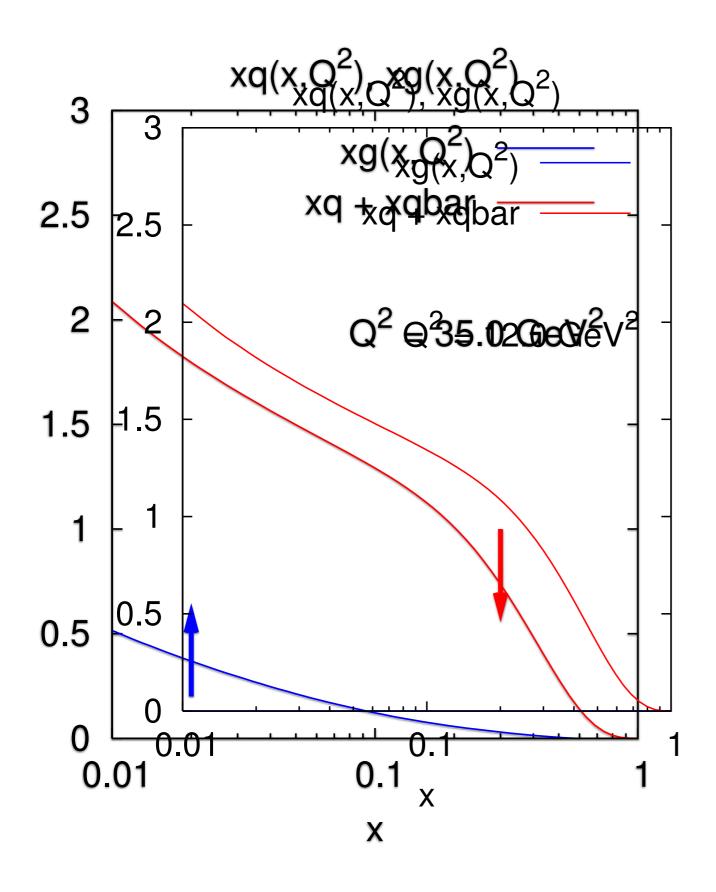
▶ P_{gg} , P_{gq} : diverge for $z \to 0$


Implies PDFs grow for $x \to 0$

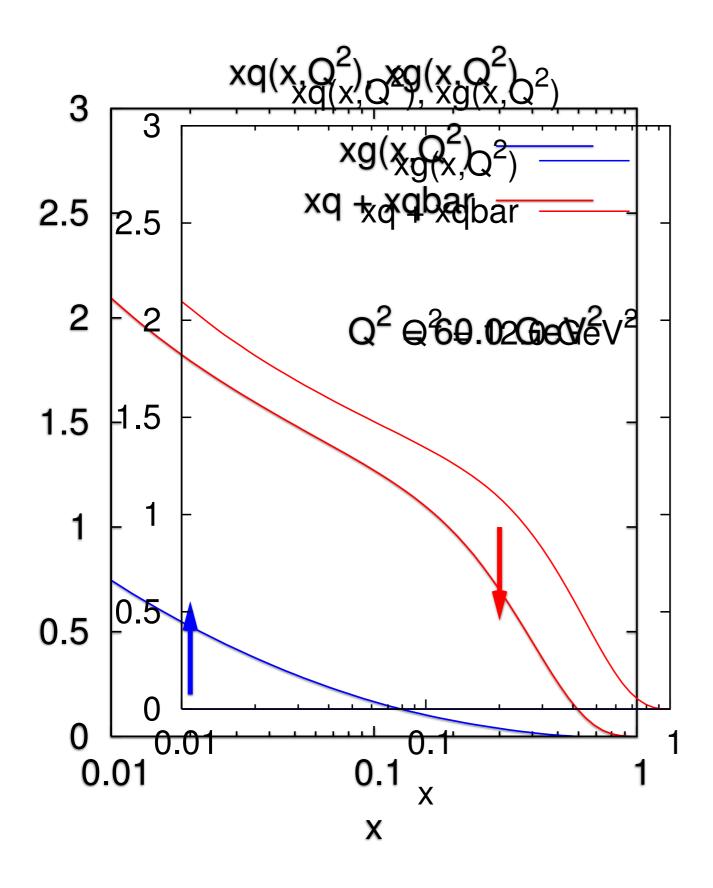
2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov & Parisi


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

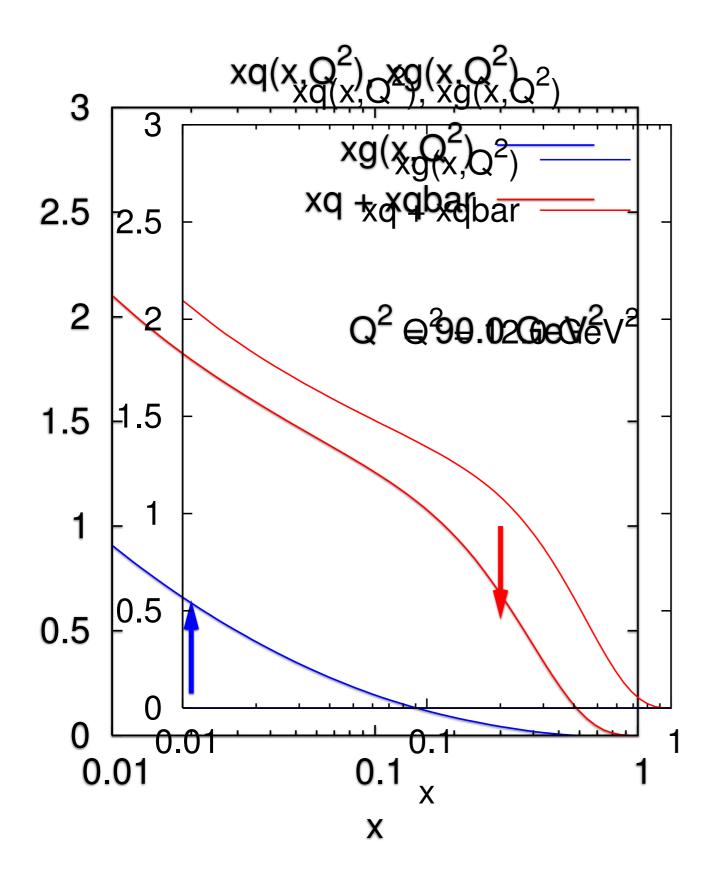
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

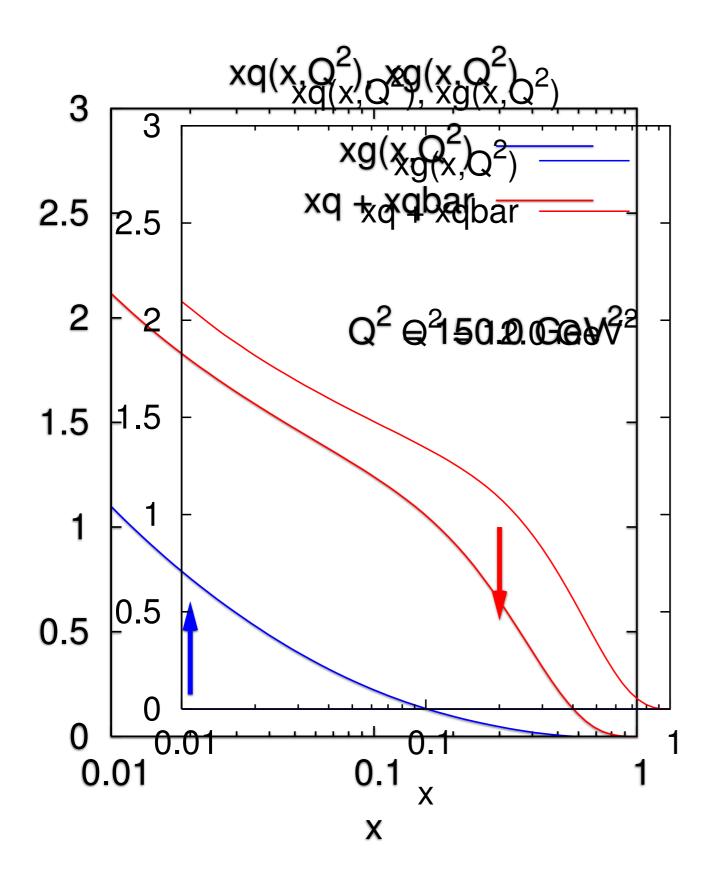
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

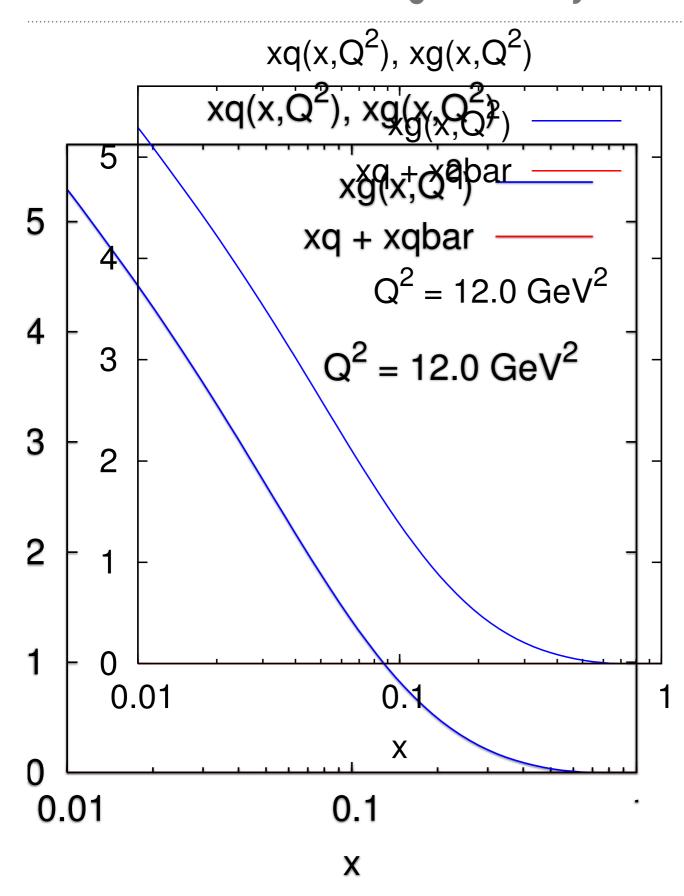
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

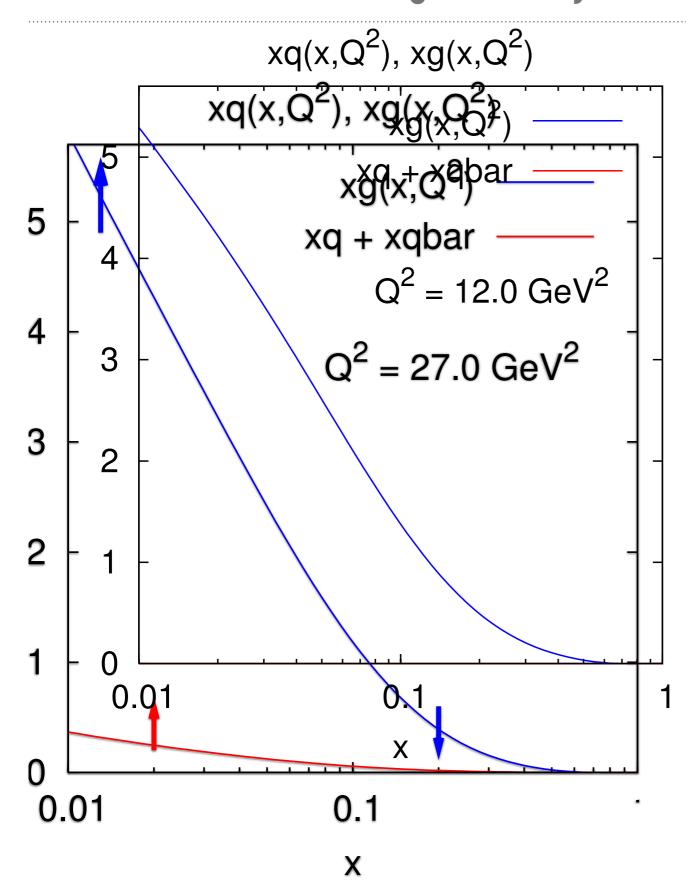
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

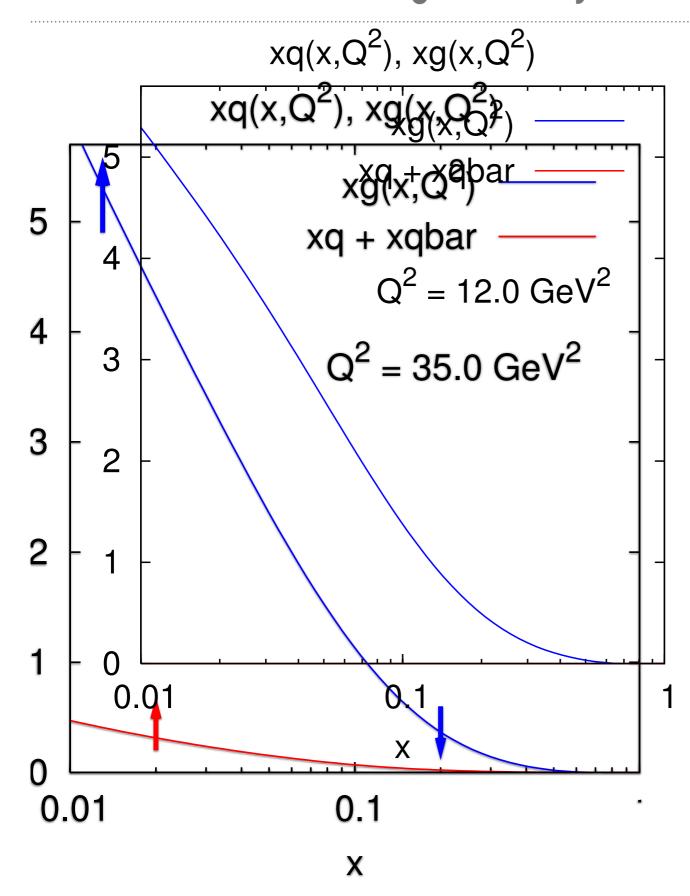
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

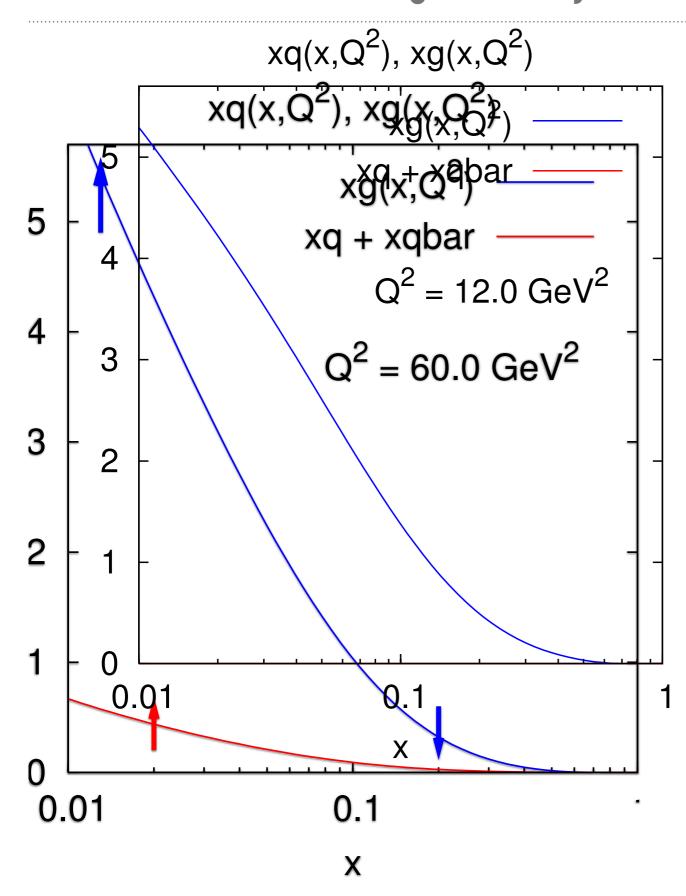
- quark is depleted at large x
- gluon grows at small x


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

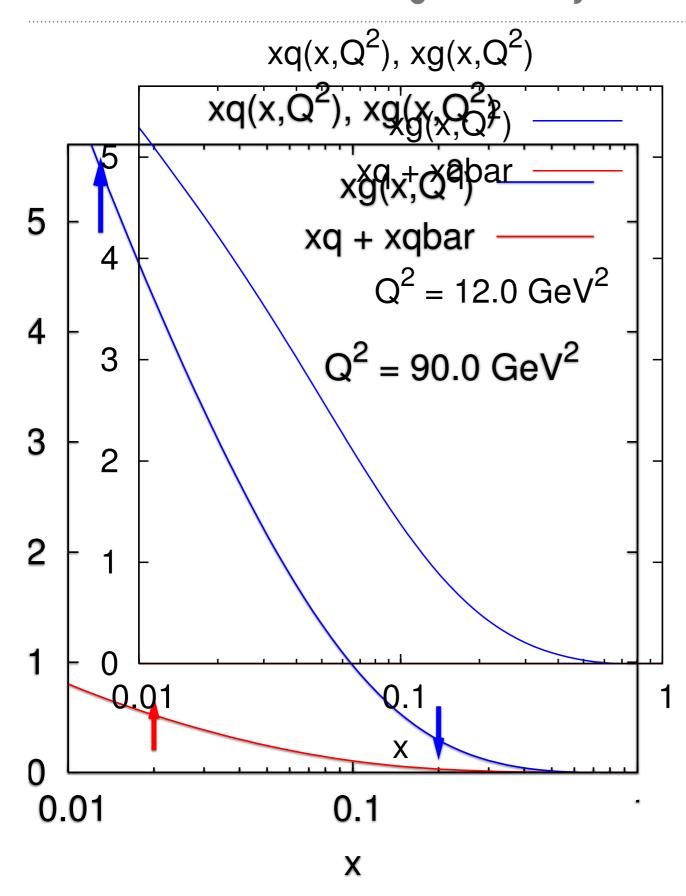
- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

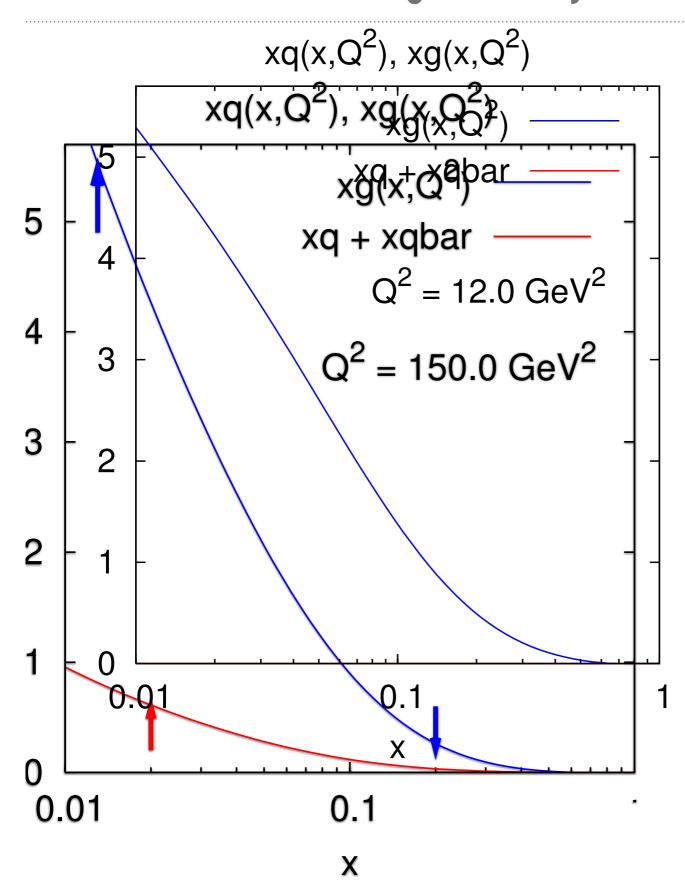
- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

2nd example: start with just gluons.

$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

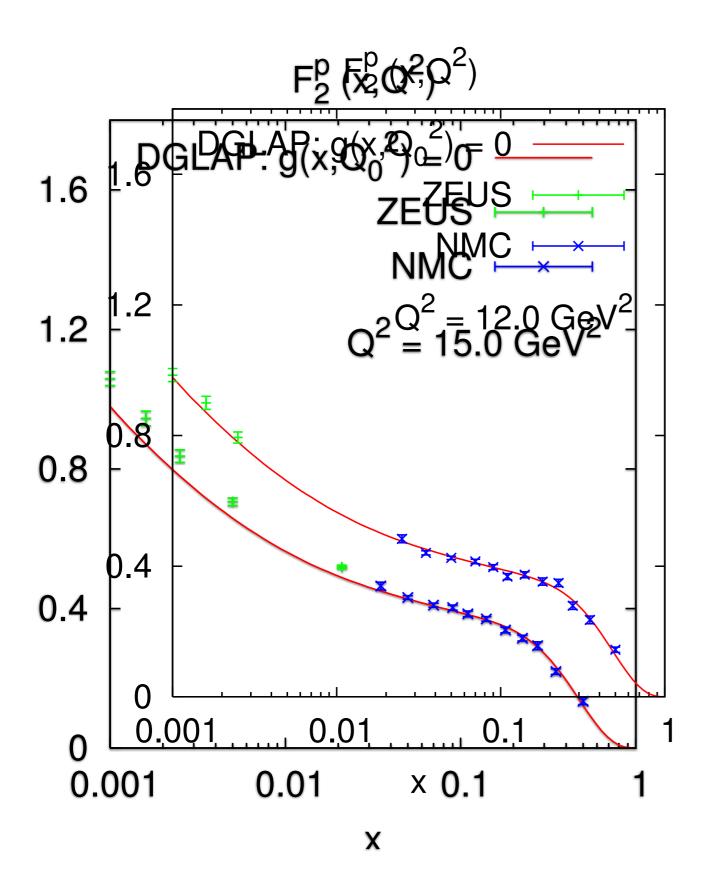
- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

DGLAP evolution:

- partons lose momentum and shift towards smaller x
- ➤ high-x partons drive growth of low-x gluon

determining the gluon

which is critical at hadron colliders (e.g. ttbar, Higgs dominantly produced by gluon-gluon fusion), but not directly probed in Deep-Inelastic-Scattering

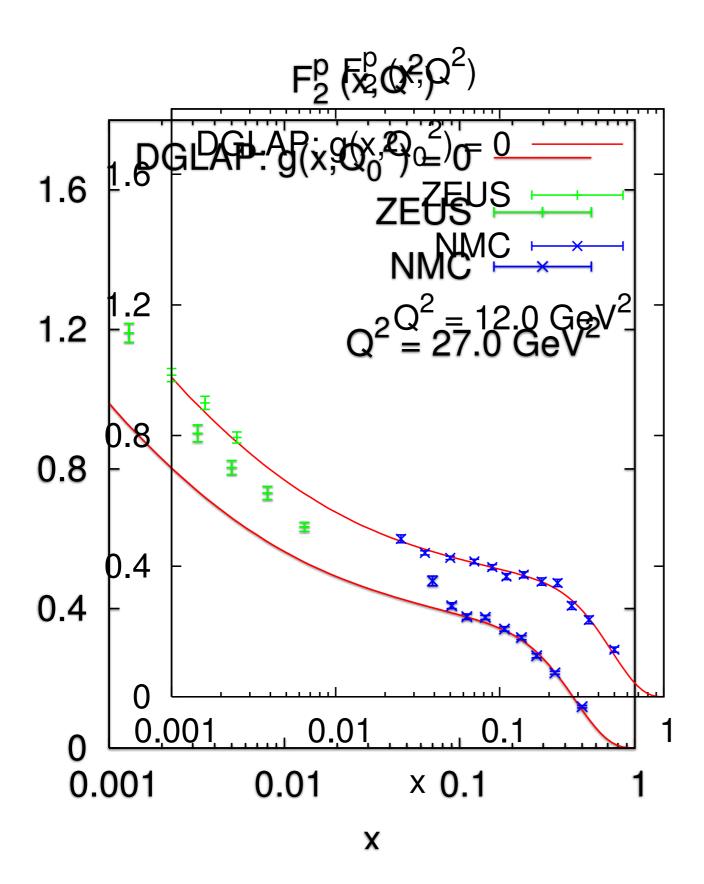


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

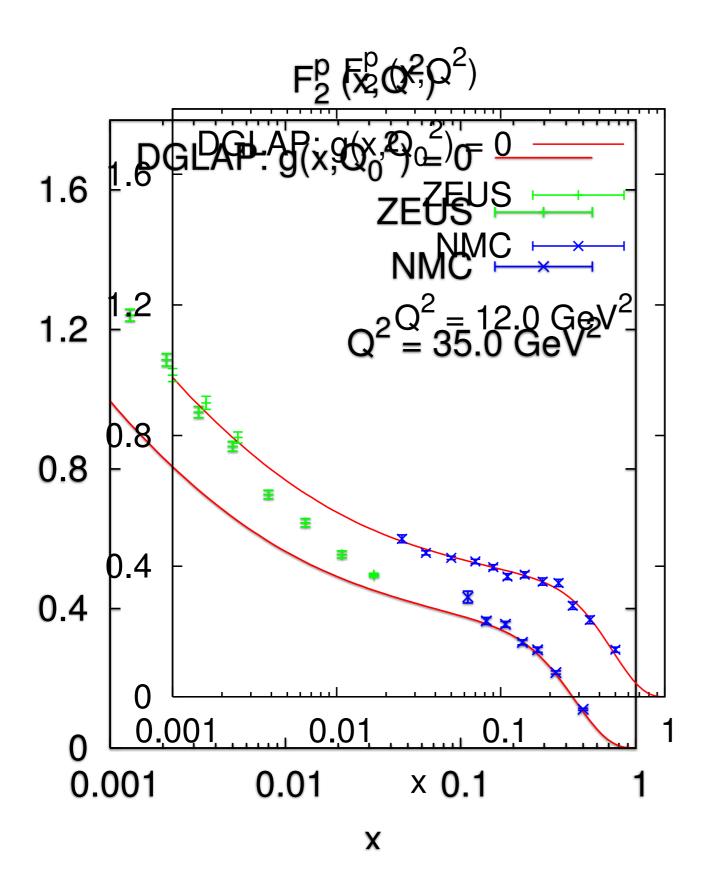


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

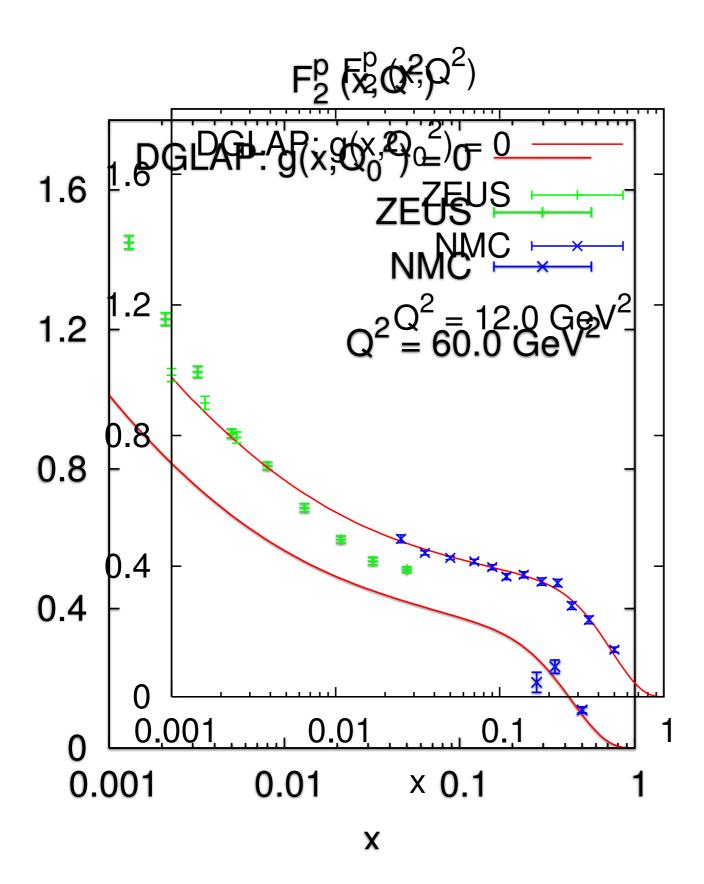


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

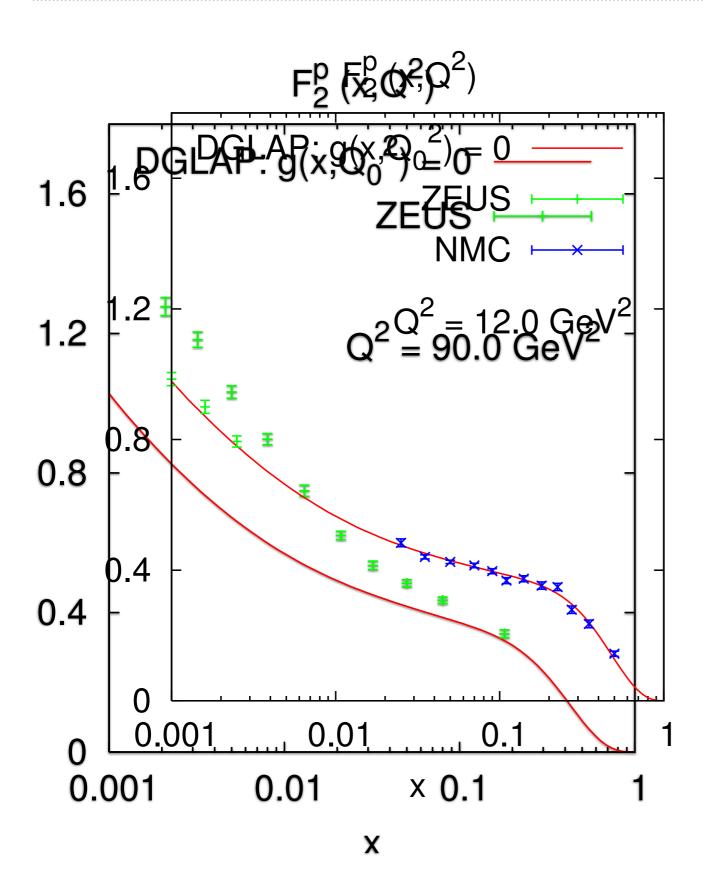


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

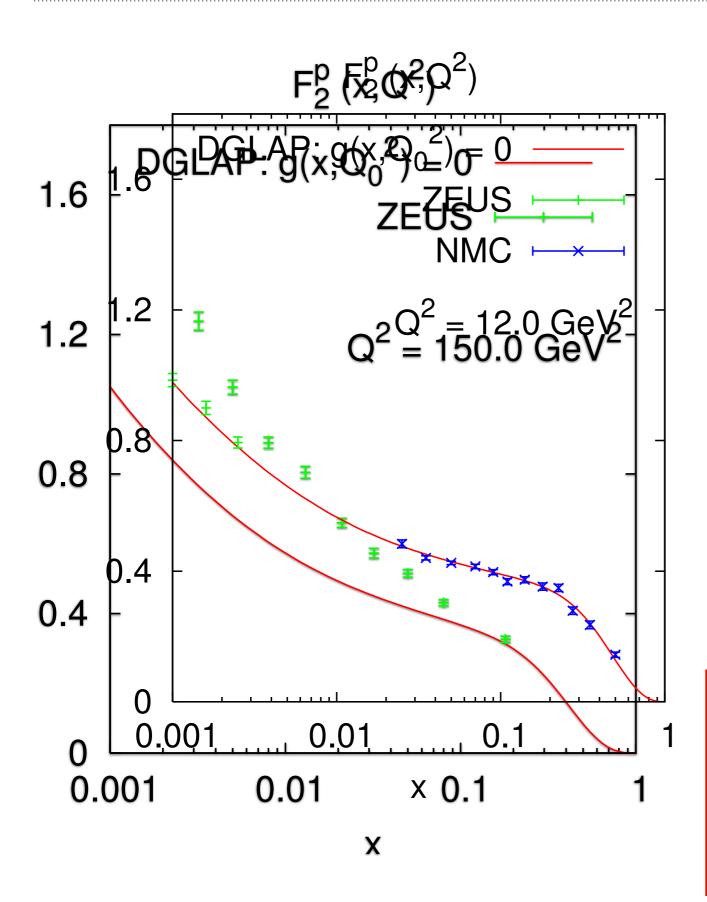


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$



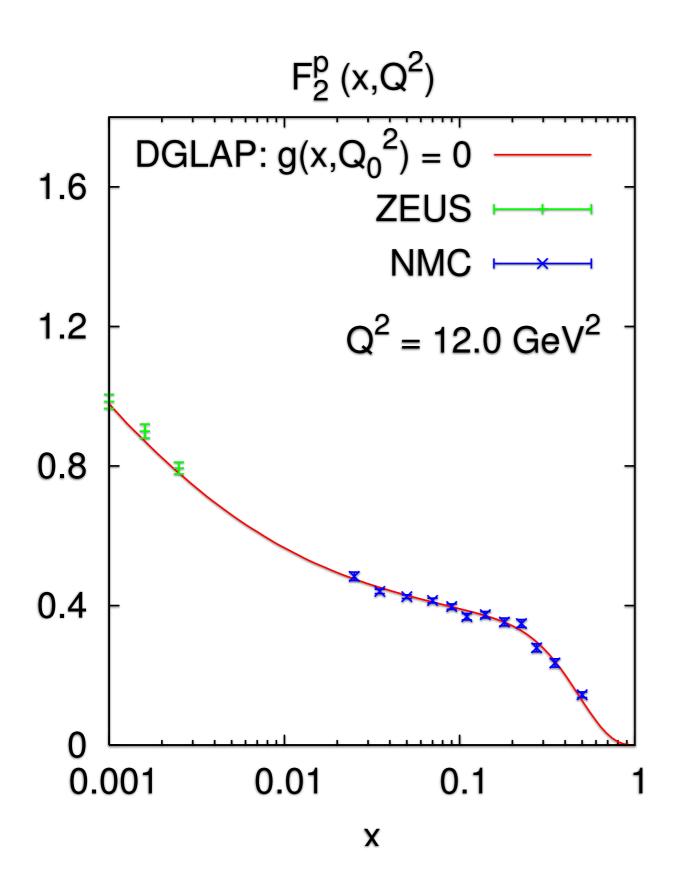
Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

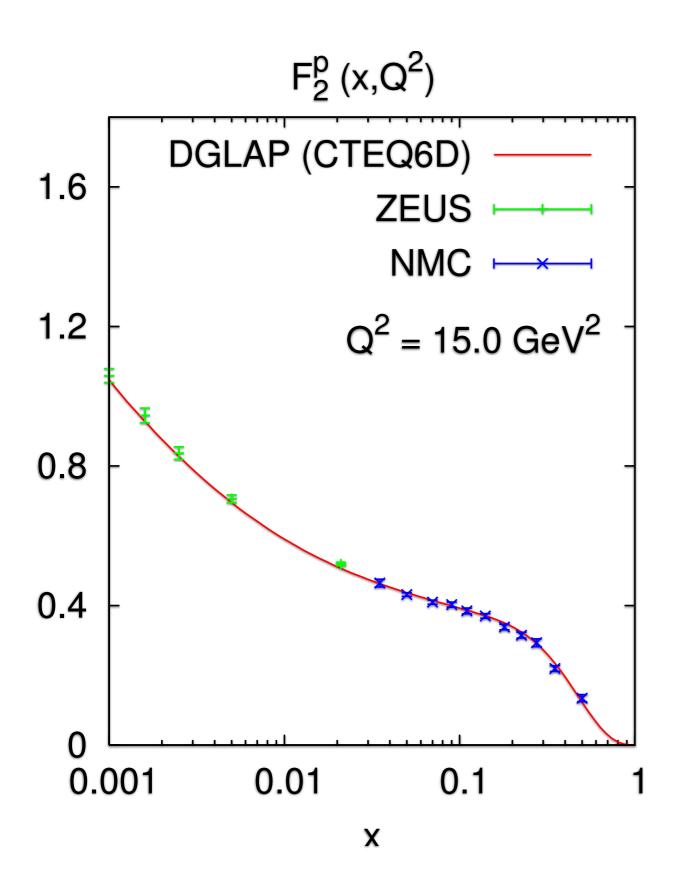
Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.


NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

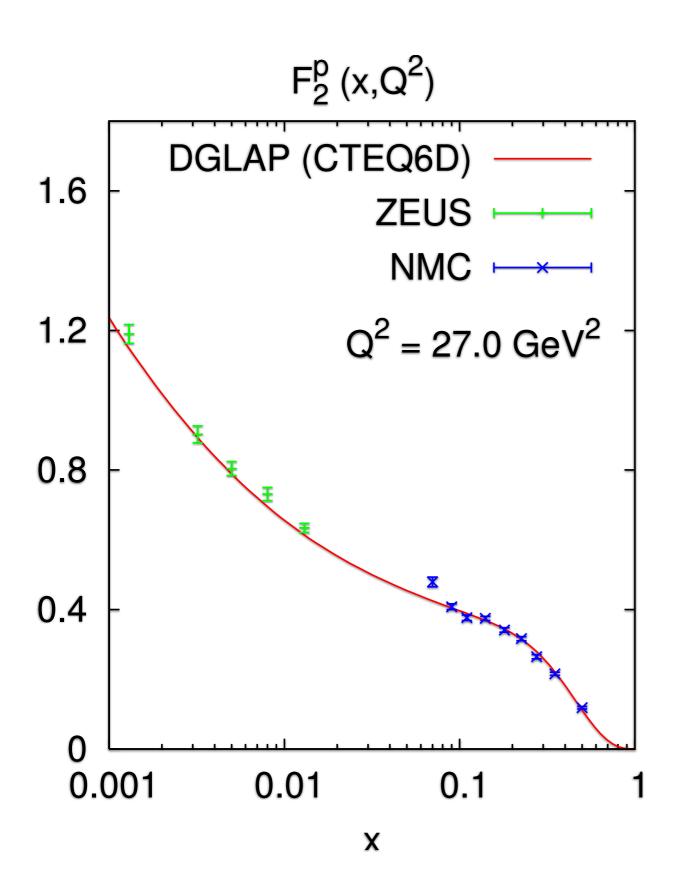
$$g(x,Q_0^2)=0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.


COMPLETE FAILURE to reproduce data evolution

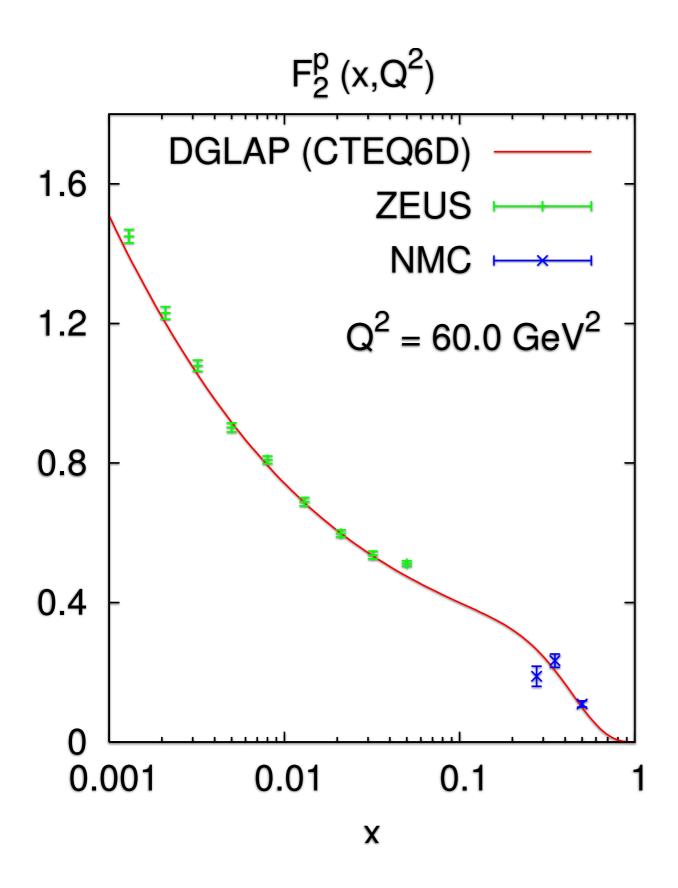
If gluon \neq 0, splitting

$$g \to q\bar{q}$$


generates extra quarks at large Q2 faster rise of F2

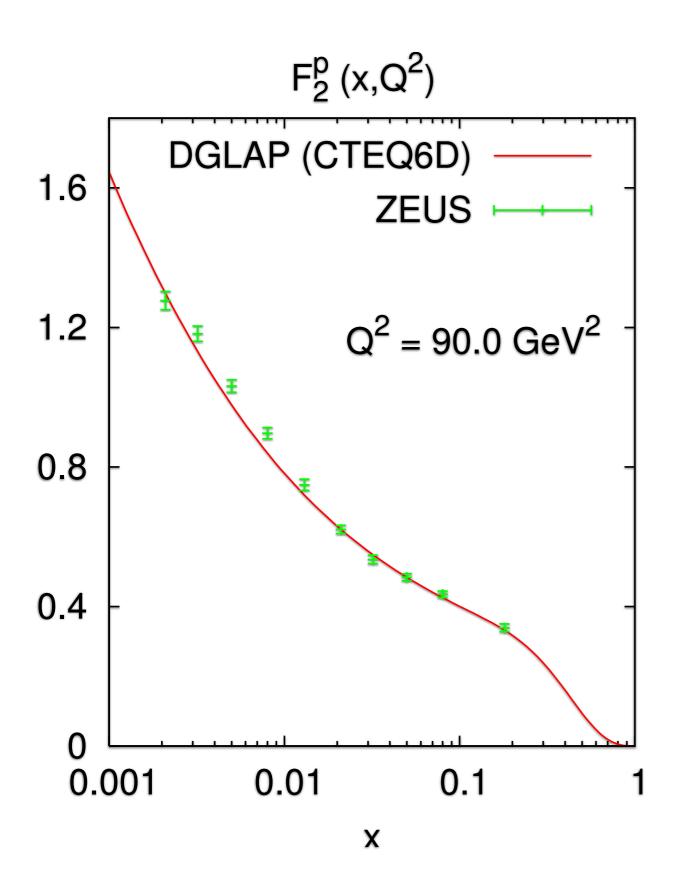
If gluon \neq 0, splitting

$$g \to q \bar{q}$$


generates extra quarks at large Q2 faster rise of F2

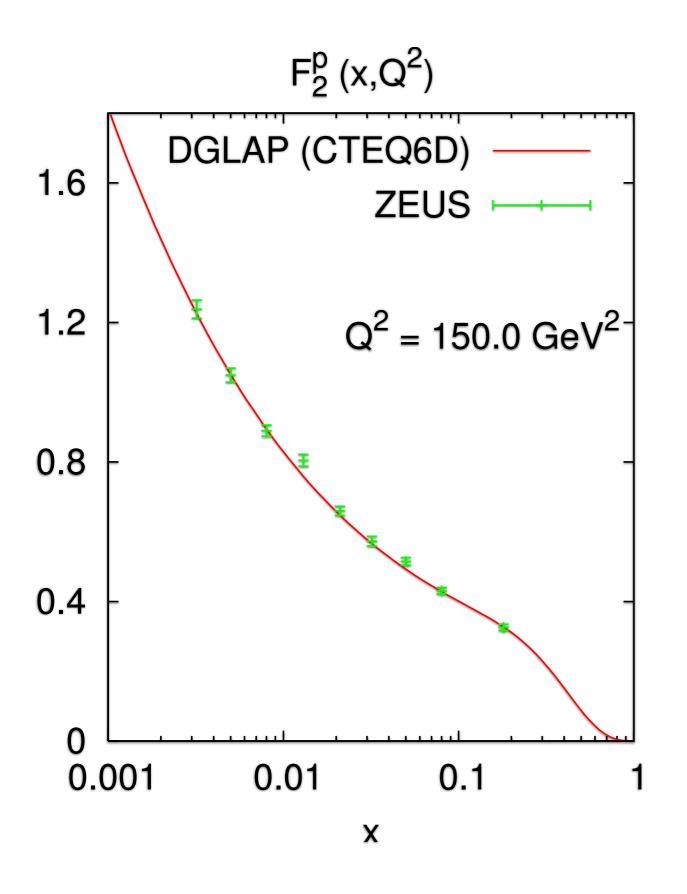
If gluon \neq 0, splitting

$$g \to q\bar{q}$$


generates extra quarks at large Q2 faster rise of F2

If gluon \neq 0, splitting

$$g \to q\bar{q}$$

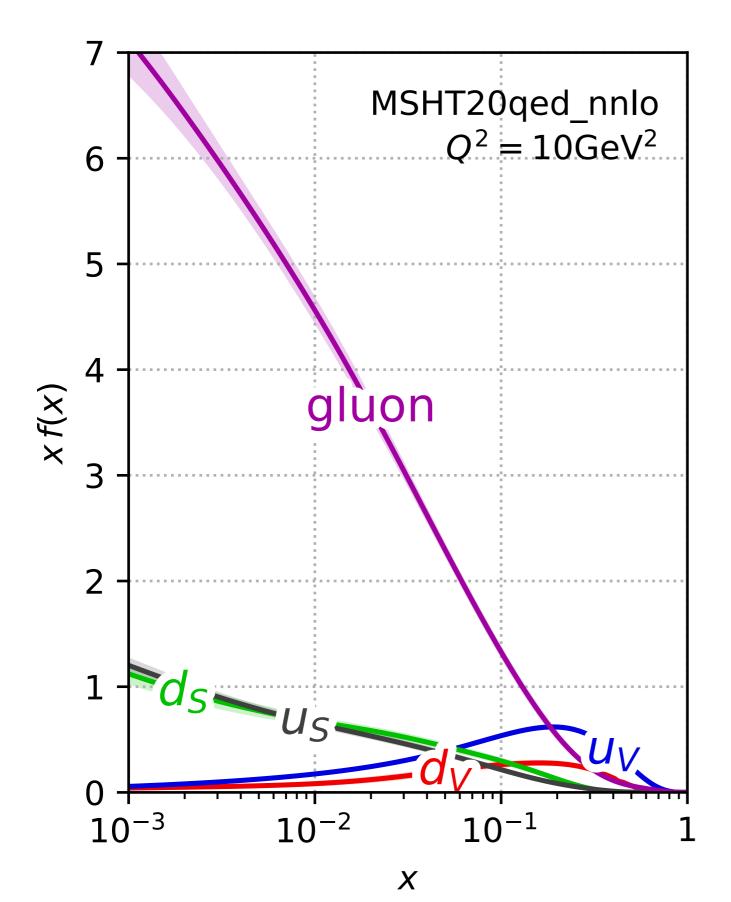

generates extra quarks at large Q2 faster rise of F2

If gluon \neq 0, splitting

$$g \to q\bar{q}$$

generates extra quarks at large Q2 faster rise of F2

If gluon \neq 0, splitting

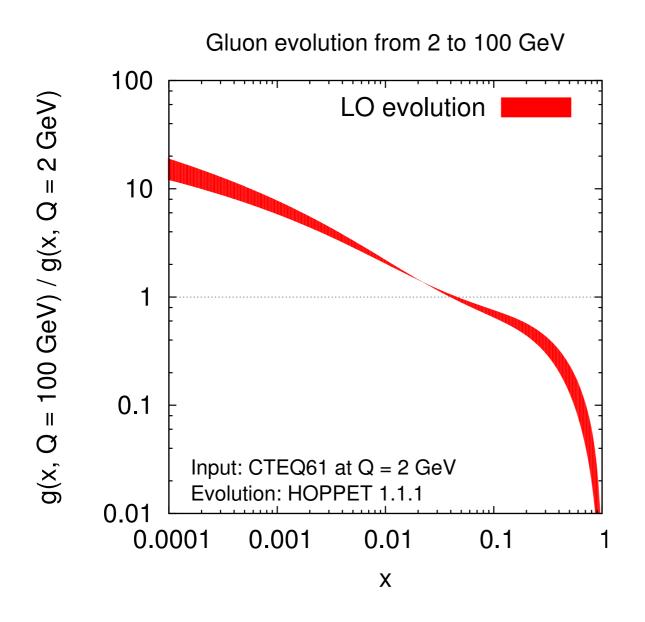

$$g \to q\bar{q}$$

generates extra quarks at large Q2 faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

SUCCESS

Resulting gluon distribution, compared to quarks


Resulting gluon distribution is **HUGE!**

Carries 43% of proton's momentum (at scale of 10 GeV²)

Crucial in order to satisfy momentum sum rule.

Large value of gluon has big impact on phenomenology, Higgs production is mostly (~90%) through gg→H

by how much does the gluon evolve?

Illustrate for the gluon distribution Here using fixed Q scales But for HERA \rightarrow LHC

relevant Q range is x-dependent

- ightharpoonup See factors $\sim 0.1-10$
- Remember: LHC involves product of two parton densities

It's crucial to get this right!

Without DGLAP evolution, you couldn't predict anything at LHC

NLO DGLAP

$$P_{ps}^{(1)}(x) = 4 C_F n_f \left(\frac{20}{9} \frac{1}{x} - 2 + 6x - 4H_0 + x^2 \left[\frac{8}{3} H_0 - \frac{56}{9} \right] + (1+x) \left[5H_0 - 2H_{0,0} \right] \right)$$

$$P_{qg}^{(1)}(x) = 4 C_{A} n_{f} \left(\frac{20}{9} \frac{1}{x} - 2 + 25x - 2p_{qg}(-x)H_{-1,0} - 2p_{qg}(x)H_{1,1} + x^{2} \left[\frac{44}{3} H_{0} - \frac{218}{9} \right] + 4(1-x) \left[H_{0,0} - 2H_{0} + xH_{1} \right] - 4\zeta_{2}x - 6H_{0,0} + 9H_{0} \right) + 4 C_{F} n_{f} \left(2p_{qg}(x) \left[H_{1,0} + H_{1,1} + H_{2} + H_{2} \right] + 4x^{2} \left[H_{0} + H_{0,0} + \frac{5}{2} \right] + 2(1-x) \left[H_{0} + H_{0,0} - 2xH_{1} + \frac{29}{4} \right] - \frac{15}{2} - H_{0,0} - \frac{1}{2} H_{0} \right)$$

$$\begin{split} P_{\mathrm{gq}}^{(1)}(x) &= 4 \, C_{A} C_{F} \left(\frac{1}{x} + 2 p_{\mathrm{gq}}(x) \left[H_{1,0} + H_{1,1} + H_{2} - \frac{11}{6} H_{1} \right] - x^{2} \left[\frac{8}{3} H_{0} - \frac{44}{9} \right] + 4 \zeta_{2} - 2 \right. \\ &- 7 H_{0} + 2 H_{0,0} - 2 H_{1} x + (1+x) \left[2 H_{0,0} - 5 H_{0} + \frac{37}{9} \right] - 2 p_{\mathrm{gq}}(-x) H_{-1,0} \right) - 4 \, C_{F} n_{f} \left(\frac{2}{3} x \right) \\ &- p_{\mathrm{gq}}(x) \left[\frac{2}{3} H_{1} - \frac{10}{9} \right] + 4 \, C_{F}^{2} \left(p_{\mathrm{gq}}(x) \left[3 H_{1} - 2 H_{1,1} \right] + (1+x) \left[H_{0,0} - \frac{7}{2} + \frac{7}{2} H_{0} \right] - 3 H_{0,0} \right. \\ &+ 1 - \frac{3}{2} H_{0} + 2 H_{1} x \right) \end{split}$$

$$\begin{split} P_{\rm gg}^{(1)}(x) &= 4 \, C_{A} n_{f} \left(1 - x - \frac{10}{9} p_{\rm gg}(x) - \frac{13}{9} \left(\frac{1}{x} - x^{2} \right) - \frac{2}{3} (1 + x) H_{0} - \frac{2}{3} \delta(1 - x) \right) + 4 \, C_{A}^{2} \left(27 + (1 + x) \left[\frac{11}{3} H_{0} + 8 H_{0,0} - \frac{27}{2} \right] + 2 p_{\rm gg}(-x) \left[H_{0,0} - 2 H_{-1,0} - \zeta_{2} \right] - \frac{67}{9} \left(\frac{1}{x} - x^{2} \right) - 12 H_{0} \right. \\ &\left. - \frac{44}{3} x^{2} H_{0} + 2 p_{\rm gg}(x) \left[\frac{67}{18} - \zeta_{2} + H_{0,0} + 2 H_{1,0} + 2 H_{2} \right] + \delta(1 - x) \left[\frac{8}{3} + 3 \zeta_{3} \right] \right) + 4 \, C_{F} n_{f} \left(2 H_{0} + \frac{2}{3} \frac{1}{x} + \frac{10}{3} x^{2} - 12 + (1 + x) \left[4 - 5 H_{0} - 2 H_{0,0} \right] - \frac{1}{2} \delta(1 - x) \right) \, . \end{split}$$

NLO:

$$P_{ab} = \frac{\alpha_s}{2\pi} P^{(0)} + \frac{\alpha_s^2}{16\pi^2} P^{(1)}$$

Curci, Furmanski & Petronzio '80

NNLO DGLAP

Divergences for x 1 are understood in the sense of -distributions

The third-order pure-singlet contribution to the quark-quark splitting function (2.4), corresponding to the anomalous dimension (3.10), is given by

 $\begin{array}{llll} P_{qg}^{2} & x & & 16C_{A}C_{F}n_{f} & p_{qg} & x & \frac{39}{2}H_{1}\zeta_{3} & 4H_{111} & 3H_{200} & \frac{15}{4}H_{12} & \frac{9}{4}H_{110} & 3H_{210} \\ & & & & & & & & \\ H_{0}\zeta_{3} & 2H_{211} & 4H_{2}\zeta_{2} & \frac{172}{12}H_{0}\zeta_{2} & \frac{551}{72}H_{00} & \frac{64}{3}\zeta_{3} & \zeta_{2}^{2} & \frac{49}{4}H_{2} & \frac{3}{2}H_{1000} & \frac{1}{3}H_{100} \\ & & & & & & \end{array}$

 $\begin{array}{c} \frac{382}{722} H_{10} & \frac{31}{2} H_{11} & \frac{111}{112} H_{11} & \frac{49}{4} H_{20} & \frac{2}{5} H_{15} \zeta_{2} & \frac{79}{6} H_{000} & \frac{172}{12} H_{3} & \frac{1259}{32} & \frac{2833}{216} H_{0} \\ 6H_{11} & \frac{341}{120} & 9H_{10} \zeta_{2} & 6H_{11} \zeta_{2} & H_{1100} & 3H_{1110} & 4H_{1111} & 3H_{112} & 6H_{121} \\ 6H_{13} & \frac{49}{4} \zeta_{2} & p_{00} & x & \frac{17}{2} H_{1} \zeta_{3} & \frac{5}{2} H_{110} & \frac{5}{2} H_{12} & \frac{9}{2} H_{10} & \frac{5}{2} H_{20} & \frac{2}{2} H_{100} \\ 6H_{11} & \frac{49}{4} \zeta_{2} & p_{00} & x & \frac{17}{2} H_{1} \zeta_{3} & \frac{2}{2} H_{110} & \frac{5}{2} H_{12} & \frac{9}{2} H_{10} & \frac{5}{2} H_{20} & \frac{2}{2} H_{100} \\ 6H_{11} & \frac{49}{4} \zeta_{2} & p_{00} & \frac{17}{2} H_{1} \zeta_{2} & \frac{2}{2} H_{10} & \frac{1}{2} H_{100} & \frac{2}{2} H_{10} \\ 6H_{11} & \frac{1}{x} & x^{2} & \frac{5}{12} & 4\zeta_{3} & \frac{29}{9} H_{10} & \frac{4}{3} H_{10} \zeta_{2} & 9H_{1} & \zeta_{2} & 2H_{10} & \frac{2}{2} H_{110} \\ 6H_{11} & \frac{1}{x} & x^{2} & \frac{5}{12} & 4\zeta_{3} & \frac{29}{9} H_{10} & \frac{4}{3} H_{10} \zeta_{2} & 9H_{1} & \zeta_{2} & 2H_{10} & \frac{27}{108} H_{1} \\ \frac{2}{3} H_{11} & 1 & x & 6H_{210} & 3H_{211} & \frac{5}{6} H_{11} & 7H_{200} & 2H_{12} & 9H_{20} & \frac{29}{2} H_{10} & \frac{13}{3} H_{1} \\ \frac{2}{3} H_{11} & 1 & x & 6H_{210} & 3H_{21} & \frac{5}{6} H_{11} & 7H_{200} & 2H_{12} & 9H_{20} & \frac{29}{2} H_{10} & \frac{13}{3} H_{1} \\ \frac{1189}{108} H_{1} & \frac{67}{3} H_{21} & 29H_{20} & \frac{949}{2} \zeta_{2} & \frac{67}{2} H_{000} & \frac{142}{3} H_{3} & \frac{398}{3} H_{9} & 2H_{30} & \frac{2}{3} H_{10} \\ H_{110} & \frac{154}{3} H_{02} & 29H_{20} & \frac{949}{6} \zeta_{2} & \frac{67}{2} H_{000} & \frac{14}{3} H_{3} & \frac{3}{3} & \frac{398}{3} H_{9} & 2H_{30} & \frac{2}{3} H_{10} \\ H_{12} & x & H_{100} & 0H_{2} & \zeta_{2} & 6H_{200} & 2H_{00} \zeta_{2} & 9H_{1} & 10 & 7H_{12} & 9H_{20} & \frac{2}{2} H_{12} \\ H_{12} & \frac{3}{3} H_{10} & \frac{2}{3} H_{10} & \frac{3}{3} H_{10} & \frac{2}{3} H_{10} & \frac{2}{3} H_{10} \\ H_{12} & \frac{3}{3} H_{10} & \frac{3}{3} H_{10} & \frac{3}{3} H_{10} & \frac{2}{3} H_{10} & \frac{2}{3} H_{10} \\ \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} \\ \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}{2} H_{10} \\ \frac{3}{2} H_{10} & \frac{3}{2} H_{10} & \frac{3}$

17

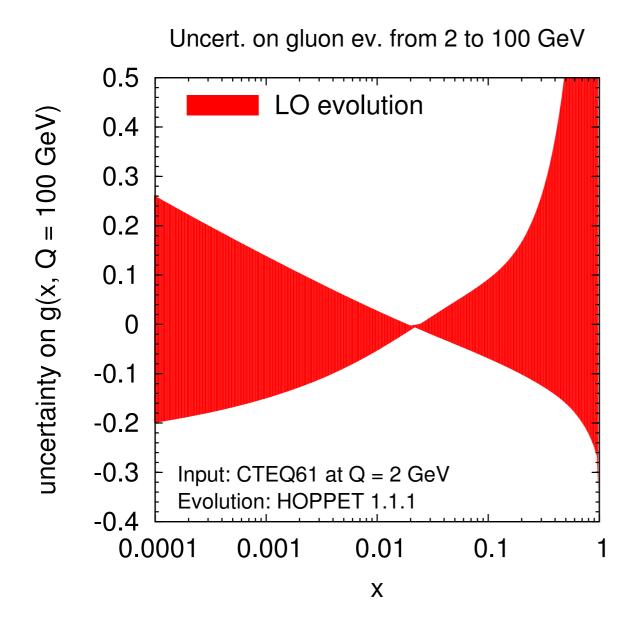
 $\begin{array}{c} 6H_{1,1,1,0} & 2H_{1,1} & 2H_{1,2} & 1 \\ \frac{8}{3}H_{100} & \frac{3}{2}H_{10} & 6S_{1} & \frac{161}{36H_{11}} & \frac{251}{36H_{110}} & \frac{2}{3}\frac{2}{1}x & x^{2} & \frac{2}{3}H_{10} & \frac{28}{9}H_{0} & 2H_{110} & \frac{10}{9}H_{11} \\ \frac{8}{3}H_{100} & \frac{3}{2}H_{10} & 6S_{1} & \frac{161}{36H_{11}} & \frac{255}{108} & \frac{2}{3}\frac{1}{x} & x^{2} & \frac{2}{3}H_{10} & \frac{28}{9}H_{0} & 2H_{110} & 1\\ \frac{3}{9}H_{0} & \frac{2}{3}H_{0} & \frac{2}{3}H_{111} & 1 & x & 15H_{0000} & 5H_{25} & \frac{65}{6}\xi_{0} & \frac{11}{10}H_{11} \\ \frac{3}{2}H_{0} & \frac{2}{3}H_{00}\xi_{0} & H_{110} & \frac{3}{6}H_{10} & \frac{17}{12}H_{10} & \frac{551}{2}\xi_{0}^{2} & \frac{29}{9}H_{10} & \frac{113}{12}H_{2} & \frac{17}{72}H_{10} \\ \frac{2243}{108} & \frac{265}{6}H_{100} & \frac{33}{3}H_{200} & 19H_{21} & \frac{31}{12}H_{11} & \frac{2}{2}H_{20} & \frac{997}{6}\xi_{2} & \frac{29}{6}H_{15}\xi_{2} & \frac{143}{12}H_{3} \\ \frac{11}{16}H_{11} & \frac{19}{12}H_{5}\xi_{2} & \frac{1273}{123}H_{4} & \frac{43}{6}H_{000} & \frac{301}{30}H_{00} & 1 & x & 8H_{210} & 4H_{12} \\ 7H_{1} & 10 & \frac{35}{6}H_{111} & 5H_{2}\xi_{2} & 11H_{200} & \frac{1}{3}H_{10} & \frac{15}{2}H_{1}\xi_{2} & 8H_{31} & 10H_{210} \\ 5H_{5}\xi_{2} & 4H_{211} & H_{30} & 30H_{5}\xi_{3} & 5H_{5}\xi_{2} & 2H_{12} & 6H_{110} & 6H_{110} & 3H_{111} \\ 11H_{0000} & 5H_{11} & \frac{25}{4}H_{4} & \frac{1}{4}H_{00}\xi_{2} & H_{12} & \frac{1}{2}H_{310} & \frac{19}{2}H_{5}\xi_{5} & \frac{17}{17}H_{100} \\ \frac{3}{3}H_{3} & \frac{1}{12}H_{11} & \frac{3}{4}H_{4} & \frac{1}{4}H_{00}\xi_{2} & H_{12} & \frac{1}{12}H_{30} & \frac{19}{2}H_{5}\xi_{5} & \frac{17}{17}H_{100} \\ \frac{3}{3}H_{3} & \frac{1}{12}H_{3} & \frac{1}{12}H_{3} & \frac{1}{12}H_{3} & \frac{1}{12}H_{3} & \frac{1}{12}H_{3} & \frac{2}{3}H_{5}\xi_{5} \\ \frac{3}{3}H_{3} & \frac{3}{12}H_{3} & \frac{3}{18}H_{3} & \frac{3}{18}H_{3} & \frac{3}{18}H_{3} \\ \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{18}H_{3} & \frac{3}{18}H_{3} \\ \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} \\ \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} \\ \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} \\ \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3} & \frac{3}{12}H_{3}$

**110

$$P_{ab} = \frac{\alpha_s}{2\pi} P_{ab}^{(0)}$$

$$+ \left(\frac{\alpha_s}{2\pi}\right)^2 P_{ab}^{(1)}$$

$$+ \left(\frac{\alpha_s}{2\pi}\right)^3 P_{ab}^{(2)}$$


 $\begin{array}{c} \frac{655}{576} - \frac{151}{6} \zeta_5 - \frac{185}{18} H_1 + \frac{1}{6} H_{1+1} - \frac{95}{9} H_2 - \frac{29}{6} H_{2+} - \frac{171}{4} H_{1-0} - 12H_{1-00} - 7H_{1} \zeta_2 \\ \frac{1}{6} H_{2-0} - \frac{3}{3} H_{2-0} - \frac{3}{2} H_{1-1} + \frac{4}{10} H_{1-0} - 35H_{1-0} - \frac{19}{17} H_0 - \frac{104}{14} H_{0-0} - \frac{19}{6} H_{000} \\ \frac{1}{6} H_{000} - \frac{3}{3} H_{2-0} - \frac{3}{2} H_{1-1} + \frac{4}{12} H_{100} - 35H_{1-0} - \frac{19}{7} H_0 - \frac{104}{14} H_{0-0} - \frac{19}{6} H_{000} \\ \frac{1}{6} H_{000} - \frac{3}{2} H_{2} - \frac{1}{2} H_{2$

 $\begin{array}{c} \frac{33}{24} \frac{1}{2} \frac{39}{4} \frac{11}{11} \frac{2H_{11}}{6} \frac{1}{3} \frac{1}{11} \frac{1}{10} \frac{1}{7} \frac{1}{4} \frac{10}{9} \frac{4}{9} \frac{1}{4} \frac{10}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \\ \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{11} \frac{1}{6} \frac{1}{9} \frac{1}{8} \frac{1}{8} \frac{1}{11} \frac{1}{5} \frac{1}{11} \frac{1}{10} \frac{1}{9} \frac{$

Finally the Mellin inversion of Eq. (3.13) yields the NNLO gluon-gluon splitting function

NNLO, $P_{ab}^{(2)}$: Moch, Vermaseren & Vogt '04

by how much does the gluon evolve?

Estimate uncertainties on evolution by changing the scale used for α_s inside the splitting functions

- ightharpoonup with LO evolution, uncertainty is $\sim 30\%$
- NLO brings it down to $\sim 5\%$
- NNLO \rightarrow 2% Commensurate with data uncertainties

N3LO DGLAP [in progress]

Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond

S. Moch^a, B. Ruijl^{b,c}, T. Ueda^b, J.A.M. Vermaseren^b and A. Vogt^d

arXiv:1707.08315v2 [hep-ph] 5 Oct 2017

Four-loop splitting functions in QCD – The quark-quark case –

G. Falcioni^a, F. Herzog^a, S. Moch^b and A. Vogt^c

arXiv:2302.07593v1 [hep-ph] 15 Feb 2023

$$P_{ab} = \frac{\alpha_s}{2\pi} P_{ab}^{(0)}$$

$$+ \left(\frac{\alpha_s}{2\pi}\right)^2 P_{ab}^{(1)}$$

$$+ \left(\frac{\alpha_s}{2\pi}\right)^3 P_{ab}^{(2)}$$

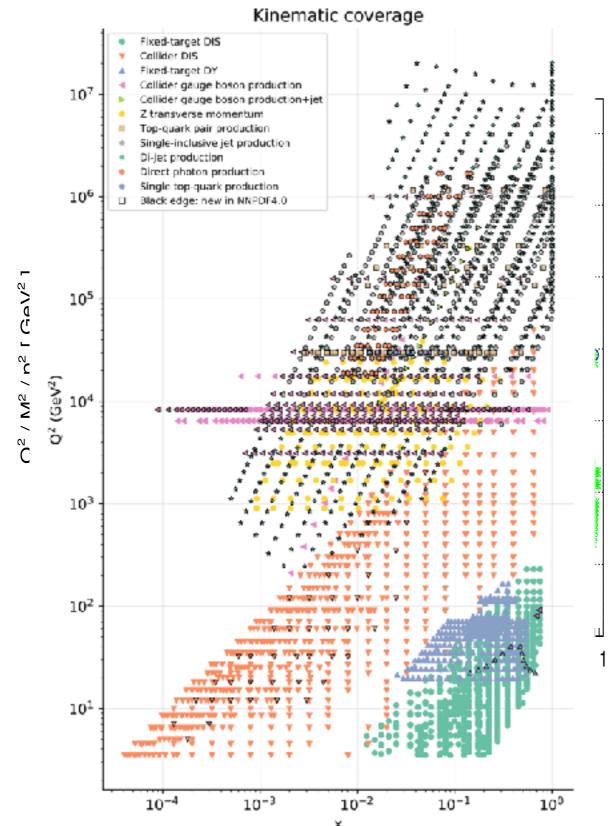
$$+ \left(\frac{\alpha_s}{2\pi}\right)^4 P_{ab}^{(3)}$$

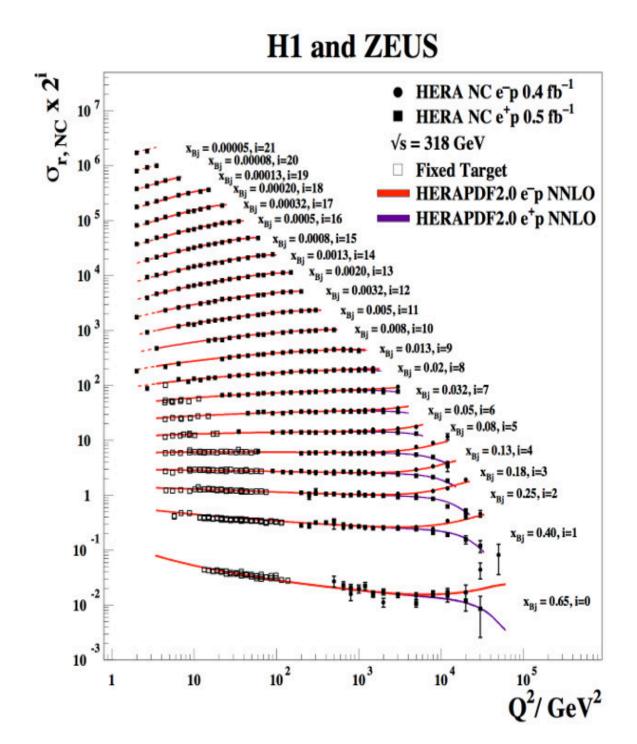
heavy-quarks PDFs

if we have time, discuss at blackboard

modern PDF fits

Today's PDF fits


PDFs are obtained from "global" fits to large & diverse data sets


Several groups active, three stand out for core LHC applications

- ➤ CT (aka CTEQ, US+China based): 1912.10053 (CT18)
- ➤ MSHT (mostly UK based): <u>2012.04684</u> (MSHT20)
- ➤ NNPDF (pan-European): 2109.02653 (NNPDF40)

Next few slides illustrate some of the issues that they have to deal with and differences of approach.

NNPDF4.0 dataset

Today's PDF fits: huge array of data (and choices about which data to use)

BCDMS $μp$ F_2 [49] 135.0/151 146.0/18 NMC $μp$ F_2 [50] 142.9/123 124.1/12 NMC $μd$ F_2 [50] 128.2/123 112.4/12 NMC $μd$ F_2 [50] 127.8/148 130.8/14 E665 $μp$ F_2 [52] 59.5/53 64.7/53 E665 $μd$ F_2 [52] 59.3/54 29.4/37 32.0/33 SLAC ep F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/57 E866/NuSea pd / pp DY [149] 216.2/184 225.1/18 E866/NuSea pd / pp DY [150] 10.6/15 10.4/19 NnTeV $νN$ F_2 [55] 43.7/53 38.3/53 CHORUS $νN$ F_2 [56] 27.8/42 30.2/42 NuTeV $νN$ $ν$			
BCDMS μd F_2 [49] 135.0/151 146.0/15 NMC μp F_2 [50] 128.2/123 1124.1/12 NMC μd F_2 [50] 128.2/123 112.4/13 NMC $\mu n/\mu p$ [51] 127.8/148 130.8/14 E665 μp F_2 [52] 59.5/53 64.7/53 E665 μd F_2 [52] 50.3/53 59.7/53 SLAC ep F_2 [53, 54] 29.4/37 32.0/33 SLAC ed F_2 [53, 54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146,148] 79.4/57 68.4/53 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/43 NuTeV νN xF_3 [56] 27.8/42 30.2/43 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 80.4/42 70.2/43 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/73 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40		NLO	NNLO
NMC μp F_2 [50] 124.1/12 NMC μd F_2 [50] 128.2/123 112.4/12 NMC $\mu n/\mu p$ [51] 127.8/148 130.8/14 E665 μp F_2 [52] 59.5/53 64.7/53 E665 μd F_2 [52] 50.3/54 29.4/37 32.0/37 SLAC ep F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/57 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/57 CHORUS νN F_2 [56] 27.8/42 30.2/42 NuTeV νN xF_3 [56] 27.8/42 30.7/42 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/38 HERA e^+p CC [84] 91.6/75 89.8/78 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	BCDMS $\mu p F_2$ [49]	169.4/163	180.2/163
NMC μd F_2 [50] 128.2/123 112.4/12 NMC $\mu n/\mu p$ [51] 127.8/148 130.8/14 12665 μp F_2 [52] 59.5/53 64.7/53 128.4C ϵp F_2 [53] 59.5/53 59.7/53 SLAC ϵp F_2 [53,54] 29.4/37 32.0/37 SLAC ϵd F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/57 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/15 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/45 NuTeV νN	BCDMS $\mu d F_2$ [49]	135.0/151	146.0/151
NMC $\mu n/\mu p$ [51] 127.8/148 130.8/16 E665 μp F_2 [52] 59.5/53 64.7/53 E665 μd F_2 [52] 50.3/53 59.7/53 SLAC ep F_2 [53, 54] 29.4/37 32.0/33 SLAC ed F_2 [53, 54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/57 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/15 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/43 NuTeV νN xF_3 [56] 27.8/42 30.7/43 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 HERA e^+p CC [84] 80.4/42 70.2/43 HERA e^+p CC [84] 80.4/42 70.2/43 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/73 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	NMC $\mu p F_2$ [50]	142.9/123	124.1/123
E665 μ p F_2 [52] 59.5/53 64.7/53 E665 μ d F_2 [53,54] 50.3/53 59.7/53 SLAC ep F_2 [53,54] 29.4/37 32.0/33 SLAC ed F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146–148] 79.4/57 68.4/53 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/43 NuTeV νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^+p CC [84] 80.4/42 70.2/43 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	NMC $\mu d F_2$ [50]	128.2/123	112.4/123
E665 μd F_2 [52] 50.3/53 59.7/53 SLAC ep F_2 [53,54] 29.4/37 32.0/33 SLAC ed F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/53 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/43 NuTeV νN xF_3 [56] 27.8/42 30.7/43 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \rightarrow \mu\mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu\mu X$ [57] 73.2/86 67.7/86 HERA e^+p CC [84] 54.3/39 52.0/38 HERA e^+p CC [84] 80.4/42 70.2/43 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	NMC $\mu n/\mu p$ [51]	127.8/148	130.8/148
SLAC ep F_2 [53,54] 29.4/37 32.0/37 SLAC ed F_2 [53,54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49,50,54,146-148] 79.4/57 68.4/57 E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/42 NuTeV νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/38 HERA e^+p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	E665 $\mu p \ F_2 \ [52]$	59.5/53	64.7/53
SLAC $ed\ F_2$ [53, 54] 37.4/38 23.0/38 NMC/BCDMS/SLAC/HERA F_L [49, 50, 54, 146–148] 79.4/57 68.4/57 E866/NuSea $pp\ DY$ [149] 216.2/184 225.1/18 E866/NuSea $pd/pp\ DY$ [150] 10.6/15 10.4/18 NuTeV $\nu N\ F_2$ [55] 43.7/53 38.3/53 CHORUS $\nu N\ F_2$ [56] 27.8/42 30.2/43 NuTeV $\nu N\ xF_3$ [55] 37.8/42 30.7/43 CHORUS $\nu N\ xF_3$ [56] 22.0/28 18.4/28 CCFR $\nu N\to \mu\mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N\to \mu\mu X$ [57] 73.2/86 67.7/86 HERA $e^+p\ CC$ [84] 54.3/39 52.0/38 HERA $e^-p\ CC$ [84] 80.4/42 70.2/45 HERA $e^+p\ NC$ 820 GeV [84] 91.6/75 89.8/78 HERA $e^+p\ NC$ 920 GeV [84] 553.9/402 512.7/40	E665 $\mu d F_2$ [52]	50.3/53	59.7/53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SLAC $\epsilon p \ F_2 \ [53, 54]$	29.4/37	32.0/37
E866/NuSea pp DY [149] 216.2/184 225.1/18 E866/NuSea pd/pp DY [150] 10.6/15 10.4/18 NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/42 NuTeV νN xF_3 [56] 37.8/42 30.7/42 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/38 HERA e^+p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	SLAC ed F ₂ [53, 54]	37.4/38	23.0/38
E866/NuSea pd/pp DY [150] $10.6/15$ $10.4/15$ NuTeV νN F_2 [55] $43.7/53$ $38.3/53$ CHORUS νN F_2 [56] $27.8/42$ $30.2/42$ NuTeV νN xF_3 [55] $37.8/42$ $30.7/43$ CHORUS νN xF_3 [56] $22.0/28$ $18.4/28$ CCFR $\nu N \to \mu \mu X$ [57] $73.2/86$ $67.7/86$ NuTeV $\nu N \to \mu \mu X$ [57] $41.0/84$ $58.4/84$ HERA e^+p CC [84] $54.3/39$ $52.0/38$ HERA e^-p CC [84] $80.4/42$ $70.2/42$ HERA e^+p NC 820 GeV [84] $91.6/75$ $89.8/78$ HERA e^+p NC 920 GeV [84] $553.9/402$ $512.7/40$	NMC/BCDMS/SLAC/HERA F _L [49,50,54,146-148]	79.4/57	68.4/57
NuTeV νN F_2 [55] 43.7/53 38.3/53 CHORUS νN F_2 [56] 27.8/42 30.2/42 NuTeV νN xF_3 [55] 37.8/42 30.7/42 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	E866/NuSca pp DY [149]	216.2/184	225.1/184
CHORUS νN F_2 [56] 27.8/42 30.2/42 NuTeV νN xF_3 [55] 37.8/42 30.7/42 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	E866/NuSea <i>pd/pp</i> DY [150]	10.6/15	10.4/15
NuTeV νN xF_3 [55] 37.8/42 30.7/42 CHORUS νN xF_3 [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/38 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	NuTeV νN F_2 [55]	43.7/53	38.3/53
CHORUS $\nu N \times F_3$ [56] 22.0/28 18.4/28 CCFR $\nu N \to \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \to \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	CHORUS $\nu N F_2$ [56]	27.8/42	30.2/42
CCFR. $\nu N \rightarrow \mu \mu X$ [57] 73.2/86 67.7/86 NuTeV $\nu N \rightarrow \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/75 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	NuTeV $\nu N x F_3$ [55]	37.8/42	30.7/42
NuTeV $\nu N \rightarrow \mu \mu X$ [57] 41.0/84 58.4/84 HERA e^+p CC [84] 54.3/39 52.0/39 HERA e^-p CC [84] 80.4/42 70.2/42 HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	CHORUS $\nu N x \vec{F}_3$ [56]	22.0/28	18.4/28
HERA e^+p CC [84] $54.3/39$ $52.0/39$ HERA e^-p CC [84] $80.4/42$ $70.2/42$ HERA e^+p NC 820 GeV [84] $91.6/75$ $89.8/79$ HERA e^+p NC 920 GeV [84] $553.9/402$ $512.7/40$	CCFR $\nu N \rightarrow \mu \mu X$ [57]	73.2/86	67.7/86
HERA e^-p CC [84] $80.4/42$ $70.2/42$ HERA e^+p NC 820 GeV [84] $91.6/75$ $89.8/78$ HERA e^+p NC 920 GeV [84] $553.9/402$ $512.7/40$	NuTeV $\nu N \rightarrow \mu \mu X [57]$	41.0/84	58.4/84
HERA e^+p NC 820 GeV [84] 91.6/75 89.8/78 HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	HERA e^+p CC [84]	54.3/39	52.0/39
HERA e^+p NC 920 GeV [84] 553.9/402 512.7/40	HERA e^-p CC [84]	80.4/42	70.2/42
	HERA e^+p NC 820 GeV [84]	91.6/75	89.8/75
HERA e ⁻ p NC 460 GeV [84] 253.3/209 248.3/20	HERA e^+p NC 920 GeV [84]	553.9/402	512.7/402
112141 0 p 1.0 100 00. [11]	HERA e ⁻ p NC 460 GeV [84]	253.3/209	248.3/209
HERA e^-p NC 575 GeV [84] $268.1/259$ $268.1/259$ $263.0/29$	HERA e ⁻ p NC 575 GeV [84]	268.1/259	263.0/259
HERA e^-p NC 920 GeV [84] 252.3/159 244.4/19	HERA e^-p NC 920 GeV [84]	252.3/159	244.4/159
HERA $ep F_2^{charm}$ [26] 125.6/79 132.3/7	HERA ep F ₂ ^{charm} [26]	125.6/79	132.3/79
DØ II $p\bar{p}$ incl. jets [125] 117.2/110 120.2/11	DØ II $p\bar{p}$ incl. jets [125]	117.2/110	120.2/110
CDF II $p\bar{p}$ incl. jets [124] 70.4/76 60.4/76	CDF Π $p\bar{p}$ incl. jets [124]	70.4/76	60.4/76
		19.1/13	19.0/13
			33.9/12
DØ II $W \to \nu \mu$ asym. [152] 13.9/10 17.3/10	DØ II $W \to \nu \mu$ asym. [152]	13.9/10	17.3/10
		,	16.4/28
		36.9/28	37.1/28
		13.1/14	12.0/14

MSHT20 data sets & χ^2

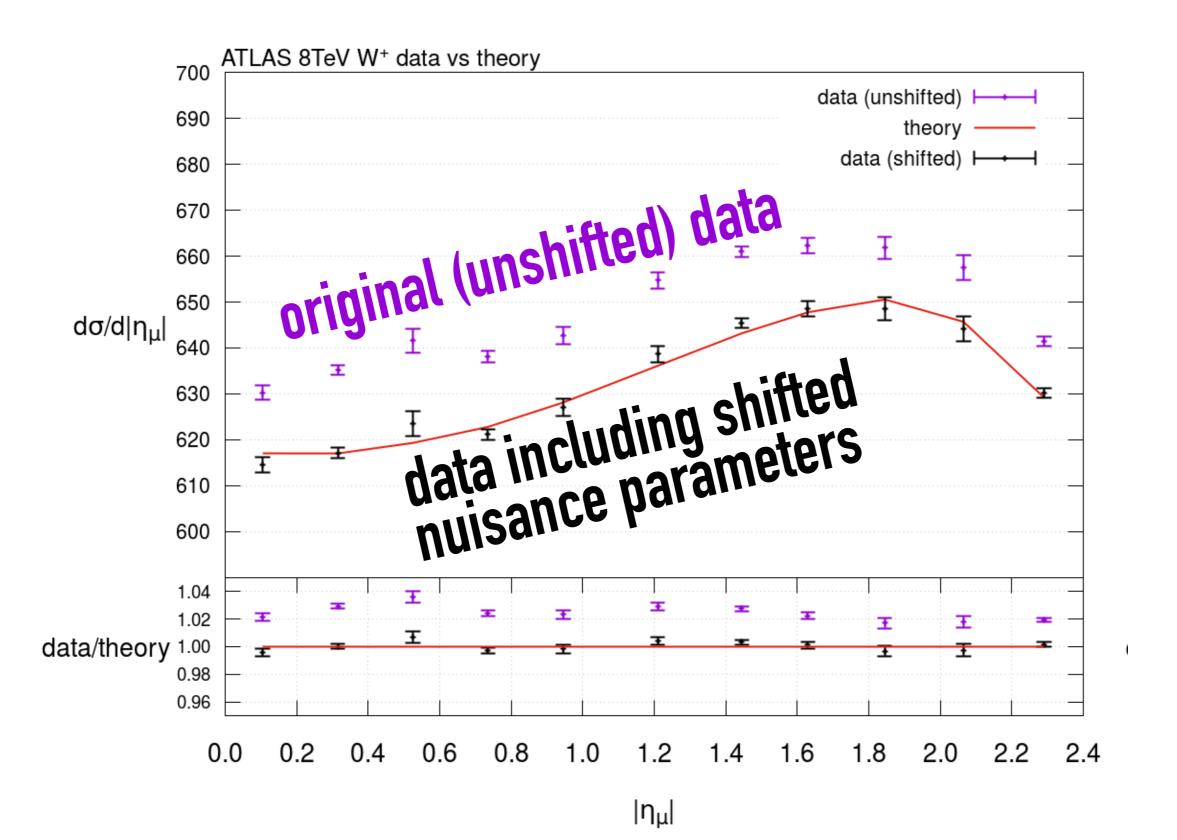

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CMS W asym. $p_T > 35 \text{ GeV} [155]$ 11.8/11 7.8/11 CMS asym. $p_T > 25, 30 \text{ GeV} [156]$ 11.8/24 7.4/24 LHCb $Z \to e^+e^-[157]$ 14.1/9 22.7/9
CMS asym. $p_T > 25,30 \text{ GeV} [156]$ 11.8/24 7.4/24 LHCb $Z \to e^+e^-$ [157] 14.1/9 22.7/9
LHCb $Z \to e^+e^-$ [157] 14.1/9 22.7/9
· · ·
LHCb W asym. $p_T > 20 \text{ GeV}$ [158] $10.5/10$ $12.5/10$
CMS $Z \rightarrow e^{+}e^{-}$ [159] 18.9/35 17.9/35
ATLAS High-mass Drell-Yan [160] 20.7/13 18.9/13
CMS double diff. Drell-Yan [72] 222.2/132 144.5/13
Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [93]- [94] 22.8/17 14.5/17
LHCb 2015 W, Z [95,96] 114.4/67 99.4/67
LHCb 8 TeV $Z \to ee$ [97] 39.0/17 26.2/17
CMS 8 TeV W [98] 23.2/22 12.7/22
ATLAS 7 TeV jets [18] 226.2/140 221.6/14
CMS 7 TeV $W + c$ [99] 8.2/10 8.6/10
ATLAS 7 TeV high precision W, Z [20] 304.7/61 116.6/61
CMS 7 TeV jets [100] 200.6/158 175.8/15
CMS 8 TeV jets [101] 285.7/174 261.3/17
CMS 2.76 TeV jet [107] 124.2/81 102.9/81
ATLAS 8 TeV $Z p_T$ [75] 235.0/104 188.5/10
ATLAS 8 TeV single diff tt [102] 39.1/25 25.6/25
ATLAS 8 TeV single diff $t\bar{t}$ dilepton [103] 4.7/5 3.4/5
CMS 8 TeV double differential $t\bar{t}$ [105] 32.8/15 22.5/15
CMS 8 TeV single differential $t\bar{t}$ [108] 12.9/9 13.2/9
ATLAS 8 TeV High-mass Drell-Yan [73] 85.8/48 56.7/48
ATLAS 8 TeV W [106] 84.6/22 57.4/22
ATLAS 8 TeV W + jets [104] 33.9/30 18.1/30
ATLAS 8 TeV double differential Z [74] 157.4/59 85.6/59
Total 5822.0/4363 5121.9/43

Table 6: The values of χ^2/N pts. for the non-LHC data sets included in the global fit at NLO and NNLO.

Table 7: The values of χ^2/N pts. for the LHC data sets included in the global fit and the overall global fit χ^2/N at NLO and NNLO. The corresponding values for the non-LHC data sets are shown in Table 6, and the total value corresponds to the sum over both tables.

data is precise, correlations between systematics are crucial

e.g. from MSHT20 (2012.04684)

today's PDF fits: fitting functions

A generic function f(x) involves an infinite number of degrees of freedom. How can you fit this with a finite number of data points?

CT / **MSHT** use parameterisations with hand-picked number of terms, e.g. up to n = 6 in Chebyshev series:

$$xf(x,Q_0^2) = A(1-x)^{\eta} x^{\delta} \left(1 + \sum_{i=1}^n a_i T_i^{\text{Ch}}(y(x))\right)$$

NNPDF use a *neural network* as a generic fit function, and separate data into training / validation. Fit is done using just the training subset, and stops when χ^2 on training + validation starts to increase. (Supplemented with closure tests)

today's PDF fits: uncertainty estimation

With fits to O(60) data sets, chances are they won't all be consistent (plainly inconsistent data sets may simply be excluded, but that can be biased)

CT / **MSHT** do a Hessian fit, with error eigenfunctions, scaled by a tolerance T that is like replacing $\Delta \chi^2 = 1$ with $\Delta \chi^2 = T$.

Squared error on a cross section is obtained by summing squared variations from each of the eigenfuntions.

NNPDF fits Monte Carlo replica data sets

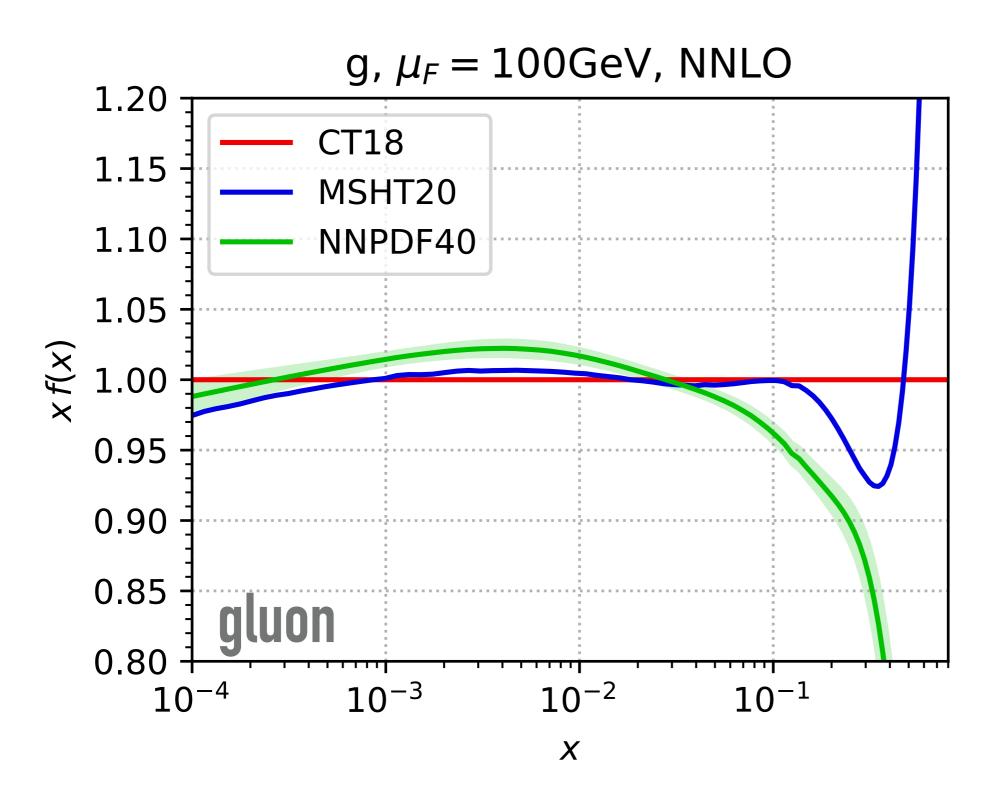
i.e. fluctuate the data according to errors, and fit the fluctuated data; repeat over and over, to get O(100) replica fits; prediction for any cross section is then average and std.dev. across the replicas

today's PDF fits: treatment of charm

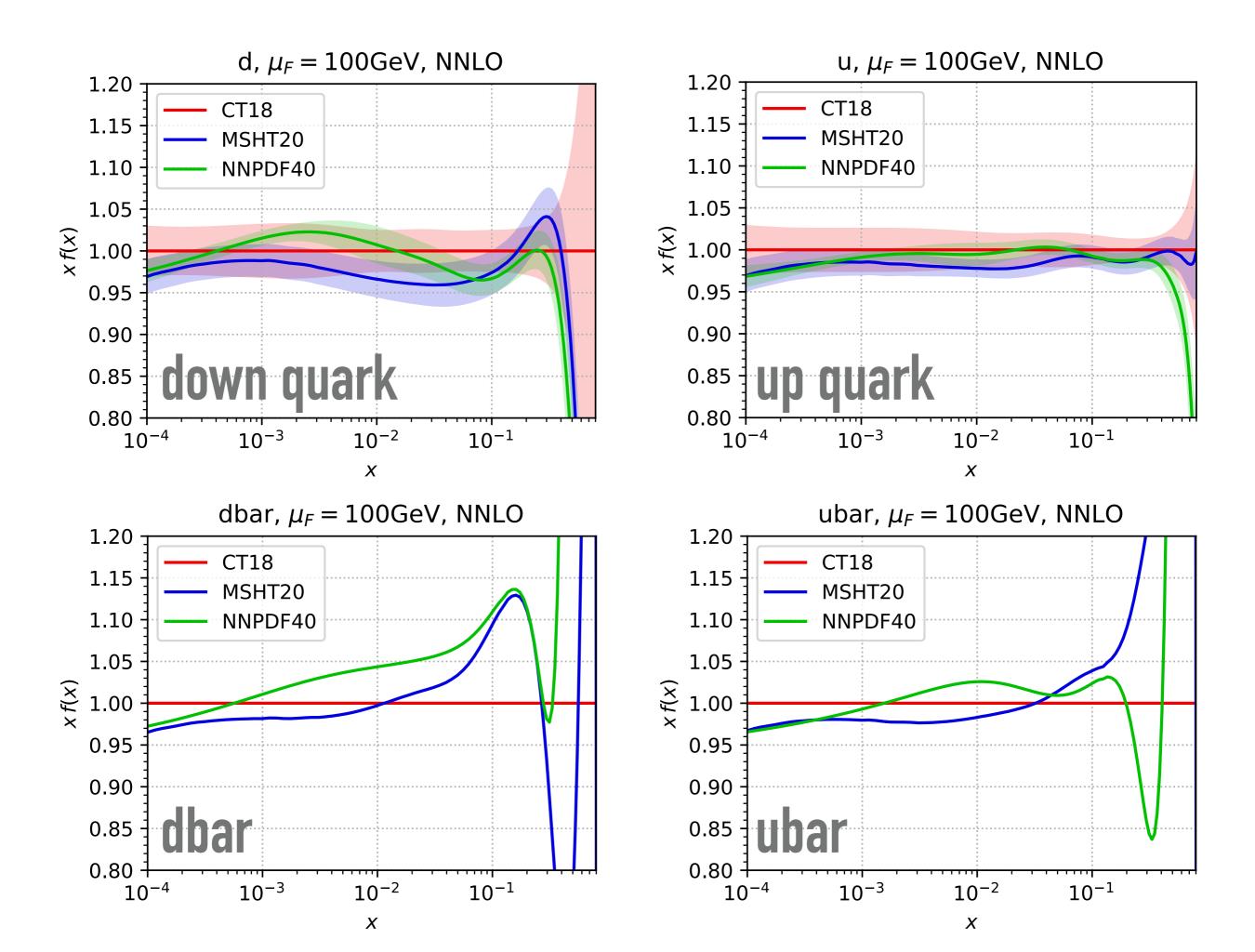
Charm-quark mass is around 1.5 GeV. Is this perturbative enough to treat it as purely perturbative generated? Or should one fit the charm as a light flavour?

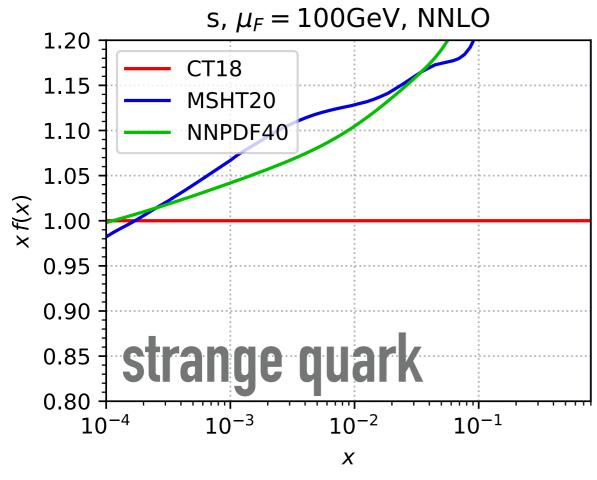
CT / MSHT treat charm perturbatively, turning on its evolution from (almost zero) at the charm mass.

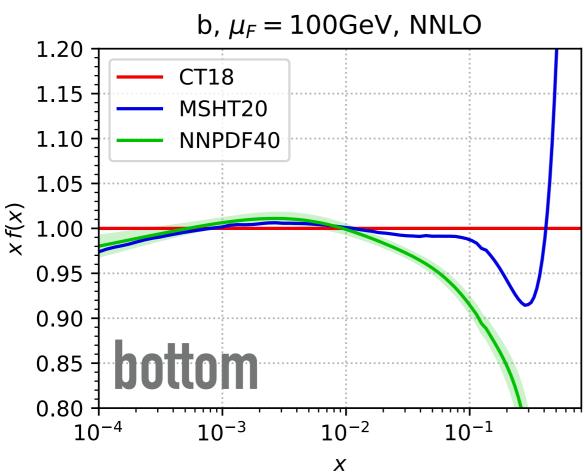
NB: CT also explores "fitted" charm

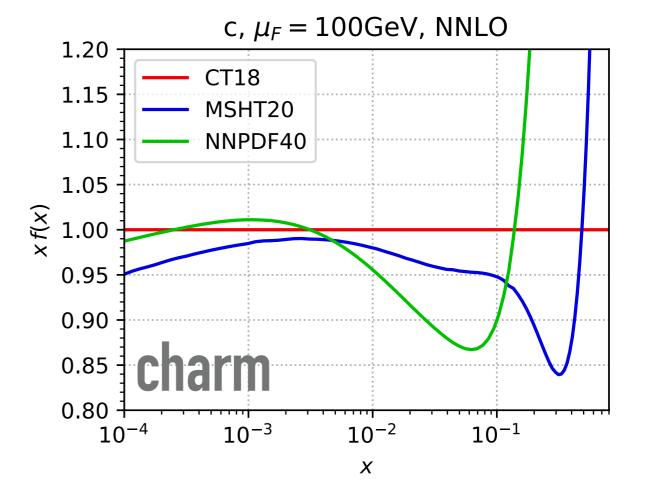

NNPDF fits by default treat the charm as light, but also provide PDF sets with perturbative charm

Using PDFs: LHAPDF


Standard software for accessing PDFs, in C++ and Python


```
LHAPDF 6.5.3
import numpy as np
                                          MSHT20nnlo as118, version 3; 65 PDF members
import lhapdf
                                          x * gluon(x=0.1, muF=100.0) = 0.88816059
# get the pdf set
pdfname = "MSHT20nnlo as118"
                                          Looping over the 65 members
pdfset = lhapdf.getPDFSet(pdfname)
                                          uncertainty = 0.01519004859884556
pdfs = pdfset.mkPDFs()
                                          Thanks for using LHAPDF 6.5.3. Please make sure to cite
# decide the x and factorisation scale
                                          the paper:
                                            Eur. Phys. J. C75 (2015) 3, 132
x = 0.1
                                            http://arxiv.org/abs/1412.7420)
muF = 100.0
# evaluate the central (pdfs[0]) value of the gluon
pdqid = 21
xgluon = pdfs[0].xfxQ(pdgid, x, muF)
print(f"x * gluon(x={x}, muF={muF}) = {xgluon}")
# evaluate also the uncertainty on the gluon
# First step is to access the gluon for each of the
# members of the pdf set
print(f"Looping over the {len(pdfs)} members")
xgluon_members = np.empty(len(pdfs))
for i in range(len(pdfs)):
    xgluon_members[i] = pdfs[i].xfxQ(pdgid, x, muF)
# LHAPDF can then calculate the uncertainty
uncertainty = pdfset.uncertainty(xgluon_members)
print(f"uncertainty = {uncertainty.errsymm}")
```


Comparing different sets: the gluon

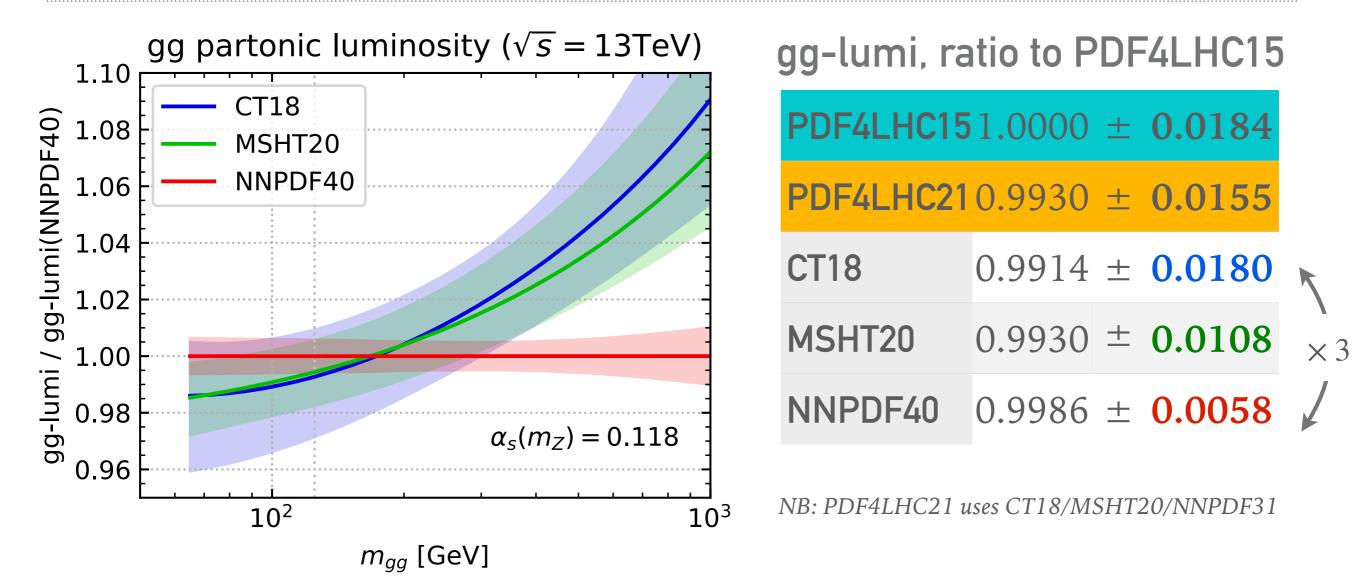


In much of region relevant to LHC, uncertainty is in the 1-2% range

- ➤ strange (anti-)quark is least well known PDF (small charge, few good experimental handles)
- charm: current debate about intrinsic charm
- bottom: mostly driven by gluon

82

the concept of a PDF luminosity


"Think" at Leading Order (LO) in QCD:

- \succ collide protons at CoM energy \sqrt{s} ,
- \triangleright take momentum fractions x_1 and x_2 from the two protons
- roducing a system of mass m requires $x_1x_2s = m^2$

Number of parton-parton collisions with flavours i and j is proportional to partonic luminosity $\mathcal{L}_{ij}(m^2)$

$$\mathcal{L}_{ij}(m^2) = \int dx_1 dx_2 \ f_{i,p}(x_1, \mu_F^2) \ f_{j,p}(x_2, \mu_F^2) \ \delta(x_1 x_2 s - m^2)$$

comparing PDF "luminosities"

Amazing that MSHT20 & NNPDF40 are reaching %-level precision At this level, QED effects probably no longer optional (MSHT20QED: 0.9870)

FINAL REMARKS ON PDFS

- ➤ In range 10^{-3} < x < 0.1, core PDFs (up, down, gluon) known to ~ few % accuracy
- ➤ For many LHC applications, you can use PDF4LHC21 set, which merges CT18, MSHT20, NNPDF31
- ➤ PDFs are not a settled issue: e.g. uncertainties are quite different between fitting groups; central values don't always agree; disagreements about intrinsic charm; N3LO splitting functions are being calculated

For visualisations of PDFs and related quantities, a good place to start is

https://apfel.mi.infn.it/ (ApfelWeb, but a little out of date)