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Higher-order corrections at small x (2/46)
L Introduction

High-energy limit

One of the major unsolved problems of QCD (and Yang-Mills theory in
general) is the understanding of its high-energy limit.

l.e. the limit in which C.O.M. energy (1/s) is much larger than all other
scales in the problem.

Vs =2E>>m,

hadron

hadron
(e.g. proton)

Want to understand:

» asymptotic behaviour of cross section, opp(s) ~77

» properties of final states for large s.
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U introduction Experimental knowledge
80 rrrrv
o [ J/  » Some knowledge exists about
tmo) 1 1 behaviour of cross section
70 |- pBARp: 21.70s°%08 198 39504625 - .
i 1 experimentally
: PP: 21.70s%0898 1 56 085~ 045% : i i
wol 1 » Slow rise as energy increases
i 1 » Data insufficient to make
i ] reliable statements about
50 5 functional form
] > o~ 50087
40 ] > o~ In’s?
i T 1 . . )
» Understanding of final-states is
[ Donnachie & Landshoff ] . . g
30 (Lol T B AN ~ Inexistent
6 10 100 1000 i i
Vs (Gev) » Would like theoretical

predictions. ..



Higher-order corrections at small x (3/46)
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Future experiments go to much higher energies.
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L Introduction

Not just for hadrons

Problem is must more general than just for hadrons. E.g. photon can

fluctuate into a quark-antiquark (hadronic!) state:

M % hadron

Even a neutrino can behave like a hadron

q
EE
neutrino Wt Z — hadron
q

Hadronic component dominates high-energy cross section
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L Introduction O Utl | ne

» Perturbative, leading-logarithmic (LL), calculation of cross-section
growth Using just classical field theory

» Failure of comparison to data

» Higher-order corrections

» NLL corrections
» Problems & solutions

» Splitting functions
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L Origin of growth of Study field of gg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
. E/m -1 dipole field (~ energy density).

QCD ~ QED |
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L Origin of growth of Study field of gg dipole (~ hadron)

I—QED analogy

Look at density of gluons from

E/m=5 dipole field (~ energy density).
QCD ~ QED |
» Large energy = large boost
V4 (along z axis), by factor

» Fields flatten into pancake.
» simple longitudinal structure
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L Origin of growth of Study field of gg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
E/m = 10 dipole field (~ energy density).

QCD ~ QED |
» Large energy = large boost
V4 (along z axis), by factor

» Fields flatten into pancake.
» simple longitudinal structure
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lvisy " Study field of g dipole (~ hadron)

I—Origin of growth of o
I—QED analogy

Look at density of gluons from

E/m = 20 dipole field (~ energy density).
QCD ~ QED
a® v
: » Large energy = large boost
; 7 (along z axis), by factor
#
1 » Fields flatten into pancake.
» simple longitudinal structure




Higher-order corrections at small x (6/46) . _ .
L rigin of growth of Study field of qg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
dipole field (~ energy density).

QCD ~ QED |
» Large energy = large boost
V4 (along z axis), by factor

» Fields flatten into pancake.
» simple longitudinal structure




Higher-order corrections at small x (6/46) . _ .
L rigin of growth of Study field of qg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
dipole field (~ energy density).

QCD ~ QED \
» Large energy = large boost

(along z axis), by factor

» Fields flatten into pancake.
» simple longitudinal structure

» There remains non-trivial
transverse structure.




Higher-order corrections at small x (6/46) . _ .
L rigin of growth of Study field of qg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
dipole field (~ energy density).

QCD ~ QED
» Large energy = large boost

(along z axis), by factor

» Fields flatten into pancake.
» simple longitudinal structure

» There remains non-trivial
transverse structure.




Higher-order corrections at small x (6/46) . _ .
L rigin of growth of Study field of qg dipole (~ hadron)

I—QED analogy

Look at density of gluons from

dipole field (~ energy density).
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L Origin of growth of Study field of gg dipole (~ hadron)

I—QED analogy

Look at density of gluons from
dipole field (~ energy density).

QCD ~ QED |

» Large energy = large boost
(along z axis), by factor

> Fields flatten into pancake.
» simple longitudinal structure

» There remains non-trivial
transverse structure.

R o | » Fields are those of a dipole in

"""""""""""""""""""""""""""""""""""""""""" ‘ 2-+1 dimensions
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L origin of growth of o Total number of gluons

I—QED analogy

Longitudinal structure of energy density (N. = # of
colours):

de  asN.

dz n

x Eo0(z) x transverse
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I—Origin of growth of o

Total number of gluons
I—QED analogy

Longitudinal structure of energy density (N. = # of
colours):

de  asN.

dz n

x Eo0(z) x transverse

Fourier transform — energy density in field per unit of
long. momentum (p;)

de as N
dp- s

X transverse, m< p, < E
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I—Origin of growth of o

Total number of gluons
I—QED analogy

Longitudinal structure of energy density (N. = # of
colours):

de  asN.

dz n

x Eo0(z) x transverse

Fourier transform — energy density in field per unit of
long. momentum (p;)

de as N
dp- s

X transverse, m<< p, < E

— number (n) of gluons (each gluon has energy p,):

dn asN;: 1

— X transverse, m<«p, <E
dp, ™ Pz
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origin of growth of o Total number of gluons

QED analogy

Longitudinal structure of energy density (N. = # of
colours):

de  asN.

dz n

x Eo0(z) x transverse

Fourier transform — energy density in field per unit of
long. momentum (p;)

de as N
dp- s

X transverse, m<< p, < E

— number (n) of gluons (each gluon has energy p,):

dn asN;: 1

— X transverse, m<«p, <E
dp, ™ Pz

Total number of gluons:

asN:  E
n~ In — x transverse
T m
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L origin of growth of o High-energy limit /s, E — oo

I—QED analogy

» Calculation so far is first-order perturbation theory.

» Fixed order perturbation theory is reliable if series converges quickly.
> At high energies, n ~ agInE ~ 1.

» What happens with higher orders?

(asInE)™? \

Leading Logarithms (LL). Any fixed order potentially non-convergent. ..
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L rigin of growth of o Multiple gluon emission

- QCD specifics

Start with bare gg dipole:
q




Higher-order corrections at small x (9/46) . . .
Multiple gluon emission

I—Origin of growth of o
I—QCD specifics

Start with bare gg dipole: Emit a gluon:
q q t
g
q q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

a — asN./2  (approx)
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L rigin of growth of o Multiple gluon emission

- QCD specifics

Start with bare gg dipole: Emit a gluon:

CC G

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

«

a — asN./2  (approx)

» In QED subsequent photons are ¢
emitted by original dipole v
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L rigin of growth of o Multiple gluon emission

- QCD specifics

Start with bare gg dipole: Emit a gluon:

q q
C q C @ o]
Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

%

a — asN./2  (approx)

» In QED subsequent photons are q
emitted by original dipole

» In QCD original dipole is g
converted into two new dipoles,
which emit independently.

(6]
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L rigin of growth of o Iterating gluon emission

- QCD specifics

Problem is self-similar: dipole — 2 dipoles — 4 dipoles — ...

Number of dipoles (or gluons) grows exponentially:

OéSNC asNe
In E x transverse| ~ E—r xtransverse

n ~ exp



Higher-order corrections at small x (10/46)

L rigin of growth of o Iterating gluon emission

- QCD specifics

Problem is self-similar: dipole — 2 dipoles — 4 dipoles — ...

Number of dipoles (or gluons) grows exponentially:

D‘SNC

In E x transverse| ~ E—r xtransverse

asN

n ~ exp

Tranverse part — many complications/interest

> transverse part is conformally invariant [ Extensive mathematical studies

» In high-energy limit it reduces to a pure number: 4In2

O‘SNC

nNEﬂ'

42, p05

Balitsky Fadin Kuraev Lipatov Pomeron (1976)
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L rigin of growth of o BFKL: rising cross sections

- QCD specifics

)

asNc asN¢
ndipoles(E)NE AN o Ohh ~ S ™ A2 O[STNC4|FI220.5

» Completely incompatible with rise of pp cross section (~ s%08)
» pp is simply beyond perturbation theory

> experimentally spectactular — if observable in some process. ..

» Raises many theoretical issues — high gluon densities should lead to
non-linear effects: high fields, but still perturbative

Colour Glass Condensate

increase E increase E

bare dilute dense
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Corigin of growth of o BFKL: rising cross sections

QCD specifics

asNe asNe
ndipo|es(E)~E w42 o Ohh ~ S ™ sk aST,\IC4|n220.5

)

» Completely incompatible with rise of pp cross section (~ s%08)
» pp is simply beyond perturbation theory

> experimentally spectactular — if observable in some process. ..

» Raises many theoretical issues — high gluon densities should lead to
non-linear effects: high fields, but still perturbative

Colour Glass Condensate
How can we search for BFKL experimentally?

» Need to ensure we are in regime where perturbation theory can be
applied

» Choose appropriate hadronic scales (small R)
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I—El_xperimental searches for LL BFKL Deep I nelast|c Scatterl ng ( DIS)

DIS

Getting small  transverse sizes
(needed for as < 1) and asymp-

totically large collision energies is electron proton
experimentally difficult.
In general collide two hadronic Off_Shﬁ::tgaz) O
probes — try a compromise: make P Y |
one of them small R, R,
1 1 9
R, ~ o) <K Rp ~ m_p
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Experimental searches for LL BFKL
Lpis

Deep Inelastic Scattering (DIS)

Getting small  transverse sizes
(needed for as < 1) and asymp-
totically large collision energies is
experimentally difficult.

In general collide two hadronic
probes — try a compromise: make
one of them small

1 1

R7N5<<Rme—p

> qg probe measures (roughly)
number of gluons in proton up to
scale @

» NB: DIS more usually viewed as
photon hitting quarks in proton

electron proton
———
off-shell (Q2)
O
photon y q
q
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Experimental searches for LL BFKL
Lpis

Deep Inelastic Scattering (DIS)

Getting small  transverse sizes
(needed for as < 1) and asymp-
totically large collision energies is
experimentally difficult.

In general collide two hadronic
probes — try a compromise: make
one of them small

1 1

R7N5<<Rme—p

> qg probe measures (roughly)
number of gluons in proton up to
scale @

» NB: DIS more usually viewed as
photon hitting quarks in proton

electron proton
———
off-shell (Q2)
O
photon y q
q

» Some of physics perturbative
(Q 2 pr > mp)

» But if In Q2 > Ins we have
competition between

(asins)” v. (aslnsin @?)"
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I—Experimental searches for LL BFKL

HERA F, data

Lpis
, ZEUS Preliminary 1996-97
13 > 2 2.
N =15 Q=27 0’=35
h = ® ZEUS 1996-97 -
F © ZEUS 1994 r
1F AHC, SEAC E
‘e
£ anrgotot o | ‘ atastn, | LT W
2 L sl L > L il \ Il L 'l L \
£ 0’=45 0’=65 ; 0’=85
. x
It ™ 3 'O,R. n..g . .
2 » [5 is rescaled cross section

10

A VA A R S S T U U

FUA S U U

P 1

> X =
pz,proton S

» Clear rise of cross section at
high energies (low x).
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I—Experimental searches for LL BFKL

HERA F, data

Lpis
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I—Experimental searches for LL BFKL

HERA F, data

Lpis
, ZEUS Preliminary 1996-97
13 > 2 2.
N =15 Q=27 0’=35
h = ® ZEUS 1996-97 -
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P 1

> X =
pz,proton S

» Clear rise of cross section at
high energies (low x).
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I—El_xperimental searches for LL BFKL La rge num ber Of gl uons
DIS
S0l =QCD Fit (H1) e D' (DIS)
< f ® D (yp)
~— . -
» Convert cross sections into
x

estimate of number of
gluons

15

» Various independent
extractions

10

» Up to 20 gluons per unit
Inx (or unit Inp,)!

’-|1 Collaboration
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Experimental searches for LL BFKL

Is it BEKL?

Lpis
~ 05 » Check if BFKL by looking
<} I -
= F, = cx™, x<0.01 at power () of x
04 » For BFKL, expect A ~ 0.5
F a4 H1 svtx00 prel. + ZEUS BPT
[ ® H1 svtx00 prel. + NMC > ..
F® H196/97 + H1 svtx00 prel. DEfInlte/y not LL BFKL! ‘
0.3 « Hi96/97
02
3 4
bt
R 5
o1 [ 1 —A=a In[Q@*/A1 :
""" extrapolation %
o"HH‘ L Lol | E‘
1 10 10?

Q@ /GeV?
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Experimental searches for LL BFKL

Is it BEKL?

Lpis
~ 0.5
ke [ )
= F, =cx™, x<0.01
0.4 |
F a4 H1 svtx00 prel. + ZEUS BPT
[ ® H1 svtx00 prel. + NMC
H1 96/97 + H1 svtx00 prel.
0.3 « Hi96/97
0.2+
i
Lo 2 /p2
01 b, —A=a In[Q*/N1
""" extrapolation
o"HH‘ L Lol Ll
1 10 10?
Q@ /GeV?

H1 Collaboration

» Check if BFKL by looking
at power () of x

» For BFKL, expect A ~ 0.5
> Definitely not LL BFKL!

There is some growth — where
does it come from?

It is due to combination of x <«
1and Q%> mf, — resumma-
tion of terms (asIn 2 In Q)"

o ~ exp [C\/as In @2 1In x]
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I—Experimental searches for LL BFKL ’7*’7* COI I |s|0ns

%

» Eliminate ratios of transverse
scales by colliding two virtual
photons Q1 ~ @

» Experimentally difficult (small
cross section)

electron

off-shell (Q 1)

photon’ yY » Theoretically clean

positron
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I—El_xperimental searches for LL BFKL Resu |tS from I_ E P

%

Iy
20| V5=189 ~209 GeV

| ®L3Data y'y’
15+ — LL BFKL (schematic)

10-

o,50(Y) [nb]

0\\\\
2 3 4 5 6

Y = |n S/Q1Q 2
» Here too, data clearly incompatible with LL BFKL
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L Experimental searches for LL BFKL Resu |tS from I_ E P

%

ee—ee (7* ’y* —) hadrons, L3 cuts

-

e

TTETT | - T
do/dY [pb]
T T T TT Illrl\' T
<

111117

:IIIIlIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III
r Del Duca et al, 2001

¢

N}
T

.

L3 data N
—— NLO ~
— NLO + g class RN
[0 NLO + gclassscaedep .

X
=
;j

q) | e)

o

10—3|||||||||||||||||||||||||||||||||||||||||||||||||
20 25 30 35 40 45 50 55 60 65 70
Y

» Here too, data clearly incompatible with LL BFKL

» But perhaps some evidence for weak growth
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L Beyond LL Where is BFKL?

Introduction

» BFKL is rigorous prediction of field theory, yet not seen in data
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L Beyond LL Where is BFKL?

Introduction

» BFKL is rigorous prediction of field theory, yet not seen in data
» Should we be worried? No!

» Calculations shown so far are in Leading Logarithmic (LL)
approximation, (asIns)”: accurate only for

as — 0, Ins —ooand aglns ~ 1.
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L Beyond LL Where is BFKL?

Introduction

» BFKL is rigorous prediction of field theory, yet not seen in data
» Should we be worried? No!

» Calculations shown so far are in Leading Logarithmic (LL)
approximation, (asIns)”: accurate only for

as — 0, Ins —ooand aglns ~ 1.
» Need higher order corrections

Next-to-Leading-Logarithmic (NLL)
terms: ag(aslns)”
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L Beyond LL Wavefunction v. ladder graphs

Introduction

evolution in
wavefunctions
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L Beyond LL Wavefunction v. ladder graphs

Introduction

evolution in evolution as
wavefunctions ladder diagram
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L Beyond LL NLL ingredients

Introduction

Label various parts of cross-section calculation

impact factors

F\\ kernel K //“

s LL
G=> KoK -k
~— " ntimes ~
Green function G
Kernel (universal): Impact factors (proc.-dependent):

Associated with power growth Associated with normalisation
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L Beyond LL NLL ingredients

Introduction

Label various parts of cross-section calculation
NLL: include relative O («s) corrections to each

impact factors

F\\ kernel K //“

s LL
2. NLL
G=> KoK -k
~— " ntimes ~
Green function G
Kernel (universal): Impact factors (proc.-dependent):

Fadin, Lipatov, Fiore, Kotsky,
Quartarolo; Catani, Ciafaloni,
Hautmann, Camici '89-'98

Associated with normalisation
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L Beyond LL NLL ingredients

Introduction

Label various parts of cross-section calculation
NLL: include relative O («s) corrections to each

impact factors

F\\ kernel K //“

s LL
2.9 NLL
G=> KoK -k
~— " ntimes ~
Green function G
Kernel (universal): Impact factors (proc.-dependent):
Fadin, Lipatov, Fiore, Kotsky, Bartels, Gieseke, Qiao, Colferai,
Quartarolo; Catani, Ciafaloni, Vacca, Kyrieleis; Fadin, lvanov, Kot-

Hautmann, Camici '89-'98 sky 01-....
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L Beyond LL NLL power

LnLL

Cast NLL corrections to kernel as modification of power:

o~ G(Y,k k) ~exp[4In2a4(1 — 6.505) Y]
NB: k = transv. mom. scale

» Very poorly convergent (&s = asN¢ /7 ~ 0.15---0.2)
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LnLL

Cast NLL corrections to kernel as modification of power:

o~ G(Y,k k) ~exp[4In2a4(1 — 6.505) Y]
NB: k = transv. mom. scale

» Very poorly convergent (&s = asN¢ /7 ~ 0.15---0.2)

» Unstable perturbative hierarchy: expansion of power has limited sense



Higher-order corrections at small x (21/46)

'~ Beyond LL NLL power

NLL

Cast NLL corrections to kernel as modification of power:

o~ G(Y,k k) ~exp[4In2a4(1 — 6.505) Y]
NB: k = transv. mom. scale
» Very poorly convergent (&s = asN¢ /7 ~ 0.15---0.2)
» Unstable perturbative hierarchy: expansion of power has limited sense

[J Instead, try solving BFKL equation with full NLL kernel (including
running coupling)

S5(k — ko) 2
dy | dk?K(k,K')G(Y —y, kK
2o / y/ )G(Y —y, k, K')

Andersen & Sabio-Vera '03
Ciafaloni, Colferai, GPS & Stasto '03

G(Y, k ko) = ——F



Higher-order corrections at small x (22/46)

D eyond LU NLL Green function solution
NLL
LL
10}
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Ry
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(O]
NO 1t
4
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N
ko = 20 GeV
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Higher-order corrections at small x (22/46)

D eyond LU NLL Green function solution
NLL
L Various convention choices
L cxs(qz), so=kko affect higher orders
(NNLLx):
10 ¢ E | f
K Phe > scale of as
® /_/'/ > ‘energy-scale’ sy
o Pra (Y =Ins/sp).
b 7
(O] /'/
NS 1t P - E
= /
N [
’.
| kp=20GeV
0.1 1 1 1
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Higher-order corrections at small x (22/46)

D eyond LU NLL Green function solution
NLL
L Various convention choices
- NLL ag(@?), sp=kkq affect higher orders
ol T NLLag@), sk (NNLLx):
I S NLL Gs(ki), So=k|2<o e > scale of as
f — NLLag(k), so=k = > ‘energy-scale’ sp
o i (Y =Ins/sp).
> P coeT TS g E T
5 L T . xtreme  sensitivity  to
NP S i choice of  convention
& 1 < poor  perturbative
convergence.
ko = 20 GeV
0.1
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D eyond LU NLL Green function solution
NLL
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convergence.
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Higher-order corrections at small x (22/46)

D eyond LU NLL Green function solution
NLL
L Various convention choices
L NLL cxs(qz), so=kko affect higher orders
ol T NLLag@), sk (NNLLx):
R B NLL ag(k%), sg=kko e > scale of as
o —— NLL ag(k?), sy=k* . :
" > > ‘energy-scale’ sy
o i (Y =Ins/sp).
Ny PGP = E e
& 1 P . xtreme  sensitivity  to
NP A TEA T 0 choice of  convention
& 1 < poor  perturbative
convergence.
ko = 20 GeV
NB: Andersen & Sabio Vera
0.1 i ~
0 5 10 15 20 solutions ~ green curve
Y

Need to understand origin of instability



Higher-order corrections at small x (23/46)

L Beyond LL NLL: Why so bad?

LnLL

» First branching occurs for Y ~ =

S

E/m=3 » In practice c is small: e¥ ~2 -5
» Energy-distribution # perfect §(z)
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L Beyond LL NLL: Why so bad?

LnLL

v

First branching occurs for Y ~ =

S

» In practice ¢ is small: e¥ ~2 -5
Energy-distribution # perfect §(z)

v

v

‘degree of imperfection’ depends on
transverse position
Ciafaloni '88
Andersson et al; Kwiecinski et al '96




Higher-order corrections at small x (23/46)
LBeyond LL NLL: why so bad?

LnLL

» First branching occurs for Y ~ =

S

» In practice ¢ is small: e¥ ~2 -5
» Energy-distribution # perfect §(z)

» ‘degree of imperfection’ depends on
transverse position
Ciafaloni '88
Andersson et al; Kwiecinski et al '96

» Dominant part = double & single L
logs
» Responsible for ~ 90% of NLL
corrections
» Can be used to supplement NLL at all

orders
GPS; Ciafaloni & Colferai, '98—-99




Higher-order corrections at small x (24/46)

I—Bl_eyond LL Bwldmg up the kernel. . .

NLL + transverse improvements

15 : x z‘ Build up characteristic func-
o(Q) =0.215 tion, i.e. the Mellin transform
of kernel (fixed coupling)
l L 4
o LL BFKL _
. asx(v) =
z
dk2 k2 Y
o5 L 1 = —= (=] Kk, k
s /% <kg> (k. ko)
>
© Height of minimum is ‘BFKL
0 power’
~ — 0 is small transverse dis-
-0.5 : : . tance region




Higher-order corrections at small x (24/46)

I—Bl_eyond LL Bwldmg up the kernel. . .

NLL + transverse improvements

15 : x z‘ Build up characteristic func-
o(Q9) =0.215 tion, i.e. the Mellin transform
of kernel (fixed coupling)
l L 4
o LL BFKL _
. asx(v) =
z
dk2 k2 Y
" os | | :/7 <ﬁ> K (k. ko)
= 0
Uw . - —
Height of minimum is ‘BFKL
ol /N &
power
LL + NLL BEKL ~ — 0 is small transverse dis-
-0.5 : : . tance region
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Higher-order corrections at small x (24/46)

L Beyond LL Bwldmg up the kernel. . .

NLL + transverse improvements

15 : x z‘ Build up characteristic func-
(Q%) =0.215 tion, i.e. the Mellin transform
of kernel (fixed coupling)
1+ |
o LL BFKL _
. asx(v) =
z
dk2 k2 Y
" 05 ¢ 1 = == Kk k
s /% <kg> (k. ko)
>
o . .. .
o DGLAP HEIgh"E of minimum is ‘BFKL
power
LL + NLL BEKL v — 0 is small transverse dis-
05 s 1 1 tance region (normally de-
0 0.5 1 15 2 scribed by DGLAP equations)

Y NB: DGLAP = ‘rotated’ plot of

7(N)
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L Beyond LL Bwldmg up the kernel. . .

NLL + transverse improvements

15 : x z‘ Build up characteristic func-
o(Q%) =0.215 tion, i.e. the Mellin transform
of kernel (fixed coupling)
l L
o LL BFKL _
. asx(v) =
z
dk2 k2 Y
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power
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Higher-order corrections at small x (24/46)

L Beyond LL Bwldmg up the kernel. . .

NLL + transverse improvements

15 : x z‘ Build up characteristic func-
o(Q%) =0.215 tion, i.e. the Mellin transform
of kernel (fixed coupling)
l L
o LL BFKL _
. asx(v) =
z
, dk? [ k>\”
ﬂ; 05 | combined anti-DGLAP| :/7 <ﬁ> K(k, ko)
= 0
S DGLAP Height of minimum is ‘BFKL
0 power’
LL + NLL BEKL v — 0 is small transverse dis-
05 s 1 1 tance region (normally de-
0 0.5 1 15 2 scribed by DGLAP equations)

Y NB: DGLAP — ‘rotated’ plot of

7(N)



Higher-order corrections at small x (25/46)
L Beyond LL
NLL + transverse improvements

Green fn. from improved kernel

LL

---- scheme A
scheme B p
~ 10
N
Iy
+
2
b
O
N O 1 F
X
[=
N
ko = 20 GeV
01 1 1 1
0 5 10 15

Y

20

Various schemes for com-
bining NLLx BFKL with
DGLAP:

» scheme A (NLLy)
violates mom. sum-rule
at O (ag)

» scheme B (NLLp)
satisfies it at all orders

Different schemes —
similar results

more



Higher-order corrections at small x (26/46) i
Check stability of results

L Beyond LL
NLL + transverse improvements

Check stability wrt:

10 T
A -
iy > renorm. scale variation
By 1/2 < x, <2
s F /) .
w i » change of infrared cutoff
4 . //'
UJ. v
+
B4
5
O
¥
N 1 A
S
"k=0.74 GeV —
"k=1.00GeV ---
rozen) k=0.74 GeV -----
0 5 10 15

Y



Higher-order corrections at small x (26/46)

L Beyond LL Check stability of results

NLL + transverse improvements

Check stability wrt:

» renorm. scale variation
1/2 < x, <2

» change of infrared cutoff

» Instead of varying IR
cutoff, write log G as
expansion in powers of b
(coeff. of 5-fn) & truncate

series

212 G(Y, k+e, k-¢)

not quite renormalons




Higher-order corrections at small x (26/46)

L Beyond LL Check stability of results

NLL + transverse improvements

Check stability wrt:

» renorm. scale variation
1/2 < x, <2

» change of infrared cutoff

» Instead of varying IR
cutoff, write log G as
expansion in powers of b
(coeff. of 5-fn) & truncate

series

212 G(Y, k+e, k-¢)

not quite renormalons

Uncertainties seem
under control



Higher-order corrections at small x (27/46)
I—Split:ting functions

Limitations of Green function

Green function

G(Y, k, ko) perturbatively calculable for k, ko > Agcp.

» Fine for v*~*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS).

But: rare processes — of interest mainly for testing BFKL



Higher-order corrections at small x (27/46) . R . .
Limitations of Green function

L Splitting functions

Green function
G(Y, k, ko) perturbatively calculable for k, ko > Agcp.

» Fine for v*~*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS).
But: rare processes — of interest mainly for testing BFKL

Recall:
We were interested in proton (e.g. Fa(x, @2) structure fn in DIS).

» In best of cases, k ~ Q > ko ~ Agcp
» Such structure functions not perturbatively calculable



Higher-order corrections at small x (27/46)

L Spiitting functions Limitations of Green function

Green function
G(Y, k, ko) perturbatively calculable for k, ko > Agcp.

» Fine for v*~*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS).
But: rare processes — of interest mainly for testing BFKL

Recall:
We were interested in proton (e.g. Fa(x, @2) structure fn in DIS).
» In best of cases, k ~ Q > ko ~ Agcp

» Such structure functions not perturbatively calculable

Evolution in Q2 is calculable
» via DGLAP splitting functions

> these also get small-x enhancements
O Calculate them!



Higher-order corrections at small x (28/46)

L Splitting functions Green function = splitting function

Construct a gluon density from Green function (take k >> ko):

Q
xg(x, Q%) = / d’k G("Ozkz)(ln 1/x, k, ko)



Higher-order corrections at small x (28/46)

L Splitting functions Green function = splitting function

Construct a gluon density from Green function (take k >> ko):

Q
xg(x, Q%) = / d’k G("Ozkz)(ln 1/x, k, ko)

There should exist a perturbative splitting function, ngyog(z, Q2), such

that J 02 J
g;(lxniacy) :/?Z ng,eff(zz Qz)g (ga QZ)



Higher-order corrections at small x (28/46)

L Splitting functions Green function = splitting function

Construct a gluon density from Green function (take k >> ko):
Q 2
xg(x, Q%) = / d?k G=F)(In1/x, k, ko)

There should exist a perturbative splitting function, ngpﬁ(z, QZ), such

that J 02 J
i(:r:i’QZ) :/?z ng,eﬁ'(za Qz)g (g’ QZ)

Factorisation

k Evolution paths in x,k

» Splitting function:
red paths

» Green function:
all paths

factorized (non-perturbative)




Higher-order corrections at small x (28/46)

L Splitting functions Green function = splitting function

Construct a gluon density from Green function (take k >> ko):
Q 2
xg(x, Q%) = / d?k G=F)(In1/x, k, ko)

There should exist a perturbative splitting function, ngpﬁ(z, QZ), such

that J 02 J
i(:;i’QZ) :/?z ng,eﬁ'(za Qz)g (Ea QZ)

Factorisation

o . k Evoluti ths in x,k
» Splitting function: el
red paths
» Green function:
all paths
Splitting function = factorized (non-perturbative)

evolution with cutoff




Higher-order corrections at small x (29/46)

L Splitting functions Perturbative structure of Pgg

» Small-x gluon splitting
function has logarithmic
enhancements:

1

XPgg(x) = Za;’ In"~1 ~
n=1

X |

+ ...

+ E al In"2
n=2



Higher-order corrections at small x (29/46)

L Spiiting functions Perturbative structure of Pgg
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: A + @5[4 In3 1 + @@6 In® 1 4.
T30 60 °

1
XPgg(x) = Zag In"—1 ~
n=1

+ ...

X |

+ E al In"2
n=2



Higher-order corrections at small x (29/46)

L Spiiting functions Perturbative structure of Pgg
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: A + @5[4 In3 1 + @@6 In® 1 4.
T30 60 °

1
XPgg(x) = Za;’ In"—1 ~
n=1

/Next—to— Leading Logs (NLLx)

1 _ _ 1 _ 1
+ Zag|n”—2; + ... A2004§+ A31afln; +A42agln3;+...
n=2




Higher-order corrections at small x (29/46) .
L Spiiting functions Perturbative structure of Pgg
» Small-x gluon splitting Leading Logs (LLx)
function has logarithmic
enhancements: as + C(?’)@g In3 1 + C(S)@S In® 1 4
3 X 60 X
1
_ ny,n—1 =
XPgg(x) = Zlo‘s In x Next-to-Leading Logs (NLLx)
n=
+ Za”|n”_2 1 + A200_42+ /4310_43“1l —|—A42074|n3l—|—...
s X PPN s S X S X
n=2

» NNLO (a2): first small-x
enhancement in gluon splitting
function.



Higher-order corrections at small x (29/46)

L Splitting functions Perturbative structure of Pgg
e 05 T . ; .
» Small-x gluon splitting LO
function has logarithmic ~NLO
enhancements: 041 ---- NNLO
XxPgg(x) = Za" In"1 E A=
g8 - 3 x 8 03 [ GS(Q )— 0225
n=1 )
o
1 x /
2 X 02f J
+ Zaglnn ; + ... T IR
n=2 L
01t

» NNLO (a2): first small-x
enhancement in gluon splitting
function.

Understanding small-x

becomes unavoidable Moch, Vermaseren & Vogt



Higher-order corrections at small x (30/46)

I—Split:ting functions I_LX, N I_I_X
Problem: 4 w x ; ;
. LLx !
» LLx terms rise very |
fast, xPgg(x) ~ x=9° 31 NLLx ]
T e _ ' LODGLAP ---- |
Incompatible with data. 2 L N
Ball & Forte '95 5(Q%) = 0.215
¥ 17 !
» NLLx terms go 2 g
negative very fast. & 0 e e
No one's even tried
fitting the datal! 1 ]
[NB: Taking NLLx terms 2 F 1
of Pgg is almost the worst
possible expansion] -3 ‘ ‘ ‘ ‘

10°  10* 10® 102 10t 10°



Higher-order corrections at small x (31/46)

L Spiiteing functions BFKL splitting function ‘power’

Two classes of correction, to power growth w

w=14In2as(Q*) [1 — 65a, — 4.0a?°+
~——
NLL running

» NLL piece is universal
As before, add approximate higher orders via NLLp kernel



Higher-order corrections at small x (31/46)

L Spiiteing functions BFKL splitting function ‘power’

Two classes of correction, to power growth w

w=14In2as(Q?) |1 — 65a, — 4.0a2°+
—— H/—/

. . . NLL running
» NLL piece is universal

As before, add approximate higher orders via NLLp kernel
> running piece appears only in problems with cutoffs

> a consequence of asymmetry due 9 2 X/(bag)l/3
to cutoff (only scales higher than as(Q%) — as(Q%e )

cutoff contribute) Hancock & Ross '02



Higher-order corrections at small x (31/46)

L Spiiteing functions BFKL splitting function ‘power’

Two classes of correction, to power growth w

w=14In2as(Q?) |1 — 65a, — 4.0a2°+
~——
NLL running

» NLL piece is universal
As before, add approximate higher orders via NLLp kernel

> running piece appears only in problems with cutoffs

> a consequence of asymmetry due
to cutoff (only scales higher than
cutoff contribute)

_ 1/3
as(QZ) N as(Qze X/(bas) )
Hancock & Ross '92

» Beyond first terms, not possible to separate effects of ‘pure’ higher
orders & running coupling



Higher-order corrections at small x (31/46)

L Spiiteing functions BFKL splitting function ‘power’

Two classes of correction, to power growth w

w=14In2as(Q?) |1 — 65a, — 4.0a2°+
~——
NLL running

» NLL piece is universal
As before, add approximate higher orders via NLLp kernel

> running piece appears only in problems with cutoffs

> a consequence of asymmetry due
to cutoff (only scales higher than
cutoff contribute)

_ 1/3
as(QZ) N as(Qze X/(bas) )
Hancock & Ross '92

» Beyond first terms, not possible to separate effects of ‘pure’ higher
orders & running coupling

Obtain G(Y, k, ko) = g(x, Q@?) with arbitrary non-pert. condition,
deconvolute O, g28 = Pgg ® § = Pgg



Higher-order corrections at small x (32/46)

L Spiiteing functions BFKL Pgg power growth — results
Q [GeV]
300 24 68 32 19
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L Spiiteing functions BFKL Pgg power growth — results

Q [GeV]
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Higher-order corrections at small x (32/46)

L Spiiteing functions BFKL Pgg power growth — results
Q [GeV]
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Higher-order corrections at small x (32/46)

I_Splitting functions BFKL ng pOWer grOWth . results
Q [GeV]
300 24 6.8 3.2 1.9
0.5 /
0.4
o 0.3 S )
£ ot
%_ ; _/_‘//" 3
2 02 ezl =
o S —
° o Llfixedag
0.1 /,"// LL, running og ———- |
[ NLLg, fixed ag - - - -
NLLg, running ag, ——
0 L Il
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Higher-order corrections at small x (33/46)
I—Splitting functions

Full Pgg(z) splitting fn

N LL (fixed o) -
. LODGLAP ------- g
Q=4.5GeV ' :
1} 5(Q%)=0.215 \ ]
\
\
N
O .
N \
\
N
\\
0.1 f ]
1010 108 10°® 10 1072



Higher-order corrections at small x (33/46)
I—Splitting functions

Full Pgg(z) splitting fn

N LL (fixed o) -
~ - 2
R \ LL (o5(@%)) - - -~
Q=45GeV *. \ LO DGLAP -+
1} 5(Q)=0215 . ' :
\\ \\
—~ \‘ \\
N ‘\
a N \\
N A . \
N \
N AN
. .~ :
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Higher-order corrections at small x (33/46)
I—Split:ting functions

Full Pgg(z) splitting fn

" LL(fixeddy) ———-
. )
' oL (@) - -
Q=45GeV . \ NLLg
_ 2 .
1K Q) =0215 . "\LO DGLAP -
\\ \
S
o
N
0.1
1010 108 10°® 10



Higher-order corrections at small x (33/46)

L Spiting functions Full Pgg(z) splitting fn
1 AL T T T T T T
\\ w-expansion (1999) ———-
\ NLLg (2003) ——
\
0.8 r \ LO DGLAP -+ i
\
\
\
—~ 06 \ M
\l:l, \
2 N Q =4.5GeV
o \ |
N 04 M Q%) =0.215 -
N
N
N
\\ ;
0.2 Frrrrrri s R TR s .
1/4 < y2IQ% < 4
0 10 . I 8 . I 6 . I 4 . I 2 . 0
10° 10° 10° 10° 10° 10



Higher-order corrections at small x (34/46)
I—Split:ting functions
L pip

Phenomenology: dip dominates P,,

» Rapid rise in Pg, is not for
today’s energies!

» Main feature is a dip at x ~ 1073

0.5

04 f

03

z ng(z)

02r

01r

w-expansion (1999) ———
NLL (2003) —— |
LO DGLAP -------

==
. .




Higher-order corrections at small x (34/46) . .
Phenomenology: dip dominates P,,

L Splitting functions

L pip
» Rapid rise in Pg, is not for 05
today’s energies! ' w-expansion (1999) —— -
» Main feature is a dip at x ~ 1073 NLLg (2003) —— /
_ 04 1 LODGLAP --+---- :
Questions: A ,'
\
» Various ‘dips’ have been seen 03 A\ 1
Thorne '99, '01 (running as, NLLx)  ® \\\ 9:;1'5%&2\/15 :
o =
ABF '99-'03 (fits, running as) o° N §@)=0 ]
N onm | B =/t

CCSS '01,'03 (running as, NLLg) 02 f N s

Is it always the same dip?
01r




}tgshéﬂ[';?i:?fﬁ:x?n':ns e Phenomenology: dip dominates P,,
» Rapid rise in Pg, is not for 05 Y Y Y Y ‘
today’s energies! wrexpansion (1999) — - —
» Main feature is a dip at x ~ 1073 NLLg (2003) ——
Questions: v (\\ HoperAR ,"
» Various ‘dips’ have been seen \\ i
Thorne '99, '01 (running as, NLLx) & 031 AN _Q=421.SGeV ;
ABF '99-'03 (fits, running as) n_g \\\ §(Q)=0215 }J
CCSS '01,’03 (running as, NLLg) ™ 02+ N \\\ """"""" / Do ;'l 1
Is it always the same dip? —
» Is the dip a rigorous prediction? 01t
U4 <3P <4
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Higher-order corrections at small x (34/46) . .
- Spiing funcions Phenomenology: dip dominates P,,
Dip
» Rapid rise in Pg, is not for 05
today’s energies! ' w-expansion (1999) —— -
» Main feature is a dip at x ~ 1073 NLLg (2003) —— /
_ 04 1 LODGLAP --+---- :
Questions: A ,'
\
» Various ‘dips’ have been seen 03 A\ 1
Thorne '99, '01 (running as, NLLx)  ® \\\ 9:;1'5%&2\/15 :
jo) =
ABF '99-'03 (fits, running as) o° N §@)=0 ]
................................. <t
CCSS '01,'03 (running as, NLLg) N 02 \\ Rl
Is it always the same dip? —
» Is the dip a rigorous prediction? 01t
» What is its origin? 14 <2Q2< 4
Running as, mom. sum rule...? 0 ‘ ‘ ‘ ‘ ‘
10% 10° 10* 10° 102 100 10°



Higher-order corrections at small x (34/46)

- Spiing funcions Phenomenology: dip dominates P,,

Dip

» Rapid rise in Pg, is not for

, . ] 0.5 T T T T T
today’s energies! wexpansion (1999) ——— |
» Main feature is a dip at x ~ 1073 NLLg (2003) —— "
Questions 04 1 LO DGLAP - ]
ions:
~UeSTIONS: \ NNLO DGLAP - - - -
» Various ‘dips’ have been seen 03 A\ ,
Thorne '99, '01 (running as, NLLx) & ~ I \\\ 9:;1'5%&2\/15 |
o -
ABF '99-'03 (fits, running as)  o° N 4(@)=0 /
CCSS '01,’03 (running as, NLLg) ™ 02+ N \\\ """"""" IS
Is it always the same dip? _
» Is the dip a rigorous prediction? 01t
» What is its origin? 14 <2Q2< 4
Running as, mom. sum rule...? 0 L ‘ ‘ ‘ ‘
6 405 aqd 403 02 D 00
. 100 10° 107 10° 10° 10 10
NNLO DGLAP gives a clue. ..

—1.54a3Int



Higher-order corrections at small x (35/46)

- Spiing funcions Reorganise perturbative series
Dip
LLx NLLx NNLLx
o [ x - -
0(3 ;_‘0 ‘ ng -
adf 0 X X
t. COAA
at . x X X %
o
e
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Higher-order corrections at small x (35/46)

- Spiing funcions Reorganise perturbative series
Dip
LLx NLLx NNLLx ... i & = 0.05 |
a, - - %
all. 0 - i |
0(2 0 X 16'4 16'3 16‘2 oi1 1
al [ x X X e
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Higher-order corrections at small x (35/46)

- Spiing funcions Reorganise perturbative series
Dip
LLx NLLx NNLLx ... I & = 0.05 |
a - - ;’g
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Higher-order corrections at small x (35/46)

- Spiing funcions Reorganise perturbative series
Dip
LLx NLLx NNLLx
a, - -
all. 0 - i |
0(2 16'4 16'3 16‘2 o1 1
. X
o oy "~ At moderately small x, first terms
‘ e e with x-dependence are
o’ 0 X X ”-_/01/ 3, 1 4,31
s e —1.544a7 In— 4 0.401 &5 In® —
L G X X
RN/ 44 Minimum when
asln’x~1 = In 1 1
s - X /O



Higher-order corrections at small x (36/46)

glsing fncs Systematic expansion in /as
Position of dip
LLx NLLx NNLLx
L 1156
a _ - Xmin Vs
ay 0 Depth of dip
ok —d ~ —1.2373°
a X e
o
al 0 x ox iy
e o
IS




Higher-order corrections at small x (36/46)

L Spiting functions Systematic expansion in /as

L pip

Position of dip
LLx NLLx NNLLx

1 1.156
In ~

~ T 4 6.947
0 T B Xmin \/0/_5

Depth of dip

—d ~ —1.237a2/% — 11.15a3




Higher-order corrections at small x (36/46)
I—Split:ting functions

Systematic expansion in /s

Lpip
Position of dip
LLx NLLx NNLLx
‘ 1 1.156
a B B In ~ — +6.947 4 - --
S| Xmin vV Qs
2 _
% 0 Depth of dip
3
% —d~ 1237327~ 11.1562 + - -
a Cox
0y X% > convergence Is very poor
/,]Q As ever at small x!
b l/«l’ . . .
]/«P - » higher-order terms in expansion

need NNLLx info
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Higher-order corrections at small x (37/46)
I—Split:ting functions

Test /a5 dip expansion

L pip
Test position of dip v. as
» Band is uncertainty due to
@ i higher orders in |/as

20 ..

------- Quadratic solution
-- -- Expanded solution

302 @)

5 | —— measured In(1/xy,)

1

0.01

0.1

» At small ag, good agreement
— confirmation of ‘dip
mechanism’

» At moderate o, normal
small-x resummation effects
‘collide’” with dip

1 < 3

~

Xmin 2we

In

Dip then comes from interplay
between a2 Inx (NNLO) term
and full resummation.

[Actually, story more complex]
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I—Split:ting functions

Test /a5 dip expansion

Lpip
100 a 1 Test depth of dip v. as
(b) » similar conclusions!
10t o
£ 102 ¢
o
0]
°
10%
104 Quadratic solution ------- ]
Expanded solution -- --
measured depth ——
10° 1
0.01 0.1

G
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Higher-order corrections at small x (39/46)

- Spiing funcions Phenomenological impact?

Phenom. impact

Phenomenological relevance comes through impact on growth of small-x
gluon with Q2.

0g(x, Q%)
TanQz et et

At small x, P,z ® g dominates.

Take CTEQ6M gluon as ‘test’ case for convolution.

Because it's nicely behaved at small-x
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I—Spln:tlng functions

g fncions Phenomenological impact? Pgz ® g( )

05

12

NLLg (2003) — |
LO DGLAP ------- :
NNLO DGLAP '

CTEQ 6M gluon ——

z Pgy(2)

g(x,Q%)

01 Q=20Gev .~

2
Y
o)
VN
"
o
w
S
o

gluon = CTEQ6M
Q=20Gev
0 6 L L L L L

10°

0 L
10° 1% 10° 102 100 10° 10 105 104 10° 102 101 10°
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Higher-order corrections at small x (40/46)

L Splitting functions
Phenom. impact

Phenomenological impact? Py, ® g(x)

c.0

— (600%) g 1M
dA120 0l
9A1DQ OMM

.
®

. Ved08=0 A
", 080=(0)

%:
AN

L0

For Sor For tor %or %or

s b2(s)

12

N
T

CTEQ 6M gluon ——

gluon = CTEQ6M
Q=20Gev

10

6

105 104 10° 102 101
X
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I—Split:ting functions
Phenom. impact

(PygU9)/ g

1.4 | |
T LO DGLAP --------
127 = .. NLODGLAP ----
1r "~ NNLODGLAP ---- 1
L
08 | e ]
P D
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) %
04 | \ ]
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\\.
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Higher-order corrections at small x (41/46)
L Splitting functions P X
pPhengom. impact gg ® g( )
1.4 ‘ ‘
eI LO DGLAP ------
ey ~ NLODGLAP ———-
1 ~_-NNLODGLAP ---- 1
08 | .- S NLlg (0=4) ——
o e -
=~ 06 _--°
S -
o044t
(=)
(o))
& o2t
0
-0.2 gluon = CTEQ6M
-0.4 Q=2.0GeV
10® 107 10° 10° 10*

X
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Higher-order corrections at small x (42/46)

L Conclusions COﬂClUSIOnS

> High-energy limit is one of most challenging problems of QCD.
» Much is now understood about some central elements of small-x

resummations:

» gluon Green function
> gluon splitting function

It seems both can be predicted with confidence

» Phenomenological tests are essential

» Mueller-Navelet jets at LHC, v*y* at ILC
» Structure functions from HERA

» Some ingredients still missing

» NLL Impact factors
» Full singlet matrix for splitting functions (not just Pgg).

» Big, active, question not touched on:

Saturation & limit of high gluon density
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L Extra Material
Green function

Green function (extra slides)

10 ¢

211k ko G(Y; k, ko)

T T

LL
scheme A ---- +
scheme B ——

ko = 20 GeV
Y =10

Ll

10

100 1000
k [GeV]



Higher-order corrections at small x (43/46)
L Extra Material
Green function

Green function (extra slides)

NLL ag(g?) — —-
10 | NLL ag(k?) - :
scheme B ——
5
X
5 i
10)
XO
X
=4
N .
q \- 1
: ko=20GeVv '\
\
f i Y=10 \
1 10 100 1000

k [GeV]



Higher-order corrections at small x (44/46)

L Extra Material Towards phenomenology?
- MS scheme gluon

Steps missing for ‘full’ phenomenology:
» Resummation of all entries of singlet matrix & coefficient functions.

» Put results in MS factorisation scheme
O illustrate nature of surprises that arise. . .
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L Extra Materil Factorisation scheme
- MS scheme gluon
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L Extra Materil Factorisation scheme
- MS scheme gluon

Results shown so far in Qg scheme. [Catani, Ciafaloni & Hautmann '93]

xg(x, Q) = /d2k Gn1/x, k ko)O(Q — k) GO = F(x)8(k — ko)
To translate to MS scheme

K2 k2 dy et
xg(x, Q%) = /d2k G(In1/x, k, ko)r <@>, r <a> = / 27 7R()

Should be easy?!

RO = { F s }5 oo { [ ay SV

M+ [=7x'(v x(7')

Catani & Hautmann '94
[NB: involves x(y) — does this need to be collinearly improved? Ignore

problem for now. . .|
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L Extra Material
l—MS scheme gluon

Qo V.M_S
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L Extra Material QO V. M S
- MS scheme gluon
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Higher-order corrections at small x (46/46) —_—
L Extra Material QO V. M S
l—MS scheme gluon

15

05 1
5 il
2 m
-05 1
-1 - —— Qg scheme: O(l-kZ/Qz) 1
——— MSbar: inv. Mellin of 1/(Ry)
-1.5
0.01 0.1 1 10 100

K2IQ?

Numerically, MS is much more difficult.
Conceptually, the oscillations are disturbing.
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