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Phenomenology: lecture 2 (p. 27)

L Higgs seaching

High-energycolliders

| Collider | Process| max" s | experiments status \
SLC ete 100GeV | SLD closed1998
LEP ete 208GeV | Aleph, Delphi, L3, Opal | closed2000
HERA ep 330GeV | H1, ZEUS (& Hermes) | running
Tevatron pp 1:.96 TeV | CDF, DD running
LHC pp 14TeV | Atlas, CMS, LHCb, Alice | starts 2007




Phenomenology: lecture 2 (p. 28)

L tiggs seaching Higgsproductionat LEP

Production (e*e )

Production channelse.g. ~10°
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Phenomenology: lecture 2 (p. 29)

L tiggs seaching Higgsdecy modes

Decay modes

Easilycalculatewidths (for tree-leveldecys, cf. questionsheet)

3

CGrm?M am? 2
(H1 ffy= Sorpiln 4
4773 M2

C = N¢ = 3for quarks, C = 1 for leptons. Proportional to m]?- because
Hf f vertexcontainsm .
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Decay modes
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L tiggs seaching Higgsdecy modes

Decay modes
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L Higgs seaching

I—Decaymodes ngngeCa mmes

Easilycalculatewidths (for tree-leveldecys, cf. questionsheet)

3
M 4m? 2
(H! 1:f)chFmpf_H 1 m;

42 M3

C = N¢ = 3for quarks, C = 1 for leptons. Proportional to m]? because
Hf f vertexcontainsm .

1

Ge=M3 aM2, 2 am3, M
H! wfw )= —pH 1 W 1 + 12— W
( ) 8 2 M3 M2 |v|4

1
GeM3M2 V1Y IV M2
(H! z2)= —pH+ W 1 2 1 12—
16 = 2M2 M3 |\/|2

Widths grow as Mﬁ: strong couplingof longitudinalmodesat large M.
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L Higgs seaching

I—Decaymodes ngngeCa mOdeS

Easilycalculatewidths (for tree-leveldecys, cf. questionsheet)

3
M am? 2
(H! 1:f)chFmpf_H 1 m;

42 M3

C = N¢ = 3for quarks, C = 1 for leptons. Proportional to m]?- because
Hf f vertexcontainsm .

1

GeM3 aM2, 2 am3, M
H! wfw )= —pH 1 W 1 + 12— W
( ) 8 2 M3 M2 M4

1
GeMEM2 am2 2 am2 M2
(H! z2)= =+ W 1 2 1 12—
16 = 2M2 M3 M2

Widths grow as ME’,: strong couplingof longitudinalmodesat large M.
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L tiggs seaching Higgsdecas cont.

Decay modes

I BR(H! X)= (H! X)= ot

......

“.ww __| Most features can be understad
BR(H) ~| basedon previouspage'sformulae:
------ ""...ZZ 7 e bisstrongestdecy channelat

low masseqwidth ~ m?).

300
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Higgs seaching
Decay modes

Higgsdecys cont.

17\\‘

.......

........

200 300

BR(H! X)= (H! X)= ot

Most features can be understad
basedon previouspage'sformulae:

@ b is strongestdecy channelat
low masseqwidth ~ m?).
o rapid dominanceof W;Z at
highermassegwidth M3 v.
My for ff) oncethey're
kinematicallyallowed.
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L—H@gsseacmng
Decay modes

Higgsdecys cont.

1 =
CT T PSRy

.......

--------
-

........

200 300

BR(H! X)= (H! X)= ot

Most features can be understad
basedon previouspage'sformulae:

@ b is strongestdecy channelat
low masseqwidth ~ m?).

o rapid dominanceof W;Z at
highermassegwidth M3 v.
My for ff) oncethey're
kinematicallyallowed.

NB: Not just tree-leveldecyas, e.g.
H! ggandH!



Phenomenology: lecture 2 (p. 31)

LHiggs seaching Commenton versuscham?

Decay modes

Bewere: plots like thoseof previouspageoften contain subtleties. .

Expect

(H! cc) , NecmZ,
(HT * ) m?

2 (formg = 1:5GeV, m = 1.8GeV)
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LHiggs seaching Commenton versuscham?

Decay modes

Bewere: plots like thoseof previouspageoften contain subtleties. .

Expect

(H! cc) , NecmZ,
(HT * ) m?

But actualratio  0:5. Why?

2 (formg = 1:5GeV, m = 1.8GeV)

Massesare not constants. Like coupling constants',they run with scale
(i.e. haveanomalousdimensions).QCD givessigni cant running e ects
for quark masses

o

Q*=—=  m( IMQY); m +0 ?Z
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LHiggs seaching Commenton versuscham?

Decay modes

Bewere: plots like thoseof previouspageoften contain subtleties. .

Expect

(H! cc) , NecmZ,
(HT * ) m?

But actualratio  0:5. Why?

2 (formg = 1:5GeV, m = 1.8GeV)

Massesare not constants. Like coupling constants',they run with scale
(i.e. haveanomalousdimensions).QCD givessigni cant running e ects
for quark masses

@n
QZ@ = m( s)m(QZ); m=—+0 §
In expessionfor Higgswidth usemq(M3). Since@n=@? < 0 this
reduces(H ! cc). a questionon problemsheet.

[NB: 9 alsoother higher-ader e ects, but generallymare modest]



What can experimentsaetect?

+

e"e ! bb (seconday vertex)












+

e"e ! Dbb (seconday vertex)
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L iggs seaching LEP Higgsseach

Lep

Seachesin variouschannelge*e ! HZ)

oeH! bb, Z! qg
e H! bb, Z!

@eH! bb,z! **°
eH! * [ Z! (q
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L iggs seaching LEP Higgsseach

Lep

Seachesin variouschannelge*e ! HZ)

oeH! bb, Z! qg
e H! bb, Z!

@eH! bb,z! **°
eH! * [ Z! (q

Must reducebackgroundse.g.

o ee! Z! bbgg. Callthe
jets 1,2,3,4,require
Mzs ' Mz

e ee! Z( bb)z(! qq).
RequireM34' Mz and
M2 6 Mz




Phenomenology: lecture 2 (p. 33)
L Higgs seaching
L LEp

LEP Higgsseach

Seachesin variouschannelge*e ! HZ)

oeH! bb, Z! qg
e H! bb, Z!

@eH! bb,z! **°
eH! * [ Z! (q

Must reducebackgroundse.g.

o ee! Z! bbgg. Callthe
jets 1,2,3,4,require
Mzs ' Mz

e ee! Z( bb)z(! qq).
RequireM34' Mz and
M2 6 Mz

Exampleevent (from Aleph):

Centre-of-mas®nergy | 206.7 GeV

NN value 0.996

b-tag probabilities 0.990.99
0.140.01

HZ hypothesis My = 1124 GeV
Mz = 933 GeV

ZZ hypothesis Mz = 102GeV
Mz = 91.7 GeV
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- riggs seaching Datav. expectedsignal& background
LEP
NS - &) - .
S 25 LEP  Rrs=200-209 Gev Loose S 7 b LEP  RS=200-209 Gev Tight
[¢] [ ]
+- Data + Data
L Background C Background
g Il signal (115 GeV/d) ~ .t Il signal (115 GeV/d)
2] [ [2]
+— +—
c 15 H all G109 GeV/é c all G109 GeV/é
°>-’ [[Data | 119 17 g 4 Hpata 18 4
LU [|Backgd| 116.5 15.8 I} Backgd| 14 1.2
10 HSignal 10 7.1 3 Hsignal | 2.9 22
2 |-
5 |-
f Ny
0 L L L L 0 T | M L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
m,rec (GeV/c) m,ec (GeV/c)
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Higgs seaching

i Datav. expectedsignal& background
LEP
NS - &) - .
S 25 LEP  Rrs=200-209 Gev Loose S 7 b LEP  RS=200-209 Gev Tight
[¢] [ ]
+- Data + Data
o 20 L [ ] Background o 6 [ ] Background
2 [ I signal (115 GeV/§) 2 Il signal (115 GeV/d)
5[
o | @
c 15 H all G109 GeV/é c all G109 GeV/é
°>-’ [[Data | 119 17 g 4 Hpata 18 4
LU [|Backgd| 116.5 15.8 I} Backgd| 14 1.2
10 HSignal 10 7.1 3 Hsignal | 2.9 22
+ 2 ]
5 |-
f Ny
0 L L L L 0 T | M L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
m,rec (GeV/c) m,ec (GeV/c)

LEP HiggsWG conclusions:

statistical analysis:signalat 1:7 standad dev.,
carespndingto My ' 116 GeV
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I—Higgs seaching LEP Ilmlt

Lep

o LEP's highest(sustained)energywas P s' 206GeV.
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I—Higgs seaching LEP Ilmlt

Lep

p

LEP's highest(sustained)energywas ™ s' 206GeV.
Threshold:p§& Mz + My, SOMy:max ' p§ My = 115GeV

Higgssignalat 115GeV, i.e. right at kinematiclimit. Possible
becausehereis only onereactionat a time: takesall energyand is
“clean'.

Sowhy not increaseIO s? Synchrotronenergylosstoo large:

Epeam 1
Eioss béam m ; ( 2:5GeVperturn)
e

Next generatione* e colliderwill be linea. Not befae 2015.

(]
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I—Higgs seaching LEP Ilmlt

Lep

o LEP's highest(sustained)energywas P s' 206GeV.

° Threshold:p§& Mz + My, SOMy:max ' p§ Mz = 115GeV
o Higgssignalat 115GeV, i.e. right at kinematiclimit. Possible

becausehereis only onereactionat a time: takesall energyand is
“clean'.

@ Sowhy not increaseIO s? Synchrotronenergylosstoo large:
4
Ebeam 1

Eloss R m—g; (  2:5GeVperturn)

o Next generatione* e colliderwill be linea. Not befae 2015.

e For now havehadroncolliders(at sameenergy synchrotronenergy
loss(me=mp)* 10 ! smaller).



Moonrise over LEP

: The historic tide experiment !

46475 B

# +M $ ++ ]
ol .
f |
* il

T T T S T T S I S E S
22:00 2:00 6:00 10:00 14:00 18:00 22:00 2:00

Beam Energy (MeV)

46465

Daytime
The total strain is 4 x 10 ( C = 1 mm)

10.10.2®m0 J.Wenninger - LEP fest



Success in the Press !

1010.2®M0 J.Wenninger - LEP fest



The Crack in the Model

: the beam energy model seemed to explain all observed

EXCEPT :

An unexplained energy
increase of 5 MeV was

observed in ONE
experiment.

1010.2@0

sources of energy fluctuations...

S 44715 | ‘ w w
S August 29th 1993 (After Tide correction
3 $
g 44710 prast e 4%
ch L4
= st
8 447 )
8 05+ m A
s
44700

It will remain unexplained for two years...

J.Wenninger - LEP fest

1 1 1 1 1
2:00 6:00 10:00 14:00 18:00 22:00

Daytime

2:00

11



Pipebusters

The explanation was given by the Swiss electricity company EOS...

| blast your pipes !

DC railway

Vagabond currents
from

=

train s and subway s

1 -

Source of electrical noise
and corrosion \
(first discussed in ...1898 !) ~20%

Vagabond (Earth) current

1010.2®@0 J.Wenninger - LEP fest 13



TGV for Paris

Novemb er 1995 : Measurements of

The current on the railway tracks
The current on the vacuum chamber
The dipole field in a magnet

correlate perfectly !

Because energy calibrations were
usually performed :

* At the end of fills (saturation)
During nights (no trains !)

we “missed” the trains

for many years !

Voltage on railsV

Bending field Gauss Voltage on beam pip&/

November 17th 1995
T : T T

: Jﬂ_qr/

Railway Tracks

4

0.012—

-0.016

A P
0.020— |

-0.024 —
LEP Beam Pipe
n n |

746.36—

74634 " A
W ‘-'“u-w-w/ |y
74632~ i
746.30~ B
746.28— -
LEP NMR
. . | . ! .
16:50 16:55 Time

1010.2M0 J.Wenninger - LEP fest

15
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L biggs seaching Basicsof hadroniccollisions

Hadron colliders

Protons are composite objects.

@ Only a fraction of energy(e.g. 1 7
of 3 quarks) goesinto the “had'
collision

a needhigherIO s to generatea
givenprocess

Py P2
y y
= dxafgmp(x D) dxefgmp(Xer 2) A(XaPiiXeP2i 2 8= XgXos
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L biggs seaching Basicsof hadroniccollisions

Hadron colliders

Protons are composite objects.

@ Only a fraction of energy(e.g. 1 7
of 3 quarks) goesinto the “had'
collision

a needhigherp s to generatea
givenprocess

Py P2

z y
= dxafgmp(x D) dxefgmp(Xer 2) A(XaPiiXeP2i 2 8= XgXos

o Momentumfractionsx; and x, are di erent in eachcollision

a C.O.M. frame not easilyidenti able (ambiguouskinematic
reconstruction)
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L-riggs seaching Basicsof hadroniccollisiong(cont.)

Hadron colliders

o Thereis QCD radiation from 7
initial-state partons

a collisionenvironmentis “dirty’

P1 P2
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L-riggs seaching Basicsof hadroniccollisiong(cont.)

Hadron colliders

@ Thereis QCD radiation from
initial-state partons

a collisionenvironmentis “dirty’

Py
o ‘remnants'from protons fragment& can alsointeract
a collisionenvironmentis evendirtier

P2
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L-riggs seaching Basicsof hadroniccollisiong(cont.)

Hadron colliders

@ Thereis QCD radiation from
initial-state partons

a collisionenvironmentis “dirty’

Py
@ remnants'from protons fragment& can alsointeract
a collisionenvironmentis evendirtier

P2

@ quaks and gluonsinteract via QCD (strong); Higgs & someother
‘new' physics,via EW (weak).
a Backgroundg(from QCD) are enhancedelativeto (some) signalsof
new physics
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L Higgs seaching
Hadron colliders

Example:TevatronHiggsseach

Largest production channel:gg! H, with decay H! bb (for
My . 135 GEV)
10? E LA B g t
§ $ (pP-> g, +X) [pb] _H
[ Gs=2TeV g
10 3 M; = 175 GeV 3
99->hsy CTEQ4M For 115 GeV Higgs,
! production  cross
o qqhqq it SN W | sectionis 1pb.
S SR [Lbam (b) =
107 s ggauehgw P 10 28 m?]
R I [Amb:
0o earhedd e 2:56 GeV 2(hc)?]
10 4 T S S R OO v
80 100 120 140 160 180 200

Mp,, [GeV]



Phenomenology: lecture 2 (p. 45)
L Higgs seaching
Hadron colliders

bb background

A~ crT o ‘ L ‘ TTTT ‘ TTTT ‘ L ‘ L ‘l\’d\eq\ T ‘ TT T 1]
% \ pp% bX, vs=1.8TeV, In1<1.0 ]
SRR * D@ Data E
N F (Errors have correlations) 3
0 L ]
-
~ 1 E
T ]
o - 3
~ r ) ]
o _f NLO QCD, MRSA/ 1
O1o 3 ‘ T‘heore"ucol ‘Uncer‘tomty‘ T
20“”30”“40””HH““70‘”‘80”“90”“100

ETbJet (Ge\/)

o

' 115 GeV
50 GeV

Crosssection 1nb

Backgroundis  10°
signal.
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L tigas seaching Actual seaches

Hadron colliders

Final State Modes and BackgrouncH

Signal Production ard Final State: Primary Backgourd Pracesses:
gg® H® bb QCD DijetBackground...Huge®
PP ® WH ® qg'bb QCD Jet Background/W+jets
pp® WH® bb W+bb/ct, Single top;tt @
pp® ZH ® qgbb QCD Jet Background/W+jets Q)
pp® ZH ® bb W/z+bb/ct, Tt (Poor BR) (&)
PP® ZH® ~hb W/z+bbict, &, QCD Jets (&)
Essentials:

Lepton Acceptance  b-tagging eff/Acceptance dijet Mass Resolution
April 2, 2004 Moriond QCD: B. L. Winer Page 3



Event Rates/fb M

Rates deteninedfrom a @mbination of MC and daa.

Missed
No Mass Window | Mass Window | Chg Legon

WH Signal(115) 1.7 15 |
ZH Signal(115) 2.5 2.3
Total Signal 4.2 3.8
tt 8.8 2.2
t(W*) 3.3 0.7
t(Wg) 2.4 0.5
W/Z bb 22.3 3.3
wz/zz 16.5 2.7
QCD 61.2 10.2
Total Bkg 114 19.6
S/+/B 0.39 0.85

2200 g/ 0.037 0.19 Pace 11
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L Higgs seaching
Hadron colliders

TevatronHiggsseach: prospects

integrated luminosity/expt. (fb™)

combined CDF /DO thresholds
T T T T

e}
N

10" F

10° F

— 95% CL limit
— 30 evidence
— 50 discovery

1 1

410 o'

2 fo™!

(03]
(@]

00 120 W0 180 180
Higgs mass (GeV/c?)

200

30 fb™!

Expressresultsof stud-
iesin termsof luminos-
ity neededin order to
seea Higgs signal, as
function of My.
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L Higgs seaching
Hadron colliders

TevatronHiggsseach: prospects

combined CDF /DO thresholds
T T T T

e}
N

10" F

10° F

integrated luminosity/expt. (fb™)

— 95% CL limit
— 30 evidence
— 50 discovery

1 1

410 o'

2 fo™!

(03]
(@]

00 120 W0 180 180
Higgs mass (GeV/c?)

200

30 fb™!

Expessresultsof stud-
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ity neededin order to
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Dip at 160 GeV
H! W**W (eas-
ier to identify, smaller
backgrounds).
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L Higgs seaching
Hadron colliders

TevatronHiggsseach: prospects

10

integrated luminosity/expt. (fb™)

e}
N

10° F

combined CDF /DO thresholds
T T T T

— 95% CL limit
— 30 evidence
— 50 discovery

1 1

30 fb™!

410 o'

2 fo™!

(03]
(@]

00 120 W0 180 180
Higgs mass (GeV/c?)

200

Expessresultsof stud-
iesin termsof luminos-
ity neededin order to
seea Higgs signal, as
function of My.

Dip at 160 GeV
H! W*'W (eas-
ier to identify, smaller
backgrounds).

Currently Tevatronhas
& 1fb L.
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L-iggs seaching TevatronHiggsseach: prospects

L Hadron colliders

combined CDF /DO thresholds
T T T

g 10? Expessresultsof stud-
= iesin termsof luminos-
g 30 o' . :
3 ity neededin order to
% o'k {0 o Seea Higgs signal, as
£ function of My.
: » 0 Dip at 160 GeV
e — 95% CL limit +
g 100 F — 30 eviden:; E H ! _W W (eas-
£ . | T 5o dscovery ier to identify, smaller
80 10 10 140 160 180 200 backgrounds).

Higgs mass (GeV/c?) Currently Tevatronhas

& 1fb L.

For full details, seejoint thearetical-exgrimental ' Report of the Tevatron
Higgsworking group’, hep-ph/0010338.(For luminosity progress see:

http://www.fnal.gov/pub/no wi/tevium.html)
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L tiggs seaching LHC Higgsseach: prospects

Hadron colliders

—#— VBFH® WW
—&— VBFH® tt
2 H® gg (inclusive + VBF)

10 O H® 7Z® 4l (with K-factors)

-~ 13-~ H® ZZ® 4l (no K-factors)
ttH,H® bb

—A— H® WW® InlIn

—4— H® ZZ® lIbb

~ -1
0_ dt=10 fb --3-- VBFH® 2Z® ligq

—a— Combined

Signal Significance

N
T
[e N
G\be/:
o]
o

100 200 300 400 500
M, (GeV
LesHouchesPhysicsat Tev Colliders2003', hep-ph/0406152 n(GeV)
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L Higgs seaching N B

Hadron colliders

Higgsis one of the main high-giority seaches. Involvesfar mare work
than could possiblybe donejusticeto in 1 lecture.
e.g.recentNNLO QCD calculationsof gg! H
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L Higgs seaching N B
:

Hadron colliders

Higgsis one of the main high-giority seaches. Involvesfar mare work
than could possiblybe donejusticeto in 1 lecture.
e.g.recentNNLO QCD calculationsof gg! H
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L Higgs seaching N B
Hadron colliders

Higgsis one of the main high-giority seaches. Involvesfar mare work
than could possiblybe donejusticeto in 1 lecture.
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