Taking QCD beyond fixed order perturbation theory – systematically

Gavin P. Salam
LPTHE, Universities of Paris VI and VII and CNRS

work in collaboration with Andrea Banfi & Giulia Zanderighi

CERN
16 August 2006
Today’s colliders are QCD machines

Current and forthcoming high-energy colliders:

<table>
<thead>
<tr>
<th>HERA</th>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^\pm p$</td>
<td>$\bar{p}p$</td>
<td>pp</td>
</tr>
</tbody>
</table>

All involve protons — understanding what’s going on unavoidably involves QCD

Tevatron: main ‘new’ object of study is top quark, interest is in checking its couplings and measuring its mass (e.g. implications for Higgs).

LHC: don’t yet know what ‘new’ objects will be — but ability to extract them from (QCD) backgrounds and measure their properties will almost certainly be limited by the quality of our understanding of QCD.

So where’s the problem? It’s just Feynman diagrams…
Real events bear superficial resemblance to perturbative picture

But

(a) **Fundamental problem**: want a better understanding of correspondence between (i) the perturbative language used for calculations and (ii) the hadrons that are observed.

(b) To get the most out of QCD events for doing ‘other physics’ (searches etc.) → understand, quantitatively, how they differ from naive Feynman diags.

E.g. how do you relate the true mass of a new particle to the mass measured by isolating the jets it decays into?
One way of improving situation is by

Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO Much activity
- Approximations to the behaviour of QCD at all orders This talk

When discussing new techniques, it’s useful to have a playground:

- Simple collider environments: e^+e^- (LEP), DIS (HERA).
- Special observables: event shapes — measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment ($e^+e^- \rightarrow 2\text{jets}$), attempting to illustrate lessons that hold in general.
One way of improving situation is by

Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO
 Much activity
- Approximations to the behaviour of QCD at all orders
 This talk

When discussing new techniques, it’s useful to have a *playground*:

- **Simple collider environments:** e^+e^- (LEP), DIS (HERA).
- **Special observables:** event shapes — measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment ($e^+e^- \to 2\text{jets}$), attempting to illustrate lessons that hold in general.
One way of improving situation is by

Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO
 Much activity
- Approximations to the behaviour of QCD at all orders
 This talk

When discussing new techniques, it’s useful to have a *playground*:

- **Simple collider environments:** e^+e^- (LEP), DIS (HERA).
- **Special observables:** event shapes — measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment ($e^+e^- \rightarrow 2\text{jets}$), attempting to illustrate lessons that hold in general.
Perturbative QCD at fixed orders
- Soft and collinear divergences
- Infrared and collinear safety \leftrightarrow (pseudo)-convergent perturbation series

Fixed-order breakdown, all-order log-enhanced structures
- fixed orders insufficient for describing most common events
- understanding of divergences \leftrightarrow all-order rearrangement of perturbation series

Resummation done systematically
- issues
 - *recursive* infrared collinear safety
 - automated resummation
Consider Feynman diagram (c.o.m. energy = Q)

$$p_2 \xrightarrow{k} p_1$$

Simplest limit:
- emitted gluon has small energy $E_k \ll Q$ (soft)
- is at small angle wrt quark, $\theta \ll 1$ (collinear)

Propagator goes on-shell \leftrightarrow divergence:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

Such soft and collinear divergences are pivotal in this talk.
Consider Feynman diagram (c.o.m. energy = Q)

\[\begin{array}{c}
\vec{p}_2 \\
\times \\
\vec{p}_1 \\
\end{array} \]

Simplest limit:
- emitted gluon has small energy $E_k \ll Q$ (soft)
- is at small angle wrt quark, $\theta \ll 1$ (collinear)

Propagator goes on-shell \leftrightarrow divergence:

\[d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \approx d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta} \]

Such soft and collinear divergences are pivotal in this talk.
Consider Feynman diagram (c.o.m. energy = Q)

\[
\begin{align*}
\text{Simplest limit:} \\
\bullet & \text{ emitted gluon has small energy } E_k \ll Q \text{ (soft)} \\
\bullet & \text{ is at small angle wrt quark, } \theta \ll 1 \text{ (collinear)}
\end{align*}
\]

Propagator goes \textbf{on-shell} \leftrightarrow divergence:

\[
d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta}
\]

Such \textit{soft and collinear divergences} are pivotal in this talk.
Probability of emitting 1 gluon

Based on soft-collinear limit, probability for emitting 1 gluon is

\[
\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta}
\]

This is \textit{infinite}. Perhaps integrals should not go below non-perturbative scale \(\Lambda \)?

Put cut-off:

\[
\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_\Lambda^Q \frac{dE}{E} \int_\Lambda/Q^{\pi/2} \frac{d\theta}{\theta} \sim \frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda}
\]

Two large logarithms, one ‘soft’, one ‘collinear’ (both depend on cutoff).

Does small coupling save us? \(\alpha_s = 1/(b_0 \ln Q/\Lambda) \):

\[
\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3\pi b_0} \ln \frac{Q}{\Lambda}
\]

This is not small! Perturbation theory seems to be no good...
Based on soft-collinear limit, probability for emitting 1 gluon is

\[\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \]

This is *infinite*. Perhaps integrals should not go below non-perturbative scale \(\Lambda \)?

Put cut-off:

\[\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_\Lambda^Q \frac{dE}{E} \int_\Lambda^{\pi/2} \frac{d\theta}{\theta} \sim \frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda} \]

Two large logarithms, one ‘soft’, one ‘collinear’ (both depend on cutoff).

Does small coupling save us? \(\alpha_s = \frac{1}{(b_0 \ln Q/\Lambda)} \):

\[\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3\pi b_0} \ln \frac{Q}{\Lambda} \]

This is not small! Perturbation theory seems to be no good...
Based on soft-collinear limit, probability for emitting 1 gluon is

$$\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta}$$

This is infinite. Perhaps integrals should not go below non-perturbative scale Λ?

Put cut-off:

$$\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_\Lambda^Q \frac{dE}{E} \int_\Lambda/Q^{\pi/2} \frac{d\theta}{\theta} \sim \frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda}$$

Two large logarithms, one ‘soft’, one ‘collinear’ (both depend on cutoff).

Does small coupling save us? $\alpha_s = 1/(b_0 \ln Q/\Lambda)$:

$$\text{Prob}(1 \text{ gluon}) \sim \frac{16}{3\pi b_0} \ln \frac{Q}{\Lambda}$$

This is not small! Perturbation theory seems to be no good...
Instead of calculating ‘flow of gluons’, let’s try and look at flow of energy.

E.g. ‘jet broadening’, B_T (transverse momentum flow wrt jet axis)

\[B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \approx \frac{E_k \theta}{Q} \quad (\theta \ll 1) \]

Do perturbative calculation for mean value of broadening:

\[\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q} \]

Divergences are cancelled, because ‘observable’ (B_T) vanishes when the gluon is soft or collinear. Result is truly perturbative.

Suitable observables are straightforwardly calculable.
Instead of calculating 'flow of gluons', let's try and look at *flow of energy*. E.g. 'jet broadening', B_T (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1)$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16 \alpha_s}{3 \pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E \theta}{Q}$$

Divergences are cancelled, because 'observable' (B_T) vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Suitable observables are straightforwardly calculable.
Instead of calculating ‘flow of gluons’, let’s try and look at *flow of energy*. E.g. ‘jet broadening’, B_T (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1)$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E \theta}{Q}$$

Divergences are cancelled, because ‘observable’ (B_T) vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Suitable observables are straightforwardly calculable.
Instead of calculating ‘flow of gluons’, let’s try and look at flow of energy. E.g. ‘jet broadening’, B_T (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \approx \frac{E_k \theta}{Q} \quad (\theta \ll 1)$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q dE \int_0^{\pi/2} d\theta \frac{E \theta}{\theta} \cdot \frac{E \theta}{Q} = \mathcal{O}(\alpha_s)$$

Divergences are cancelled, because ‘observable’ (B_T) vanishes when the gluon is soft or collinear. Result is truly perturbative.

Suitable observables are straightforwardly calculable.
Instead of calculating ‘flow of gluons’, let’s try and look at flow of energy.

E.g. ‘jet broadening’, B_T (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1)$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E \theta}{Q} = O(\alpha_s)$$

Divergences are cancelled, because ‘observable’ (B_T) vanishes when the gluon is soft or collinear. Result is truly perturbative.

Suitable observables are straightforwardly calculable.
Crucial property of broadening was that effect of an additional gluon vanished \(\propto \) a power of its softness and collinearity.

Infrared and collinear (IRC) safety

For an observable’s distribution to be calculable in perturbation theory, the observable should be infra-red [and collinear] safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \(\vec{p}_i \) is any momentum occurring in its definition, it must be invariant under the branching

\[
\vec{p}_i \rightarrow \vec{p}_j + \vec{p}_k
\]

whenever \(\vec{p}_j \) and \(\vec{p}_k \) are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]
Infrared (soft) and collinear safety

Crucial property of broadening was that effect of an additional gluon vanished \(\propto \) a power of its softness and collinearity.

Infrared and collinear (IRC) safety

Sterman & Weinberg ’77

For an observable’s distribution to be calculable in perturbation theory, the observable should be infra-red [and collinear] safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \(\vec{p}_i \) is any momentum occurring in its definition, it must be invariant under the branching

\[\vec{p}_i \rightarrow \vec{p}_j + \vec{p}_k \]

whenever \(\vec{p}_j \) and \(\vec{p}_k \) are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]
Next: calculate higher-order corrections. At each order, probability of emitting gluon $\gg 1 \rightarrow$ complex configurations with many gluons:

But: high multiplicity comes from soft, collinear region – these gluons don’t affect observable (IRC safety), and cancel nearly fully with virtual corrections.

Field theory: real-virtual cancellation
Observable: IRC safety

Combination of field theory and observable properties allow us to pretend that the real world looks like perturbation theory.
Next: calculate higher-order corrections. At each order, probability of emitting gluon $\gg 1 \rightarrow$ complex configurations with many gluons:

But: high multiplicity comes from soft, collinear region – these gluons don’t affect observable (IRC safety), and cancel nearly fully with virtual corrections.

Field theory: real-virtual cancellation
Observable: IRC safety

Combination of field theory and observable properties allow us to pretend that the real world looks like perturbation theory.
Next: calculate higher-order corrections. At each order, probability of emitting gluon $\gg 1 \rightarrow$ complex configurations with many gluons:

But: high multiplicity comes from soft, collinear region – these gluons don’t affect observable (IRC safety), and *cancel nearly fully with virtual corrections*.

Field theory: real-virtual cancellation

Observable: IRC safety

Combination of field theory and observable properties allow us to *pretend* that the real world looks like perturbation theory.
Consider pure α_s^2 contributions. Conceptually simple:

In practice
- Physicist calculates matrix elements once \rightarrow into computer program.
- Program generates random configurations (real & virtual), calculates arbitrary IRC-safe observable (subroutine), weights with matrix elements.

Subtlety: how do you combine
- observable in 4-dimensions,
- matrix elements in $4 + 2\epsilon$ dimensions (dim.-reg.)?

General NLO solution: Catani & Seymour ’96 + Dittmaier & Trocsanyi ’02
First NNLO solution: Gehrmann-De Ridder, Gehrmann & Glover ’05
QCD beyond fixed order (p. 11)

Next-to-leading order (NLO) predictions

Consider pure α_s^2 contributions. Conceptually simple:

\[
\begin{align*}
\intertext{In practice}
\end{align*}
\]

- Physicist calculates matrix elements once \rightarrow into computer program.
- Program generates random configurations (real & virtual), calculates arbitrary IRC-safe observable (subroutine), weights with matrix elements.

Subtlety: how do you combine

- observable in 4-dimensions,
- matrix elements in $4 + 2\epsilon$ dimensions (dim.-reg.)?

General NLO solution: Catani & Seymour ’96 + Dittmaier & Trocsanyi ’02
First NNLO solution: Gehrmann-De Ridder, Gehrmann & Glover ’05
Broadening distribution at NLO

QCD beyond fixed order (p. 12)
— NLO breakdown, all-order log structure

Total Broadening (B_T)

$\alpha_s + \alpha_s^2$

Large B_T
✓ Shape OK
✓ Normalisation correct

Small B_T
✗ Shape wrong (divergent)
✗ This is where you have most data

OPAL 91 GeV
QCD beyond fixed order (p. 12)

NLO breakdown, all-order log structure

Broadening distribution at NLO

![Graph showing OPAL 91 GeV data with LO predictions.]

Large B_T

✓ Shape OK

✗ Normalisation wrong

Small B_T

✗ Shape wrong (divergent)

✗ This is where you have most data

\[
\alpha_s + \alpha_s^2
\]
QCD beyond fixed order (p. 12)
— NLO breakdown, all-order log structure

Broadening distribution at NLO

Total Broadening (B_T)

$\alpha_s + \alpha_s^2$

Large B_T

✓ Shape OK

✗ Normalisation wrong

Small B_T

✗ Shape wrong (divergent)

✗ This is where you have most data
Broadening distribution at NLO

- **Large B_T**
 - ✓ Shape OK
 - x Normalisation wrong

- **Small B_T**
 - x Shape wrong (divergent)
 - x This is where you have most data

$\alpha_s + \alpha_s^2$

Total Broadening (B_T)
What’s happening?

What is probability, $\Sigma(B)$, that broadening $< \text{some value } B$?

$$\Sigma(B) \sim 1 + \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^\infty dE \frac{d\theta}{\theta} \Theta(B - \frac{E\theta}{Q}) - \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^\infty dE \frac{d\theta}{\theta}$$

$$\sim 1 - \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^\infty dE \frac{d\theta}{\theta} \Theta(\frac{E\theta}{Q} - B) \sim 1 - \frac{8}{3} \frac{\alpha_s}{\pi} \ln^2 B$$

Double logarithm due to incomplete real-virtual cancellation of soft and collinear divergences, when considering narrow jets.

NB: resulting distribution diverges

$$\frac{d\Sigma}{dB} \sim \frac{16}{3} \frac{\alpha_s}{\pi} \ln \frac{1}{B} \frac{1}{B}$$
Examine soft-collinear limit of two gluons:

Two propagators nearly on-shell \leftrightarrow 4 divergences ($E_a \ll E_b$). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us $\alpha_s^2 \ln^4 B$
Examine soft-collinear limit of two gluons:

Two propagators nearly on-shell \leftrightarrow 4 divergences ($E_a \ll E_b$). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us $\alpha_s^2 \ln^4 B$
What will happen at next order?

Examine soft-collinear limit of two gluons:

Two propagators nearly on-shell \leftrightarrow 4 divergences ($E_a \ll E_b$). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us $\alpha_s^2 \ln^4 B$
Normal perturbative expansion is fine in formal perturbative $\alpha_s \to 0$ limit

$$\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \ldots$$

$$f_n(B) \sim \ln^{2n} B \text{ for } B \ll 1$$

In region where you have most of the data $\ln B \gg 1$ and $\alpha_s^n f_n(B) \sim 1$ — series does not converge.

But origin of logs is simple: residual non-cancellation of real and virtual soft-collinear divergences. Can imagine calculating them at all orders:

$$\Sigma(B) \sim \sum_{n=0}^{\infty} H_{n,2n} \alpha_s^n \ln^{2n} B + \mathcal{O}(\alpha_s^n \ln^{2n-1} B)$$

$$= h_1(\alpha_s L^2) + \sqrt{\alpha_s} h_2(\alpha_s L^2) + \ldots,$$

$L \equiv \ln \frac{1}{B}$

This is a resummation of leading logarithms (LL), $h_1(\alpha_s L^2)$

Will converge even for large values of the logarithm, $\alpha_s L^2 \sim 1$ since $h_1 \sim 1$, $h_2 \sim 1$ [NB: traded L^{-1} for $\sqrt{\alpha_s}$ in front of h_2]
Normal perturbative expansion is fine in formal perturbative $\alpha_s \to 0$ limit

$$\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \ldots$$

$$f_n(B) \sim \ln^{2n} B \text{ for } B \ll 1$$

In region where you have most of the data $\ln B \gg 1$ and $\alpha_s^n f_n(B) \sim 1$ — series does not converge.

But origin of logs is simple: residual non-cancellation of real and virtual soft-collinear divergences. Can imagine calculating them at all orders:

$$\Sigma(B) \sim \sum_{n=0}^{\infty} \frac{H_{n,2n}}{n!} \alpha_s^n \ln^{2n} B + O \left(\alpha_s^n \ln^{2n-1} B \right)$$

$$= h_1(\alpha_s L^2) + \sqrt{\alpha_s} h_2(\alpha_s L^2) + \ldots \ , \quad L \equiv \ln \frac{1}{B}$$

This is a resummation of leading logarithms (LL), $h_1(\alpha_s L^2)$

Will converge even for large values of the logarithm, $\alpha_s L^2 \sim 1$ since $h_1 \sim 1$, $h_2 \sim 1$ [NB: traded L^{-1} for $\sqrt{\alpha_s}$ in front of h_2]
Normal perturbative expansion is fine in formal perturbative $\alpha_s \to 0$ limit

$$\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \ldots \quad f_n(B) \sim \ln^{2n} B \text{ for } B \ll 1$$

In region where you have most of the data $\ln B \gg 1$ and $\alpha_s^n f_n(B) \sim 1$ — series does not converge.

But origin of logs is simple: residual non-cancellation of real and virtual soft-collinear divergences. Can imagine calculating them at all orders:

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} H_{n,2n} \alpha_s^n \ln^{2n} B + \mathcal{O} (\alpha_s^n \ln^{2n-1} B)$$

$$= h_1 (\alpha_s L^2) + \sqrt{\alpha_s} h_2 (\alpha_s L^2) + \ldots , \quad L \equiv \ln \frac{1}{B}$$

This is a resummation of leading logarithms (LL), $h_1(\alpha_s L^2)$

Will converge even for large values of the logarithm, $\alpha_s L^2 \sim 1$ since $h_1 \sim 1$, $h_2 \sim 1$ [NB: traded L^{-1} for $\sqrt{\alpha_s}$ in front of h_2]
Step 1. Simplify matrix element.

- B measures transverse momentum flow relative to main event ($\sim q\bar{q}$) axis.
- Secondary gluon splitting does not change observable (will cancel fully against virtuals)
- Take only independent emission:

$$d\Phi_n|M^2(k_1, \ldots k_n)| \rightarrow \frac{1}{n!} \prod_{i=1}^{n} \frac{16}{3} \frac{\alpha_s}{\pi} \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i}$$

Minus corresponding virtual (loop) terms
Step 2. Simplify observable

- Calculate observable with *arbitrary number of emissions*. In soft and collinear limit it ‘simplifies’ to

\[
B = \frac{1}{2Q} \left(\sum_{i=1}^{n} |\vec{k}_{ti}| + \sum_{i \in \text{right}} |\vec{k}_{ti}| + \sum_{i \in \text{left}} |\vec{k}_{ti}| \right)
\]

- For now approximate this as

\[
B = \frac{1}{Q} \max \{ k_{t1}, k_{t2}, \ldots k_{tn} \}
\]

Since \(\ln^2 [B \times \mathcal{O}(1)] = \ln^2 B + \mathcal{O}(1) \cdot \ln B \), this does not change LL.

- Translate to limit on all \(k_{ti} = E_i \theta_i \):

\[
\Sigma(B) \approx \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \frac{16 \alpha_s}{3} \frac{1}{\pi} \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} \left[\Theta(B - E_i \theta_i) - \frac{1}{\text{virt}} \right]
\]

\[
\simeq \exp \left[-\frac{8}{3} \frac{\alpha_s L^2}{\pi} \right]
\]

Exponentiated double logarithms
Step 2. Simplify observable

- Calculate observable with **arbitrary number of emissions**. In soft and collinear limit it ‘simplifies’ to

\[
B = \frac{1}{2Q} \left(\sum_{i=1}^{n} |\vec{k}_{ti}| + \sum_{i \in \text{right}} |\vec{k}_{ti}| + \sum_{i \in \text{left}} |\vec{k}_{ti}| \right)
\]

- For now *approximate this* as

\[
B = \frac{1}{Q} \max \{ k_{t1}, k_{t2}, \ldots k_{tn} \}
\]

Since \(\ln^2[B \times \mathcal{O}(1)] = \ln^2 B + \mathcal{O}(1) \cdot \ln B \), this does not change LL.

- Translate to limit on all \(k_{ti} = E_i \theta_i \):

\[
\Sigma(B) \approx \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \frac{16}{3} \frac{\alpha_s}{\pi} \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} \left[\Theta(B - E_i \theta_i) - \frac{1}{\text{virt}} \right] - 1
\]

\[
\approx \exp \left[-\frac{8}{3} \frac{\alpha_s L^2}{\pi} \right]
\]

Exponentiated double logarithms
Step 2. Simplify observable

- Calculate observable with *arbitrary number of emissions*. In soft and collinear limit it ‘simplifies’ to

\[
B = \frac{1}{2Q} \left(\sum_{i=1}^{n} |\vec{k}_{ti}| + \sum_{i \in \text{right}} |\vec{k}_{ti}| + \sum_{i \in \text{left}} |\vec{k}_{ti}| \right)
\]

- For now approximate this as

\[
B = \frac{1}{Q} \max \{ k_{t1}, k_{t2}, \ldots k_{tn} \}
\]

Since \(\ln^2[B \times O(1)] = \ln^2 B + O(1) \cdot \ln B\), this does not change LL.

- Translate to limit on all \(k_{ti} = E_i \theta_i\):

\[
\Sigma(B) \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \frac{16 \alpha_s}{3 \pi} \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} \left[\Theta(B - E_i \theta_i) - \frac{1}{\text{virt}} \right] \]

\[
\simeq \exp \left[-\frac{8 \alpha_s L^2}{3 \pi} \right]
\]

Exponentiated double logarithms
\[\exp[-\alpha_s L^2] \] is typical of *Sudakov suppression* — if you want broadening to be small, pay the price of *suppressing emission* (i.e. virtual terms).

Exponentiated form does not always hold, e.g. ‘Jade jet resolution,’ \(y_{3J} \):

\[
\Sigma(y_{3J}) = 1 - \frac{4}{3} \frac{\alpha_s L^2}{\pi} + \frac{5}{12} \left(\frac{4}{3} \frac{\alpha_s L^2}{\pi} \right)^2 + \ldots
\]

Brown & Stirling '90

When it *does* hold, \(\exists \) more powerful reorganisation of logs

\[
\Sigma(B) = \exp \left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + O(\alpha_s^n L^n) \right]
\]

\[
= \exp \left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \ldots \right]
\]

Better than previous hierarchy: valid up to \(L \sim 1/\alpha_s \) (rather than \(L \sim 1/\sqrt{\alpha_s} \)) and successive terms suppressed by \(\alpha_s \) (instead of \(\sqrt{\alpha_s} \)).
Exponentiation

- \(\exp[-\alpha_s L^2] \) is typical of *Sudakov suppression* — if you want broadening to be small, pay the price of *suppressing emission* (*i.e.* virtual terms).

- Exponentiated form does not always hold, *e.g.* ‘Jade jet resolution,’ \(y_{3J} \):

 \[
 \Sigma(y_{3J}) = 1 - \frac{4 \alpha_s L^2}{3 \pi} + \frac{5}{12} \left(\frac{4 \alpha_s L^2}{3 \pi} \right)^2 + \cdots
 \]

 Brown & Stirling ’90

- When it *does* hold, \(\exists \) more powerful reorganisation of logs

 \[
 \Sigma(B) = \exp \left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + \mathcal{O}(\alpha_s^n L^n) \right]
 \]

 \[
 = \exp \left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \cdots \right]
 \]
 \[
 \text{LL} \quad \text{NLL} \quad \text{NNLL}
 \]

 Better than previous hierarchy: valid up to \(L \sim 1/\alpha_s \) (rather than \(L \sim 1/\sqrt{\alpha_s} \)) and successive terms suppressed by \(\alpha_s \) (instead of \(\sqrt{\alpha_s} \)).
Exponentiation

- \(\exp[-\alpha_s L^2] \) is typical of *Sudakov suppression* — if you want broadening to be small, pay the price of *suppressing emission* (*i.e.* virtual terms).

- Exponentiated form does not always hold, e.g. ‘Jade jet resolution,’ \(y_{3J} \):

\[
\Sigma(y_{3J}) = 1 - \frac{4 \alpha_s L^2}{3 \pi} + \frac{5}{12} \left(\frac{4 \alpha_s L^2}{3 \pi} \right)^2 + \cdots
\]

Brown & Stirling '90

- When it *does* hold, \(\exists \) more powerful reorganisation of logs

\[
\Sigma(B) = \exp \left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + \mathcal{O}(\alpha_s^n L^n) \right]
\]

\[
= \exp \left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \cdots \right]
\]

Better than previous hierarchy: valid up to \(L \sim 1/\alpha_s \) (rather than \(L \sim 1/\sqrt{\alpha_s} \)) and successive terms suppressed by \(\alpha_s \) (instead of \(\sqrt{\alpha_s} \)).
Next-to-leading-logarithmic (NLL) accuracy is currently *state of the art* for QCD final-state resummations.

Ingredients (in addition to those shown so far):
- Full treatment of observable
- Proper coupling (scheme, two-loop running)
- Careful evaluation of sum over emissions

 - **Pioneered:** Catani, Trentadue, Turnock, Webber (CTTW) ’92
 - **Broadening:** CTW ’92; Dokshitzer, Lucenti, Marchesini & GPS ’98
 - **NB:** simple observable (EEC) recently done at NNLL: de Florian & Grazzini ’04
NLO breakdown, all-order log structure

Broadening distribution at NLO+NLL

NLL shape OKish!

NB: peak is at $\alpha_s L \sim 1$.

Remaining difference ascribed to parton-hadron transition, hadronisation

Only with resummation can hadronisation be separated from perturbative part

\[\alpha_s + \alpha_s^2 + e^{\alpha_s L^{n+1} B} + \alpha_s^2 L^n B + \frac{1}{Q} \]
QCD beyond fixed order (p. 20)
NLO breakdown, all-order log structure

Broadening distribution at NLO+NLL

NLO shape OKish!
NB: peak is at $\alpha_s L \sim 1$.

Remaining difference ascribed to parton-hadron transition, hadronisation.

Only with resummation can hadronisation be separated from perturbative part.
Broadening distribution at NLO+NLL

NLO breakdown, all-order log structure

\[\alpha_s + \alpha_s^2 + e^{\alpha_s L^{n+1} B} + \alpha_s L^n B + \frac{1}{Q} \]

1. NLL shape OKish!

2. NB: peak is at \(\alpha_s L \sim 1 \).

3. Remaining difference ascribed to parton-hadron transition, hadronisation

4. Only with resummation can hadronisation be separated from perturbative part
Unlike NLO (matrix-element done once, rest done my Monte Carlo), NLL ‘event-shape’ resummation nearly always been done *manually, analytically.*

<table>
<thead>
<tr>
<th></th>
<th>$\rho_h, \rho_l, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M,$ Angularities</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS 1+1 jets</td>
<td>$\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$</td>
</tr>
<tr>
<td>Multijet</td>
<td>$e^+e^- \to 3j \ T_m, T_{m,N}, D; \text{DIS}(1+2) \ K_{out}$</td>
</tr>
<tr>
<td></td>
<td>$pp \to W + 1j \ K_{out}; \ pp \to 2j \text{ gap-probability (cone,}k_t)$</td>
</tr>
</tbody>
</table>

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi.
[Since 1992]

Doing things manually is **error-prone.** Many oversights. . .

Few practitioners unscathed
Unlike NLO (matrix-element done once, rest done my Monte Carlo), NLL ‘event-shape’ resummation nearly always been done manually, analytically.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- 2$ jets</td>
<td>$\rho_h, \rho_l, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M, \text{Angularities}$</td>
</tr>
<tr>
<td>DIS 1+1 jets</td>
<td>$\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$</td>
</tr>
</tbody>
</table>
| Multijet | $e^+e^- \rightarrow 3j \ T_m, T_m,N, D; \text{DIS}(1+2) \ K_{out}$
| | $pp \rightarrow W + 1j \ K_{out}; \ pp \rightarrow 2j \text{ gap-probability (cone,} k_t)$ |

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi.

[Since 1992]

Doing things manually is error-prone. Many oversights...

Few practitioners unscathed
Unlike NLO (matrix-element done once, rest done my Monte Carlo), NLL ‘event-shape’ resummation nearly always been done \textit{manually, analytically}.

\begin{tabular}{|l|l|}
\hline
\textbf{e}^+\textbf{e}^- 2 jets & $\rho_h, \rho_l, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M, \text{Angularities}$ \\
\hline
\textbf{DIS} 1+1 jets & $\tau_{zQ}, \tau_{ZE}, B_{zQ}, B_{tQ}, C_E, \rho_E$ \\
\hline
\textbf{Multijet} & $e^+ e^- \rightarrow 3j \; T_m, T_{m,N}, D; \; \text{DIS}(1+2) \; K_{out}$ \\
 & $pp \rightarrow W + 1j \; K_{out}; \; pp \rightarrow 2j \; \text{gap-probability (cone,} k_t)$ \\
\hline
\end{tabular}

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi. [Since 1992]

Doing things manually is \textbf{error-prone}. Many oversights…

Few practitioners unscathed
Unlike NLO (matrix-element done once, rest done my Monte Carlo), NLL ‘event-shape’ resummation nearly always been done *manually, analytically*.

<table>
<thead>
<tr>
<th>e^+ e^- 2 jets</th>
<th>(\rho_h, \rho_l, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M), Angularities</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS 1+1 jets</td>
<td>(\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E)</td>
</tr>
<tr>
<td>Multijet</td>
<td>(e^+ e^- \rightarrow 3j \ T_m, T_{m,N}, D; \text{DIS}(1+2) \ K_{out})</td>
</tr>
<tr>
<td></td>
<td>(pp \rightarrow W + 1j \ K_{out}; \ pp \rightarrow 2j \ \text{gap-probability (cone, } k_t)</td>
</tr>
</tbody>
</table>

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi.

[Since 1992]

Doing things manually is *error-prone*. Many oversights...

Few practitioners unscathed
Sources of difficulty (globalness)

Global observable:

e.g. total e^+e^- Broadening, B_T

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

⇒ emissions can be resummed as if independent \((\text{proved})\)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions in right-hand hemisphere \((H_R)\).

Tempting to assume one can:

- ignore left hemisphere \((H_L)\)
- use independent emission approximation in H_R.

WRONG AT NLL ACCURACY

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:

\textit{e.g. total }e^+e^- \textit{ Broadening, } B_T

\text{making } B \ll 1 \text{ restricts emissions everywhere.}

\text{Coherence + globalness:}

\Rightarrow \text{ emissions can be resummed as if independent (proved)}

\text{Answers guaranteed to NLL accuracy}

Non-Global observable:

\text{Right-hemisphere Broadening, } B_R

\text{making } B_R \ll 1 \text{ restricts emissions in right-hand hemisphere (} \mathcal{H}_R \text{).}

\text{Tempting to assume one can:}

- \text{ignore left hemisphere (} \mathcal{H}_L \text{)}
- \text{use independent emission approximation in } \mathcal{H}_R.

\text{WRONG AT NLL ACCURACY}

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:
- e.g. total e^+e^- Broadening, B_T

- making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:
- emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:
- Right-hemisphere Broadening, B_R

- making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R).

- Tempting to assume one can:
 - ignore left hemisphere (\mathcal{H}_L)
 - use independent emission approximation in \mathcal{H}_R.

WRONG AT NLL ACCURACY

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:
e.g. total e^+e^- Broadening, B_T

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

⇒ emissions can be resummed as if independent \textit{(proved)}

\textit{Answers guaranteed to NLL accuracy}

Non-Global observable:
Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R).

Tempting to \textit{assume} one can:

● ignore left hemisphere (\mathcal{H}_L)
● use independent emission approximation in \mathcal{H}_R.

\textit{WRONG AT NLL ACCURACY}

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:
e.g. total $e^+ e^-$ Broadening, B_T

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

⇒ emissions can be resummed as if independent (*proved*)

Answers guaranteed to NLL accuracy

Non-Global observable:
Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R).

Tempting to *assume* one can:

- ignore left hemisphere (\mathcal{H}_L)
- use independent emission approximation in \mathcal{H}_R.

WRONG AT NLL ACCURACY

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:
e.g. total e^+e^- Broadening, B_T

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

- emissions can be resummed as if independent \textit{(proved)}

\textit{Answers guaranteed to NLL accuracy}

Non-Global observable:
Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R).

Tempting to \textit{assume} one can:

- ignore left hemisphere (\mathcal{H}_L)
- use independent emission approximation in \mathcal{H}_R.

\textbf{WRONG AT NLL ACCURACY}

Dasgupta & GPS '01
Sources of difficulty (globalness)

Global observable:

e.g. total $e^+ e^-$ Broadening, B_T

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

⇒ emissions can be resummed as if independent (proved)

\[\text{Answers guaranteed to NLL accuracy} \]

Non-Global observable:

Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R).

Tempting to assume one can:

• ignore left hemisphere (\mathcal{H}_L)
• use independent emission approximation in \mathcal{H}_R.

\[\text{WRONG AT NLL ACCURACY} \]

Dasgupta & GPS '01
QCD beyond fixed order (p. 23)

Resummation done systematically

Issues

Resummation of NG observables

All-orders:

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)

Difficulties, features:

- Logarithms resummed so far only in large-N_c limit

 Dasgupta & GPS '01, '02
 Banfi, Marchesini & Smye '02

- In general, boundary between the two regions may have arbitrary shape.

- It may depend on the pattern of emissions (e.g. with jet algo).

 Appleby & Seymour '02, '03
 Banfi & Dasgupta '05

- Unexpected relations with BK, BFKL and JIMWLK equations in small-x (high-energy) limit of QCD

 Weigert '03
 Marchesini & Mueller '03, Marchesini & Onofri '04
All-orders:

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)

\[\alpha_s^n \ln^n B_R \]

Difficulties, features:

- Logarithms resummed so far only in large-\(N_c\) limit

 Dasgupta & GPS ’01, ’02
 Banfi, Marchesini & Smye ’02

- In general, boundary between the two regions may have arbitrary shape.

- It may depend on the pattern of emissions (e.g. with jet algo).

 Appleby & Seymour ’02, ’03
 Banfi & Dasgupta ’05

- Unexpected relations with BK, BFKL and JIMWLK equations in small-\(x\) (high-energy) limit of QCD

 Weigert ’03
 Marchesini & Mueller ’03, Marchesini & Onofri ’04
Resummation of NG observables

All-orders:

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)

Difficulties, features:

- Logarithms resummed so far only in large-N_c limit
 - Dasgupta & GPS '01, '02
 - Banfi, Marchesini & Smye '02

- In general, boundary between the two regions may have arbitrary shape.

- It may depend on the pattern of emissions (e.g. with jet algo).
 - Appleby & Seymour '02, '03
 - Banfi & Dasgupta '05

- Unexpected relations with BK, BFKL and JIMWLK equations in small-x (high-energy) limit of QCD
 - Weigert '03
 - Marchesini & Mueller '03, Marchesini & Onofri '04
Other difficulty is in **handling the soft-collinear limit of the observable:**

- calculate how limit on observable constrains momenta of \(n \) particles
- then express constraint in factorised form, if it exists

E.g.,

\[
\Theta(y_{3C} Q^2 - \max(k_{t1}^2, k_{t2}^2, \ldots, k_{tn}^2)) \rightarrow \prod_{i=1}^{n} \Theta(y_{3C} Q^2 - k_{ti}^2)
\]

\(y_{3C} = 3 \)-jet resolution, Cambridge algorithm

Most cases are more complex

\[
\Theta(\tau Q - k_{t1} - k_{t2} - \ldots - k_{tn}) \rightarrow \int \frac{d\nu}{2\pi i\nu} e^{\nu \tau Q} \prod_{i=1}^{n} e^{-\nu k_{ti}}
\]

\(\tau = \) any thrust-like observable

Some may even be insoluble analytically

\[
\Theta(T_M Q - \max(\vec{k}_{t1} + \vec{k}_{t2} + \ldots + \vec{k}_{tn})) \rightarrow ???
\]

\(T_M = \) thrust-major, done numerically Banfi, GPS & Zanderighi ’01
What we would like:
Something as good as manual analytical resummation

- Guaranteed (verifiable) accuracy, exponentiation
- Separate LL, NLL functions, $g_1(\alpha_s L), g_2(\alpha_s L)$
- Expansions of g_1 and g_2 to fixed order in α_s

Monte Carlo resummation:
Event generators (Herwig, Pythia, …) generate multiple divergent soft-collinear radiation = powerful automated resummation programs!

✓✓ Observable treated exactly \Leftrightarrow very flexible.
✓ Includes hadronisation model
✗ Accuracy sometimes unclear (depends on observable, no NLL for multi-jet processes)
✗ Difficult to estimate uncertainties of calculation
✗ Combining with fixed order is tricky — limited analytical information
Generic resummation?

What we would like:
Something as good as manual analytical resummation

- Guaranteed (verifiable) accuracy, exponentiation
- Separate LL, NLL functions, $g_1(\alpha_s L)$, $g_2(\alpha_s L)$
- Expansions of g_1 and g_2 to fixed order in α_s

Monte Carlo resummation:
Event generators (Herwig, Pythia, ...) generate multiple divergent soft-collinear radiation = powerful automated resummation programs!

✓✓ Observable treated exactly \iff very flexible.
✓ Includes hadronisation model
✗ Accuracy sometimes unclear (depends on observable, no NLL for multi-jet processes)
✗ Difficult to estimate uncertainties of calculation
✗ Combining with fixed order is tricky — limited analytical information
Follow model of fixed order calculations

Identify combination of

- properties of QCD matrix elements
- requirements on observable

such that a systematic approximation procedure emerges.

NB: will consider only *global* observables, so as to simplify problem.
Use ‘Lund’ representation of kinematic plane: $\ln k_t$ and $\eta = -\ln \tan \theta / 2$
Phase space \((e^+e^- \rightarrow 2 \text{jets})\)

Use ‘Lund’ representation of kinematic plane: \(\ln k_t\) and \(\eta = -\ln \tan \theta/2\)
Use ‘Lund’ representation of kinematic plane: $\ln k_t$ and $\eta = -\ln \tan \theta/2$
Use ‘Lund’ representation of kinematic plane: $\ln k_t$ and $\eta = -\ln \tan \theta/2$
Introduce observable (\& 1 emission).

Take \textit{general observable}, \(V(p_1, \ldots) \).

Require that it vanish smoothly in soft, collinear limits:

\[V(p_1, p_2, k) \sim (k_t/Q)^a e^{-b|\eta|} \]

Requirement \(V(\ldots) < v \rightarrow \) boundary of a \textit{vetoed region} for 1 emission

\[\ln v = a \ln \frac{k_t}{Q} - b|\eta| \]

Diagram shows \(a = b = 1 \)

Real—virtual cancels \textit{everywhere but vetoed region}, leaving:

\[\Sigma(V < v) = 1 + \underbrace{G_{12} \alpha_s L^2}_{\text{Vetoed area}} + \underbrace{G_{11} \alpha_s L}_{\text{edges}} \]

NB: \(-\alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \sim -\alpha_s d\ln k_t d\eta \)
QCD beyond fixed order (p. 28)

Resummation done systematically

Strategy

Introduce observable (& 1 emission)

vetoed region

hard + collinear: \(\eta = \ln Q/k_t \)

Take *general observable*, \(V(p_1, \ldots) \).

Require that it vanish smoothly in soft, collinear limits:

\[
V(p_1, p_2, k) \sim (k_t/Q)^a e^{-b|\eta|}
\]

Requirement \(V(\ldots) < v \rightarrow \) boundary of a *vetoed region* for 1 emission

\[
\ln v = a \ln \frac{k_t}{Q} - b|\eta|
\]

Real—virtual cancels everywhere but vetoed region, leaving:

\[
\Sigma(V < v) = 1 + G_{12} \alpha_s L^2 + G_{11} \alpha_s L
\]

Vetoed area

edges

NB: \(-\alpha_s dE d\theta \sim -\alpha_s d\ln k_t d\eta\)
QCD beyond fixed order (p. 28)
Resummation done systematically

Strategy

Introduce observable (& 1 emission)

Take general observable, $V(p_1, \ldots)$. Require that it vanish smoothly in soft, collinear limits:

$$V(p_1, p_2, k) \sim (k_t/Q)^a e^{-b|\eta|}$$

Requirement $V(\ldots) < \nu \rightarrow$ boundary of a vetoed region for 1 emission

$$\ln \nu = a \ln \frac{k_t}{Q} - b|\eta|$$

Diagram shows $a = b = 1$

Real–virtual cancels everywhere but vetoed region, leaving:

$$\Sigma(V < \nu) = 1 + G_{12} \alpha_s L^2 + G_{11} \alpha_s L$$

Vetoed area edges

NB: $-\alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \sim -\alpha_s d\ln k_t d\eta$
Fixed order: series in α_s, so consider limit $\alpha_s \rightarrow 0$ for fixed $V(p_1, \ldots)$

Resummation expansion:

$$\ln \Sigma = \alpha_s^{-1} g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \ldots,$$

so take $\alpha_s \rightarrow 0$ with $\alpha_s L$ constant

For 1 emission, rescaling of L and α_s equivalent to remapping of phase-space:

Question: how does observable behave under such a scaling of momenta when there are many emissions?
QCD beyond fixed order (p. 29)

Resummation done systematically

Strategy

Scaling limit

- Fixed order: series in α_s, so consider limit $\alpha_s \to 0$ for fixed $V(p_1, \ldots)$
- Resummation expansion:

$$\ln \Sigma = \alpha_s^{-1}g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \ldots,$$

so take $\alpha_s \to 0$ with $\alpha_s L$ constant
- For 1 emission, rescaling of L and α_s equivalent to remapping of phase-space:

Question: how does observable behave under such a scaling of momenta when there are many emissions?
Fixed order: series in α_s, so consider limit $\alpha_s \to 0$ for fixed $V(p_1, \ldots)$

Resummation expansion:

$$\ln \Sigma = \alpha_s^{-1} g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \ldots,$$

so take $\alpha_s \to 0$ with $\alpha_s L$ constant

For 1 emission, rescaling of L and α_s equivalent to *remapping of phase-space*:

Question: how does observable behave under such a scaling of momenta when there are many emissions?
Multiple emission properties

- Parametrise emission momenta by effect on observable:

 \[
 \kappa(\bar{v}) \text{ is a momentum such that } V(\{p\}, \kappa(\bar{v})) = \bar{v}
 \]

 A specific function \(\kappa(\bar{v}) \) maps out a path in \(\eta, \ln k_t \) space

- Require observable to scale universally for any number of emissions:

 \[
 \lim_{\bar{v} \to 0} \frac{1}{\bar{v}} V(\{p\}, \kappa_1(\zeta_1 \bar{v}), \kappa_2(\zeta_2 \bar{v}), \ldots) = f(\zeta_1, \zeta_2, \ldots)
 \]

 For any \(\{\zeta_i\} \), and any set of paths \(\{\kappa_i\} \)

This allows us to give meaning to the limit \(\alpha_s \to 0 \) with \(\alpha_s L \) fixed, for any number of emissions — because scaling properties of observable are independent of number of emissions.

All subsequent discussion is to be imagined in this scaling limit.
Multiple emission properties

- Parametrise emission momenta by effect on observable:

 \[\kappa(\bar{v}) \text{ is a momentum such that } V(\{p\}, \kappa(\bar{v})) = \bar{v} \]

 A specific function \(\kappa(\bar{v}) \) maps out a path in \(\eta, \ln k_t \) space

- **Require** observable to *scale universally* for any number of emissions:

 \[
 \lim_{\bar{v} \to 0} \frac{1}{\bar{v}} V(\{p\}, \kappa_1(\zeta_1 \bar{v}), \kappa_2(\zeta_2 \bar{v}), \ldots) = f(\zeta_1, \zeta_2, \ldots)
 \]

 For any \(\{\zeta_i\} \), and any set of paths \(\{\kappa_i\} \)

This allows us to give meaning to the limit \(\alpha_s \to 0 \) with \(\alpha_s L \) fixed, for any number of emissions — *because scaling properties of observable are independent of number of emissions.*

All subsequent discussion is to be imagined in this scaling limit.
Multiple emission properties

- Parametrise emission momenta by effect on observable:

 \[\kappa(\bar{v}) \text{ is a momentum such that } V(\{p\}, \kappa(\bar{v})) = \bar{v} \]

 A specific function \(\kappa(\bar{v}) \) maps out a path in \(\eta, \ln k_t \) space

- **Require** observable to *scale universally* for any number of emissions:

 \[
 \lim_{\bar{v} \to 0} \frac{1}{\bar{v}} V(\{p\}, \kappa_1(\zeta_1 \bar{v}), \kappa_2(\zeta_2 \bar{v}), \ldots) = f(\zeta_1, \zeta_2, \ldots)
 \]

 For any \(\{\zeta_i\} \), and any set of paths \(\{\kappa_i\} \)

This allows us to give meaning to the limit \(\alpha_s \to 0 \) with \(\alpha_s L \) fixed, for any number of emissions — *because scaling properties of observable are independent of number of emissions*.

All subsequent discussion is to be imagined in this scaling limit.
QCD beyond fixed order (p. 31)
- Resummation done systematically
- Strategy

What happens at all orders?

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.

Observable

Need condition like IRC safety

- ‘softness’ defined in terms of effect on observable
- soft limit must *commute* with scaling limit

recursive IRC safety
What happens at all orders?

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.

Observable

Need condition like IRC safety

- ‘softness’ defined in terms of effect on observable
- soft limit must *commute* with scaling limit

recursive IRC safety
What happens at all orders?

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don’t affect observable and cancel with virtuals in M.E.

Observable

Need condition like IRC safety

• ‘softness’ defined in terms of effect on observable

• soft limit must *commute* with scaling limit

recursive IRC safety
What happens at all orders?

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don’t affect observable and cancel with virtuals in M.E.

Observable

Need condition like IRC safety

- ‘softness’ defined in terms of effect on observable
- soft limit must commute with scaling limit

recursive IRC safety
What happens at all orders?

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don’t affect observable and cancel with virtuals in M.E.

Matrix element

- anything very soft cancels with corresponding virtual correction
- emissions on disparate angular scales behave independently

QCD coherence
Recall scaling property

- Parametrisate emission momenta by effect on observable:
 \[\kappa(\vec{v}) \] is any momentum such that \[V(\{p\}, \kappa(\vec{v})) = \vec{v} \]
- Require observable to \textit{scale universally} for any number of emissions:
 \[
 \lim_{\vec{v} \to 0} \frac{1}{\vec{v}} V(\{p\}, \kappa_1(\zeta_1 \vec{v}), \kappa_2(\zeta_2 \vec{v}), \ldots) = f(\zeta_1, \zeta_2, \ldots)
 \]

Recursive IRC safety:

- Require \textit{recursive} infrared-collinear safety:
 \[
 \lim_{\zeta_n \to 0} f(\zeta_1, \zeta_2, \ldots, \zeta_{n-1}, \zeta_n) = f(\zeta_1, \zeta_2, \ldots, \zeta_{n-1})
 \]
 Or:
 \[
 \left[\lim_{\vec{v} \to 0}, \lim_{\zeta_n \to 0} \right] \frac{1}{\vec{v}} V(\{p\}, \kappa_1(\zeta_1 \vec{v}), \kappa_2(\zeta_2 \vec{v}), \ldots, \kappa_n(\zeta_n \vec{v})) = 0
 \]
Recall scaling property

- Parametrise emission momenta by effect on observable:
 \[\kappa(\vec{v}) \text{ is any momentum such that } V(\{p\}, \kappa(\vec{v})) = \vec{v} \]
- Require observable to \textit{scale universally} for any number of emissions:
 \[
 \lim_{\vec{v} \to 0} \frac{1}{\vec{v}} V(\{p\}, \kappa_1(\zeta_1 \vec{v}), \kappa_2(\zeta_2 \vec{v}), \ldots) = f(\zeta_1, \zeta_2, \ldots)
 \]

Recursive IRC safety:

- Require \textit{recursive} infrared-collinear safety:
 \[
 \lim_{\zeta_n \to 0} f(\zeta_1, \zeta_2, \ldots, \zeta_{n-1}, \zeta_n) = f(\zeta_1, \zeta_2, \ldots, \zeta_{n-1})
 \]
 Or:
 \[
 \left[\lim_{\vec{v} \to 0}, \lim_{\zeta_n \to 0} \right] \frac{1}{\vec{v}} V(\{p\}, \kappa_1(\zeta_1 \vec{v}), \kappa_2(\zeta_2 \vec{v}), \ldots, \kappa_n(\zeta_n \vec{v})) = 0
 \]
Normal v. recursive IRC safety

<table>
<thead>
<tr>
<th></th>
<th>normal IRC safety</th>
<th>recursive IRC safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>softness defined relative to</td>
<td>hard scale</td>
<td>soft scale of observable</td>
</tr>
<tr>
<td>problem reduces to one of</td>
<td>low number of emissions</td>
<td>low density of emissions in η</td>
</tr>
<tr>
<td>allowing use of</td>
<td>fixed-order PT</td>
<td>independent emission approximation</td>
</tr>
</tbody>
</table>

NB: independent emission approximation results from coherence \equiv emissions widely separated in angle are independent.

Coherence recently questioned at subleading N_c and high orders ($\alpha_s^4 L^5$) in $pp \rightarrow 2$ jets

[Forshaw, Kyrieleis and Seymour '06]
QCD beyond fixed order (p. 34)
- Resummation done systematically
- Strategy

Schematic framework

Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- **LL:** consider just exponential of virtuals in vetoed region:
 \[\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}} \]

- **NLL:** need to account for edges
 \[\alpha_s L \rightarrow e^{\alpha_s^n L^n} \]

In blue band: sum over widely separated individual emissions
- low density \(\sim \alpha_s \); coherence
- \(\rightarrow \) treat them as independent

- **NNLL:** account for corners
 \[\alpha_s \rightarrow e^{\alpha_s^n L^{n-1}} \]

and 1 correlated pair of emissions (+ any # of indep. emissions)
QCD beyond fixed order (p. 34)

Resummation done systematically

Strategy

Schematic framework

Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- LL: consider just exponential of virtuals in vetoed region:

\[\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}} \]

- NLL: need to account for edges

\[\alpha_s L \rightarrow e^{\alpha_s^n L^n} \]

In blue band: sum over widely separated individual emissions

low density \(\sim \alpha_s \); coherence

→ treat them as independent

- NNLL: account for corners

\[\alpha_s \rightarrow e^{\alpha_s^n L^{n-1}} \]

and 1 correlated pair of emissions (+ any # of indep. emissions)
Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- LL: consider just exponential of virtuals in vetoed region:
 \[\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}} \]

- NLL: need to account for edges
 \[\alpha_s L \rightarrow e^{\alpha_s^n L^n} \]

In blue band: sum over widely separated individual emissions
 low density \(\sim \alpha_s \); coherence
 \(\rightarrow \) treat them as independent

- NNLL: account for corners
 \[\alpha_s \rightarrow e^{\alpha_s^n L^{n-1}} \]

and 1 correlated pair of emissions (+ any # of indep. emissions)
Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- LL: consider just exponential of virtuals in vetoed region:
 \[\alpha_s L^2 \rightarrow e^{\alpha_s n L^{n+1}} \]

- NLL: need to account for edges
 \[\alpha_s L \rightarrow e^{\alpha_s n L^n} \]
 In blue band: sum over widely separated individual emissions
 low density \(\sim \alpha_s \); coherence
 \(\rightarrow \) treat them as independent

- NNLL: account for corners
 \[\alpha_s \rightarrow e^{\alpha_s n L^{n-1}} \]
 and 1 correlated pair of emissions (+ any # of indep. emissions)
Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- **LL**: consider just exponential of virtuals in vetoed region:
 \[\alpha_s L^2 \rightarrow e^{\alpha_s L^{n+1}} \]

- **NLL**: need to account for edges
 \[\alpha_s L \rightarrow e^{\alpha_s L^n} \]
 In blue band: sum over widely separated individual emissions
 low density \(\sim \alpha_s \); coherence → treat them as independent

- **NNLL**: account for corners
 \[\alpha_s \rightarrow e^{\alpha_s L^{n-1}} \]
 and 1 correlated pair of emissions (+ any # of indep. emissions)
Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- **LL:** consider just exponential of virtuals in vetoed region:

 \[\alpha_s L^2 \rightarrow e^{\alpha_s n L^{n+1}} \]

- **NLL:** need to account for edges

 \[\alpha_s L \rightarrow e^{\alpha_s n L^n} \]

 In blue band: sum over widely separated individual emissions

 low density \(\sim \alpha_s\); coherence

 \[\rightarrow \text{treat them as independent} \]

- **NNLL:** account for corners

 \[\alpha_s \rightarrow e^{\alpha_s n L^{n-1}} \]

 and 1 correlated pair of emissions (\(+\) any \# of indep. emissions)
Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

- LL: consider just exponential of virtuals in vetoed region:
 \[\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}} \]

- NLL: need to account for edges
 \[\alpha_s L \rightarrow e^{\alpha_s^n L^n} \]
 In blue band: sum over widely separated individual emissions
 low density \(\sim \alpha_s \); coherence
 \(\rightarrow \) treat them as independent

- NNLL: account for corners
 \[\alpha_s \rightarrow e^{\alpha_s^n L^{n-1}} \]
 and 1 correlated pair of emissions (+ any # of indep. emissions)
Analytical work (done once and for all)

A1. formulate exact applicability conditions for the approach (its scope)
A2. derive a master formula for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)

N1. let an "expert system" investigate the applicability conditions
N2. it also determines the inputs for a master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation

a) they will require high precision arithmetic to take asymptotic (soft & collinear) limits

b) validation of hypotheses uses methods inspired by "Experimental Mathematics"
Analytical work (done once and for all)
A1. formulate exact **applicability conditions** for the approach (its scope)
A2. derive a **master formula** for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)
N1. let an "**expert system**" investigate the applicability conditions
N2. it also determines the inputs for a master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation
a) they will require **high precision arithmetic** to take asymptotic (soft & collinear) limits
b) validation of hypotheses uses methods inspired by "**Experimental Mathematics**"
Analytical work (done once and for all)

A1. formulate exact **applicability conditions** for the approach (its scope)

A2. derive a **master formula** for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)

N1. let an “expert system” investigate the applicability conditions

N2. it also determines the inputs for a master formula

N3. straightforward **evaluation of the master formula**, including phase space integration etc.

Note: N1 and N2 are core of automation

a) they will require **high precision arithmetic** to take asymptotic (soft & collinear) limits

b) validation of hypotheses uses methods inspired by ”Experimental Mathematics”
Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

Born momenta soft collinear emission

- Determine coefficients \(a_\ell, b_\ell, d_\ell \) and \(g_\ell(\phi) \) for emissions close to each hard Born parton (leg) \(\ell \).
- Require continuous globalness, i.e. uniform dependence on \(k_t \) independently of emission direction (\(a_1 = a_2 = \cdots = a \)).
- Require scaling and recursive IRC safety

We've mostly discussed soft part, \(\exists \) also a collinear part.
In practice?

- Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

- Born momenta
- soft collinear emission

- Determine coefficients \(a_\ell, b_\ell, d_\ell \) and \(g_\ell(\phi) \) for emissions close to each hard Born parton (leg) \(\ell \).

- Require continuous globalness, i.e. uniform dependence on \(k_t \) independently of emission direction (\(a_1 = a_2 = \cdots = a \))

- Require scaling and recursive IRC safety

We've mostly discussed soft part, \(\exists \) also a collinear part.
QCD beyond fixed order (p. 36)

- Resummation done systematically
- Practice

In practice?

- Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

- Born momenta
- soft collinear emission

- Determine coefficients \(a_\ell, b_\ell, d_\ell\) and \(g_\ell(\phi)\) for emissions close to each hard Born parton (leg) \(\ell\).

- Require continuous globalness, i.e. uniform dependence on \(k_t\) independently of emission direction \((a_1 = a_2 = \cdots = a)\)

- Require scaling and recursive IRC safety

We've mostly discussed soft part, \(\exists\) also a collinear part
Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

Born momenta soft collinear emission

Determine coefficients \(a_\ell, b_\ell, d_\ell \) and \(g_\ell(\phi) \) for emissions close to each hard Born parton (leg) \(\ell \).

Require *continuous globalness*, i.e. uniform dependence on \(k_t \) independently of emission direction \((a_1 = a_2 = \cdots = a)\)

Require scaling and recursive IRC safety

We've mostly discussed soft part, \(\exists \) also a collinear part
Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

Born momenta soft collinear emission

- **Determine coefficients** \(a_\ell, b_\ell, d_\ell \) and \(g_\ell(\phi) \) for emissions close to each hard Born parton (leg) \(\ell \).
- **Require continuous globalness**, i.e. uniform dependence on \(k_t \) independently of emission direction \((a_1 = a_2 = \cdots = a) \)

- Require **scaling and recursive IRC safety**

 We’ve mostly discussed soft part, \(\exists \) also a collinear part
QCD beyond fixed order (p. 36)

Resummation done systematically

Practice

In practice?

- Observable must have standard functional form for soft & collinear gluon emission

\[V(\{p\}, k) = d_\ell \left(\frac{k_t}{Q} \right)^{a_\ell} e^{-b_\ell \eta} g_\ell(\phi). \]

Born momenta soft collinear emission

- Determine coefficients \(a_\ell, b_\ell, d_\ell \) and \(g_\ell(\phi) \) for emissions close to each hard Born parton (leg) \(\ell \).

- Require continuous globalness, i.e. uniform dependence on \(k_t \) independently of emission direction (\(a_1 = a_2 = \cdots = a \))

- Require scaling and recursive IRC safety

We’ve mostly discussed soft part, \(\exists \) also a collinear part
Given info from previous pages, **final answer is analytical**:

\[
\ln \Sigma(v) = - \sum_{\ell=1}^{n} C_\ell \left[r_\ell(L) + r'_\ell(L) \left(\ln \bar{d}_\ell - b_\ell \ln \frac{2E_\ell}{Q} \right) \right] \\
+ B_\ell \ T \left(\frac{L}{a + b_\ell} \right) + \sum_{\ell=1}^{n_i} \ln \frac{q_\ell(x_\ell, e^{-\frac{2L}{a+b_\ell} \mu_f^2})}{q_\ell(x_\ell, \mu_f^2)} \\
+ \ln S(T(L/a)) + \ln \mathcal{F}(C_1 r'_1, \ldots, C_n r'_n),
\]

- \(C_\ell = \text{colour factor; } q_\ell = \text{PDF} \)
- \(r_\ell(L) \Rightarrow \alpha_s^n L^{n+1}; r'_\ell(L), T(L) \Rightarrow \alpha_s^n L^n \)

Non-trivial parts:
- \(S(T(L/a)) = \text{large-angle logarithms (proc. dep.)} \)
 - Botts-Kidonakis-Oderda-Sterman '89–'98; Bonciani et al '03
- \(\mathcal{F}(\ldots) \sim \langle \exp \left(-R'_f(\zeta_1, \zeta_2, \ldots,) \right) \rangle \text{summed over emissions in blue band} \)
 - observable-dependent — this part done by Monte Carlo (pure \(\alpha_s^n L^n \))
Given info from previous pages, \textit{final answer is analytical}:

\[
\ln \Sigma(v) = - \sum_{\ell=1}^{n} C_{\ell} \left[r_{\ell}(L) + r'_{\ell}(L) \left(\ln \bar{d}_{\ell} - b_{\ell} \ln \frac{2E_{\ell}}{Q} \right) \right. \\
+ \left. B_{\ell} \ T \left(\frac{L}{a + b_{\ell}} \right) \right] + \sum_{\ell=1}^{n_i} \ln \frac{q_{\ell}(x_{\ell}, e^{-\frac{2L}{a+b_{\ell}}} \mu_f^2)}{q_{\ell}(x_{\ell}, \mu_f^2)} \\
+ \ln S(T(L/a)) + \ln F(C_1 r'_1, \ldots, C_n r'_n),
\]

\(C_{\ell} = \) colour factor; \(q_{\ell} = \) PDF \(r_{\ell}(L) \Rightarrow \alpha_s^n L^{n+1} \); \(r'_{\ell}(L), T(L) \Rightarrow \alpha_s^n L^n \)

\textbf{Non-trivial parts:}

\(S(T(L/a)) = \) large-angle logarithms (proc. dep.) Botts-Kidonakis-Oderda-Sterman '89–'98; Bonciani et al '03

\(F(\ldots) \sim \langle \exp \left(-R' f(\zeta_1, \zeta_2, \ldots,) \right) \rangle \) summed over emissions in blue band observable-dependent — this part done by Monte Carlo (pure \(\alpha_s^n L^n \)).
QCD beyond fixed order (p. 37)

Resummation done systematically

Practice

Given info from previous pages, \textit{final answer is analytical}:

\[
\ln \Sigma(v) = -\sum_{\ell=1}^{n} C_{\ell} \left[r_{\ell}(L) + r'_{\ell}(L) \left(\ln d_{\ell} - b_{\ell} \ln \frac{2E_{\ell}}{Q} \right) \right] \\
+ B_{\ell} T\left(\frac{L}{a + b_{\ell}} \right) + \sum_{\ell=1}^{n_{i}} \ln \frac{q_{\ell}(x_{\ell}, e^{-\frac{2L}{a+b_{\ell}} \mu_{f}^{2}})}{q_{\ell}(x_{\ell}, \mu_{f}^{2})} \\
+ \ln S(T(L/a)) + \ln F(C_{1}r'_{1}, \ldots, C_{n}r'_{n}),
\]

\(C_{\ell} = \text{colour factor}; q_{\ell} = \text{PDF} \)
\(r_{\ell}(L) \Rightarrow \alpha_{s}^{n}L^{n+1}; r'_{\ell}(L), T(L) \Rightarrow \alpha_{s}^{n}L^{n} \)

\textbf{Non-trivial parts:}

\(S(T(L/a)) = \text{large-angle logarithms (proc. dep.)} \)

Botts-Kidonakis-Oderda-Sterman '89–'98; Bonciani et al '03

\(F(\ldots) \sim \langle \exp (-R'f(\zeta_{1}, \zeta_{2}, \ldots,)) \rangle \) summed over emissions in blue band

observable-dependent — this part done by Monte Carlo (pure \(\alpha_{s}^{n}L^{n} \))
Given info from previous pages, **final answer is analytical:**

\[
\ln \Sigma (\nu) = - \sum_{\ell=1}^{n} C_\ell \left[r_\ell (L) + r'_\ell (L) \left(\ln d_\ell - b_\ell \ln \frac{2E_\ell}{Q} \right) \right] + B_\ell \left(\frac{L}{a + b_\ell} \right) + \sum_{\ell=1}^{n_i} \ln \frac{q_\ell (x_\ell, e^{\frac{-2L}{a+b_\ell} \mu^2_f})}{q_\ell (x_\ell, \mu^2_f)}
\]

\[+ \ln S \left(T(L/a) \right) + \ln F(C_1 r'_1, \ldots, C_n r'_n) , \]

\[C_\ell = \text{colour factor}; q_\ell = \text{PDF} \]

\[r_\ell (L) \Rightarrow \alpha_s^n L^{n+1}; r'_\ell (L), T(L) \Rightarrow \alpha_s^n L^n \]

Non-trivial parts:

- **\(S(T(L/a))\)** = large-angle logarithms (proc. dep.)
 Botts-Kidonakis-Oderda-Sterman '89–'98; Bonciani et al '03

- **\(F(\ldots)\)** ~ \(\langle \exp \left(-R' f(\xi_1, \xi_2, \ldots) \right) \rangle\) summed over emissions in blue band
 observable-dependent — this part done by Monte Carlo (pure \(\alpha_s^n L^n\))
QCD beyond fixed order (p. 38)
Resummation done systematically
Practice

CAESAR flow chart

Computer Automated Expert Semi-Analytical Resummer
Banfi, GPS, Zanderighi ’03–’05

START

User supplies observable and Born momenta

Determination of leg properties \(\alpha, \beta, \delta, \gamma \) \([\text{eq.}(3.1)]\)

success

Determination of sufficiently soft and collinear region for subsequent steps

Continuous global? \([a_1 = \ldots = a_n \text{ and eqs.}(3.2)]\)

yes

\(r \text{IRC safe?} \) \([\text{eqs.}(3.4,3.5)]\)

yes

failure of resummation

FAILURE

yes

Additive? \([\text{eq.}(4.1)]\)

no

yes

Establish integration range \((\epsilon)\) for \(\mathcal{F}_2 \) and \(\mathcal{F} \)

Determine zeroes and study their properties (used in computation of \(\mathcal{F} \))

Event-shape like? \([\text{eq.}(3.11)]\)

no

yes

\(\mathcal{F} \) calculable in double precision?

no

yes

\(\mathcal{F} \) and \(\mathcal{F}_2 \) known analytically \([\text{eqs.}(3.26,A.10)]\)

Calculate \(\mathcal{F} \) and \(\mathcal{F}_2 \) in double precision \([\text{eqs.}(3.12,A.9)]\)

success: NLL resummed result

Calculate \(\mathcal{F} \) and \(\mathcal{F}_2 \) in multiple precision \([\text{eqs.}(3.9,A.9)]\)
What it doesn’t do

- Observables that vanish other than through suppression of radiation (e.g. Vector Boson p_t spectrum) have divergence in $g_2(\alpha_s L)$ beyond fixed value of $\alpha_s L$. Rakow & Webber '81; Dasgupta & GPS '02

- For very-inclusive 2-jet cases analytical resummations are in any case more accurate (NNLL) Higgs p_t: Bozzi et al '03–05
 Back-to-back EEC: de Florian & Grazzini '04

- For less-inclusive cases, this problem is sometimes ‘academic’ (in region of vanishing X-section).

- Non-global observables are beyond its scope (but perhaps could be included in future).
 - Individual jet properties, or subsets of jets
 - Gap resummations Appleby, Banfi, C. Berger, Dasgupta, Forshaw Kucs, Kyrieleis, Oderda, Seymour, Sterman, …

- Threshold resummations not yet thought about in this framework.
Reproduced/verified all known analytical global resummations

Except for 1 case where it replaces an incomplete result

\[y_{3D} \]: widely used in fits to \(\alpha_s \)
Banfi, GPS & Zanderighi '01

Correctly identifies cases where it is not able to give correct answer.

New multi-jet resummations in \(e^+e^- \) and DIS

First event-shape resummation for hadron-hadron dijet events

Uses soft-logarithms from Stony Brook group

All results available at http://qcd-caesar.org

Program available on request
Some hadron-collider dijet observables

<table>
<thead>
<tr>
<th>Event-shape</th>
<th>Impact of η_{max}</th>
<th>Resummation breakdown</th>
<th>Underlying Event</th>
<th>Jet hadronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{\perp, g}$</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m, g}$</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s}Q)$</td>
</tr>
<tr>
<td>y_{23}</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp, \varepsilon, \rho X, \varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$B_{X, \varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s}Q)$</td>
</tr>
<tr>
<td>$T_{m, \varepsilon}$</td>
<td>negligible</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s}Q)$</td>
</tr>
<tr>
<td>$y_{23, \varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp, \mathcal{R}, \rho X, \mathcal{R}}$</td>
<td>none</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m, \mathcal{R}, B_{X, \mathcal{R}}}$</td>
<td>none</td>
<td>tolerable</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s}Q)$</td>
</tr>
<tr>
<td>$y_{23, \mathcal{R}}$</td>
<td>none</td>
<td>intermediate</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
</tbody>
</table>

The study of such a wide range of observables would have been nearly impossible without automation...
Normal QCD perturbation theory relies on *infrared & collinear safety* of observable to allow one to restrict matrix elements for N^pLO calculation to $n_{Born} + p$ partons.

In certain (exclusive) regions of phase-space, while formally ($\alpha_s \rightarrow 0$) OK, this is practically insufficient: need *all-order resummation* of logarithmically enhanced terms.

New condition: *recursive infrared and collinear safety*, ensures (together with globalness, coherence) that, for NLL resummed accuracy, it is safe to approximate n-parton soft-collinear matrix-element as independent emission.

Enables automation of resummation \rightarrow CAESAR!

First hadron-hadron dijet event-shape resummations

Many questions for future. Can the automated resummation be made practical beyond NLL accuracy? Are there issues with coherence in processes with incoming hadrons?
EXTRA SLIDES
Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\text{max}}$

Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

<table>
<thead>
<tr>
<th></th>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{max}</td>
<td>3.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\text{max}}$

- Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

<table>
<thead>
<tr>
<th></th>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{max}</td>
<td>3.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range.

(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\text{max}}$

- Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

<table>
<thead>
<tr>
<th></th>
<th>Tevatron</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{max}</td>
<td>3.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Particles from beyond max rapidity contribute significantly only for small \(V \lesssim e^{-(a+b_\ell)\eta_{\text{max}}} \).

Most of cross section may be above that limit — rapidity cut irrelevant.

Banfi et al. '01

Alternative

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

\[
R_{\perp,C} \equiv \frac{1}{Q_{\perp,C}} \left| \sum_{i \in C} \vec{q}_{\perp,i} \right|
\]

Here \(g_2(\alpha_s L) \) diverges for \(L \sim 1/\alpha_s \) (due to cancellations in vector sum) — study distribution only before divergence.
Particles from beyond max rapidity contribute significantly only for small $V \lesssim e^{-(a+b_\ell)\eta_{\text{max}}}$.

Most of cross section may be above that limit — rapidity cut irrelevant.

Banfi et al. '01

Alternative

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

$$\mathcal{R}_{\perp,C} \equiv \frac{1}{Q_{\perp,C}} \left| \sum_{i \in C} \vec{q}_{\perp i} \right|,$$

Here $g_2(\alpha_s L)$ diverges for $L \sim 1/\alpha_s$ (due to cancellations in vector sum) — study distribution only before divergence.
Particles from beyond max rapidity contribute significantly only for small $V \lesssim e^{-(a+b_\ell)\eta_{\text{max}}}$. Most of cross section may be above that limit — rapidity cut irrelevant. Banfi et al. ’01

Alternative

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

$$R_{\perp,C} \equiv \frac{1}{Q_{\perp,C}} \left| \sum_{i \in C} \bar{q}_{\perp i} \right|,$$

Here $g_2(\alpha_s L)$ diverges for $L \sim 1/\alpha_s$ (due to cancellations in vector sum) – study distribution only before divergence.
<table>
<thead>
<tr>
<th>Event-shape</th>
<th>Impact of η_{max}</th>
<th>Resummation breakdown</th>
<th>Underlying Event</th>
<th>Jet hadronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{\perp,g}$</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m,g}$</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>y_{23}</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp,\varepsilon}, \rho X, \varepsilon$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$B X, \varepsilon$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$T_{m,\varepsilon}$</td>
<td>negligible</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$y_{23,\varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp,\mathcal{R}}, \rho X, \mathcal{R}$</td>
<td>none</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m,\mathcal{R}}, B X, \mathcal{R}$</td>
<td>none</td>
<td>tolerable</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$y_{23,\mathcal{R}}$</td>
<td>none</td>
<td>intermediate</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
</tbody>
</table>

NB: there may be surprises after more detailed study, e.g. matching to NLO...

Grey entries are definitely subject to uncertainty

Note complementarity between observables
Summary of observables

<table>
<thead>
<tr>
<th>Event-shape</th>
<th>Impact of η_{max}</th>
<th>Resummation breakdown</th>
<th>Underlying Event</th>
<th>Jet hadronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{\perp}, g</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m,g}$</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \eta_{\text{max}}/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>y_{23}</td>
<td>tolerable</td>
<td>none</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp}, \varepsilon, \rho X, \varepsilon$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$B_{X, \varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$T_{m, \varepsilon}$</td>
<td>negligible</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$y_{23, \varepsilon}$</td>
<td>negligible</td>
<td>none</td>
<td>$\sim 1/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
<tr>
<td>$\tau_{\perp, \mathcal{R}}, \rho X, \mathcal{R}$</td>
<td>none</td>
<td>serious</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/Q$</td>
</tr>
<tr>
<td>$T_{m, \mathcal{R}}, B_{X, \mathcal{R}}$</td>
<td>none</td>
<td>tolerable</td>
<td>$\sim 1/Q$</td>
<td>$\sim 1/(\sqrt{\alpha_s} Q)$</td>
</tr>
<tr>
<td>$y_{23, \mathcal{R}}$</td>
<td>none</td>
<td>intermediate</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
<td>$\sim \sqrt{y_{23}}/Q$</td>
</tr>
</tbody>
</table>

NB: there may be surprises after more detailed study, e.g. matching to NLO...

Grey entries are definitely subject to uncertainty.

Note complementarity between observables.