# Taking QCD beyond fixed order perturbation theory – systematically

#### Gavin P. Salam LPTHE, Universities of Paris VI and VII and CNRS

#### work in collaboration with Andrea Banfi & Giulia Zanderighi

CERN 16 August 2006 Current and forthcoming high-energy colliders:

HERATevatronLHC $e^{\pm}p$  $\bar{p}p$ pp

All involve protons — understanding what's going on unavoidably involves

#### QCD

Tevatron: main 'new' object of study is top quark, interest is in checking its couplings and measuring its mass (*e.g.* implications for Higgs).

LHC: don't yet know what 'new' objects will be — but ability to extract them from (QCD) backgrounds and measure their properties will almost certainly be *limited by the quality of our understanding of QCD*. So where's the problem? It's just Feynman diagrams... Real events bear superficial resemblance to perturbative picture



# But

- (a) Fundamental problem: want a better understanding of correspondence between (i) the perturbative language used for calculations and (ii) the hadrons that are observed.
- (b) To get the most out of QCD events for doing 'other physics' (searches etc.) → understand, quantitatively, how they differ from naive Feynman diags.

E.g. how do you relate the true mass of a new particle to the mass measured by isolating the jets it decays into?

Playground

One way of improving situation is by

# Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO Much activity
- Approximations to the behaviour of QCD at all orders This talk

When discussing new techniques, it's useful to have a *playground*:

- Simple collider environments: e<sup>+</sup>e<sup>-</sup> (LEP), DIS (HERA).
- *Special observables:* event shapes measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment  $(e^+e^- \rightarrow 2 \text{ jets})$ , attempting to illustrate lessons that hold in general.

Playground

One way of improving situation is by

## Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO Much activity
- Approximations to the behaviour of QCD at all orders This talk

When discussing new techniques, it's useful to have a *playground*:

- *Simple collider environments:*  $e^+e^-$  (LEP), DIS (HERA).
- *Special observables:* event shapes measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment  $(e^+e^- \rightarrow 2 \text{ jets})$ , attempting to illustrate lessons that hold in general.

Playground

One way of improving situation is by

## Refining our understanding of perturbative QCD

- Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO Much activity
- Approximations to the behaviour of QCD at all orders This talk

When discussing new techniques, it's useful to have a *playground*:

- Simple collider environments:  $e^+e^-$  (LEP), DIS (HERA).
- *Special observables:* event shapes measures of deviation from idealised lowest order Feynman diagrams.
- Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest possible environment ( $e^+e^- \rightarrow 2$  jets), attempting to illustrate lessons that hold in general.

# • Perturbative QCD at fixed orders

- Soft and collinear divergences
- Infrared and collinear safety  $\leftrightarrow$  (pseudo)-convergent perturbation series
- Fixed-order breakdown, all-order log-enhanced structures
  - fixed orders insufficient for describing most common events
  - $\bullet$  understanding of divergences  $\leftrightarrow$  all-order rearrangement of perturbation series

# • Resummation done systematically

- issues
- recursive infrared collinear safety
- automated resummation

Soft, collinear limits

Consider Feynman diagram (c.o.m. energy = Q)



Simplest limit:

- emitted gluon has small energy  $E_k \ll Q$  (soft)
- is at small angle wrt quark,  $heta\ll 1$  (collinear)

Propagator goes **on-shell** ↔ divergence:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

Such soft and collinear divergences are pivotal in this talk.

Soft, collinear limits

Consider Feynman diagram (c.o.m. energy = Q)



#### Simplest limit:

- emitted gluon has small energy  $E_k \ll Q$  (soft)
- is at small angle wrt quark,  $\theta \ll 1$  (collinear)

Propagator goes **on-shell** ↔ divergence:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

Such soft and collinear divergences are pivotal in this talk.

Soft, collinear limits

Consider Feynman diagram (c.o.m. energy = Q)



#### Simplest limit:

- emitted gluon has small energy  $E_k \ll Q$  (soft)
- is at small angle wrt quark,  $\theta \ll 1$  (collinear)

Propagator goes **on-shell** ↔ divergence:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq d\Phi_{q\bar{q}}|M_{q\bar{q}}^2| \cdot \frac{8}{3} \frac{\alpha_s}{\pi} \cdot \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

Such soft and collinear divergences are pivotal in this talk.

Based on soft-collinear limit, probability for emitting 1 gluon is

Prob(1 gluon) ~ 
$$\frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta}$$

This is *infinite*. Perhaps integrals should not go below non-perturbative scale  $\Lambda$ ?

Put cut-off:

$$\operatorname{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_{\Lambda}^{Q} \frac{dE}{E} \int_{\Lambda/Q}^{\pi/2} \frac{d\theta}{\theta} \sim \left[ \frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda} \right]$$

Two large logarithms, one 'soft', one 'collinear' (both depend on cutoff).

Does small coupling save us?  $\alpha_s = 1/(b_0 \ln Q/\Lambda)$ :

$$ext{Prob}(1 ext{ gluon}) \ \sim \ rac{16}{3\pi b_0} \ \ln rac{Q}{\Lambda}$$

This is not small! Perturbation theory seems to be no good...

Based on soft-collinear limit, probability for emitting 1 gluon is

Prob(1 gluon) ~ 
$$\frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta}$$

This is *infinite*. Perhaps integrals should not go below non-perturbative scale  $\Lambda$ ?

Put cut-off:

$$\operatorname{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_{\Lambda}^{Q} \frac{dE}{E} \int_{\Lambda/Q}^{\pi/2} \frac{d\theta}{\theta} \sim \boxed{\frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda}}$$

Two large logarithms, one 'soft', one 'collinear' (both depend on cutoff).

Does small coupling save us?  $\alpha_s = 1/(b_0 \ln Q/\Lambda)$ :

$$ext{Prob}(1 ext{ gluon}) \ \sim \ rac{16}{3\pi b_0} \ \ln rac{Q}{\Lambda}$$

This is not small! Perturbation theory seems to be no good...

Based on soft-collinear limit, probability for emitting 1 gluon is

Prob(1 gluon) ~ 
$$\frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta}$$

This is *infinite*. Perhaps integrals should not go below non-perturbative scale  $\Lambda$ ?

Put cut-off:

$$\operatorname{Prob}(1 \text{ gluon}) \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_{\Lambda}^{Q} \frac{dE}{E} \int_{\Lambda/Q}^{\pi/2} \frac{d\theta}{\theta} \sim \boxed{\frac{16}{3\pi} \alpha_s \ln^2 \frac{Q}{\Lambda}}$$

Two large logarithms, one 'soft', one 'collinear' (both depend on cutoff).

Does small coupling save us?  $\alpha_s = 1/(b_0 \ln Q/\Lambda)$ :

$$\operatorname{Prob}(1 \text{ gluon}) \sim \frac{16}{3\pi b_0} \ln \frac{Q}{\Lambda}$$

This is not small! Perturbation theory seems to be no good...

Instead of calculating 'flow of gluons', let's try and look at *flow of energy*. E.g. 'jet broadening',  $B_T$  (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1) \qquad \overrightarrow{P_2} \qquad \overbrace{P_1}^{Q} \qquad \overbrace{P_1}^{Q}$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q}$$

*Divergences are cancelled*, because 'observable'  $(B_T)$  vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Instead of calculating 'flow of gluons', let's try and look at *flow of energy*. E.g. 'jet broadening',  $B_T$  (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1) \qquad \overrightarrow{P_2} \qquad \overbrace{P_1}^{\underline{P_2}} \qquad \overbrace{P_1}^{\underline{P_2}}$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q}$$

*Divergences are cancelled*, because 'observable'  $(B_T)$  vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Instead of calculating 'flow of gluons', let's try and look at *flow of energy.* E.g. 'jet broadening',  $B_T$  (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1) \qquad \overrightarrow{P_2} \qquad \overbrace{P_1}^{P_2} \qquad \overbrace{P_1}^{P_2}$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q}$$

*Divergences are cancelled*, because 'observable'  $(B_T)$  vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Instead of calculating 'flow of gluons', let's try and look at *flow of energy.* E.g. 'jet broadening',  $B_T$  (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1) \qquad \overrightarrow{P_2} \qquad \overbrace{P_1}^{P_2} \qquad \overbrace{P_1}^{P_2}$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q} = \mathcal{O}(\alpha_s)$$

*Divergences are cancelled*, because 'observable'  $(B_T)$  vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Instead of calculating 'flow of gluons', let's try and look at *flow of energy.* E.g. 'jet broadening',  $B_T$  (transverse momentum flow wrt jet axis)

$$B_T = \frac{1}{2Q} \sum_i |\vec{q}_i \times \vec{n}| \simeq \frac{E_k \theta}{Q} \quad (\theta \ll 1) \qquad \underbrace{P_2}_{P_2} \qquad \underbrace{P_1}_{P_1}$$

Do perturbative calculation for mean value of broadening:

$$\langle B_T \rangle \sim \frac{16}{3} \frac{\alpha_s}{\pi} \int_0^Q \frac{dE}{E} \int_0^{\pi/2} \frac{d\theta}{\theta} \cdot \frac{E\theta}{Q} = \mathcal{O}(\alpha_s)$$

*Divergences are cancelled*, because 'observable'  $(B_T)$  vanishes when the gluon is soft or collinear. Result is truly *perturbative*.

Crucial property of broadening was that effect of an additional gluon vanished  $\propto$  a power of its softness and collinearity.

Infrared and collinear (IRC) safety

#### Sterman & Weinberg '77

For an observable's distribution to be calculable in perturbation theory, the observable should be infra-red [and collinear] safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if  $\vec{p}_i$  is any momentum occurring in its definition, it must be invariant under the branching

$$ec{p}_i 
ightarrow ec{p}_j + ec{p}_k$$

whenever  $\vec{p}_j$  and  $\vec{p}_k$  are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]

Crucial property of broadening was that effect of an additional gluon vanished  $\propto$  a power of its softness and collinearity.

Infrared and collinear (IRC) safety

Sterman & Weinberg '77

For an observable's distribution to be calculable in perturbation theory, the observable should be infra-red [and collinear] safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if  $\vec{p}_i$  is any momentum occurring in its definition, it must be invariant under the branching

$$ec{p}_i 
ightarrow ec{p}_j + ec{p}_k$$

whenever  $\vec{p}_j$  and  $\vec{p}_k$  are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]

Next: calculate higher-order corrections. At each order, probability of emitting gluon  $\gg 1 \rightarrow$  complex configurations with many gluons:



But: high multiplicity comes from soft, collinear region – these gluons don't affect observable (IRC safety), and *cancel nearly fully with virtual corrections*.

Field theory: real-virtual cancellation  $\Rightarrow$  Observable: IRC safety

Combination of field theory and observable properties allow us to *pretend* that the real world looks like perturbation theory.

Next: calculate higher-order corrections. At each order, probability of emitting gluon  $\gg 1 \rightarrow$  complex configurations with many gluons:



But: high multiplicity comes from soft, collinear region – these gluons don't affect observable (IRC safety), and *cancel nearly fully with virtual corrections*.

Combination of field theory and observable properties allow us to *pretend* that the real world looks like perturbation theory.

Next: calculate higher-order corrections. At each order, probability of emitting gluon  $\gg 1 \rightarrow$  complex configurations with many gluons:



But: high multiplicity comes from soft, collinear region – these gluons don't affect observable (IRC safety), and *cancel nearly fully with virtual corrections*.

Field theory: real-virtual cancellation Observable: IRC safety



Combination of field theory and observable properties allow us to *pretend* that the real world looks like perturbation theory.

Consider pure  $\alpha_s^2$  contributions. Conceptually simple:



## In practice

- Physicist calculates matrix elements once  $\rightarrow$  into *computer program*.
- Program generates random configurations (real & virtual), calculates arbitrary IRC-safe observable (subroutine), weights with matrix elements.

# Subtlety: how do you combine

- observable in 4-dimensions,
- matrix elements in  $4 + 2\epsilon$  dimensions (dim.-reg.)?

General NLO solution: Catani & Seymour '96 + Dittmaier & Trocsanyi '02 First NNLO solution: Gehrmann-De Ridder, Gehrmann & Glover '05 Consider pure  $\alpha_s^2$  contributions. Conceptually simple:



## In practice

- Physicist calculates matrix elements once  $\rightarrow$  into *computer program*.
- Program generates random configurations (real & virtual), calculates arbitrary IRC-safe observable (subroutine), weights with matrix elements.

# Subtlety: how do you combine

- observable in 4-dimensions,
- matrix elements in  $4 + 2\epsilon$  dimensions (dim.-reg.)?

General NLO solution: Catani & Seymour '96 + Dittmaier & Trocsanyi '02 First NNLO solution: Gehrmann-De Ridder, Gehrmann & Glover '05 QCD beyond fixed order (p. 12) LNLO breakdown, all-order log structure



QCD beyond fixed order (p. 12) NLO breakdown, all-order log structure



QCD beyond fixed order (p. 12) NLO breakdown, all-order log structure



QCD beyond fixed order (p. 12) NLO breakdown, all-order log structure



What's happening?

What is probability,  $\Sigma(B)$ , that broadening < some value B?



$$\sim 1 - \frac{16}{3} \frac{\alpha_s}{\pi} \int_0 \frac{dE}{E} \frac{d\theta}{\theta} \Theta(\frac{E\theta}{Q} - B) \sim \left[ 1 - \frac{8}{3} \frac{\alpha_s}{\pi} \ln^2 B \right]$$

Double logarithm due to **incomplete real-virtual cancellation of soft** and collinear divergences, when considering narrow jets.

NB: resulting distribution diverges

$$rac{d\Sigma}{dB} \sim rac{16}{3} rac{lpha_s}{\pi} rac{\ln 1/B}{B}$$

Examine soft-collinear limit of two gluons:



Two propagators nearly on-shell  $\leftrightarrow$  4 divergences ( $E_a \ll E_b$ ). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us

$$\alpha_s^2 \ln^4 B$$

Examine soft-collinear limit of two gluons:



Two propagators nearly on-shell  $\leftrightarrow$  4 divergences ( $E_a \ll E_b$ ). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us

Examine soft-collinear limit of two gluons:



Two propagators nearly on-shell  $\leftrightarrow$  4 divergences ( $E_a \ll E_b$ ). Can be viewed as two parts (approx.):

- independent emission of two gluons (diags, 1,3)
- nested branching of gluon a (diag. 2)

All diagrams could potentially give us

$$\alpha_s^2 \ln^4 B$$

Normal perturbative expansion is fine in formal perturbative  $\alpha_s \to 0$  limit  $\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \dots \qquad f_n(B) \sim \ln^{2n} B$  for  $B \ll 1$ 

In region where you have most of the data  $\ln B \gg 1$  and  $\alpha_s^n f_n(B) \sim 1$  — series does not converge.

But origin of logs is simple: *residual non-cancellation of real and virtual soft-collinear divergences*. Can imagine calculating them at all orders:

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} H_{n,2n} \alpha_s^n \ln^{2n} B + \mathcal{O}\left(\alpha_s^n \ln^{2n-1} B\right)$$
$$= h_1(\alpha_s L^2) + \sqrt{\alpha_s} h_2(\alpha_s L^2) + \dots, \qquad L \equiv \ln \frac{1}{B}$$

# This is a resummation of leading logarithms (LL), $h_1(lpha_{ m s}{\sf L}^2)$

Will converge even for large values of the logarithm,  $\alpha_s L^2 \sim 1$ since  $h_1 \sim 1$ ,  $h_2 \sim 1$  [NB: traded  $L^{-1}$  for  $\sqrt{\alpha_s}$  in front of  $h_2$ ] Normal perturbative expansion is fine in formal perturbative  $\alpha_{\rm s} \rightarrow {\rm 0}$  limit

 $\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \dots \qquad f_n(B) \sim \ln^{2n} B$  for  $B \ll 1$ 

In region where you have most of the data  $\ln B \gg 1$  and  $\alpha_s^n f_n(B) \sim 1$  — series does not converge.

But origin of logs is simple: *residual non-cancellation of real and virtual soft-collinear divergences.* Can imagine calculating them at all orders:

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} H_{n,2n} \alpha_s^n \ln^{2n} B + \mathcal{O}\left(\alpha_s^n \ln^{2n-1} B\right)$$
$$= h_1(\alpha_s L^2) + \sqrt{\alpha_s} h_2(\alpha_s L^2) + \dots, \qquad L \equiv \ln \frac{1}{B}$$

This is a resummation of leading logarithms (LL),  ${\sf h}_1(lpha_{\sf s}{\sf L}^2)$ 

Will converge even for large values of the logarithm,  $\alpha_s L^2 \sim 1$ since  $h_1 \sim 1$ ,  $h_2 \sim 1$  [NB: traded  $L^{-1}$  for  $\sqrt{\alpha_s}$  in front of  $h_2$ ] Normal perturbative expansion is fine in formal perturbative  $\alpha_{\rm s} \rightarrow {\rm 0}$  limit

 $\Sigma(B) = 1 + \alpha_s f_1(B) + \alpha_s^2 f_2(B) + \dots \qquad f_n(B) \sim \ln^{2n} B$  for  $B \ll 1$ 

In region where you have most of the data  $\ln B \gg 1$  and  $\alpha_s^n f_n(B) \sim 1$  — series does not converge.

But origin of logs is simple: *residual non-cancellation of real and virtual soft-collinear divergences.* Can imagine calculating them at all orders:

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} H_{n,2n} \, \alpha_s^n \ln^{2n} B + \mathcal{O}\left(\alpha_s^n \ln^{2n-1} B\right)$$
$$= h_1(\alpha_s L^2) + \sqrt{\alpha_s} h_2(\alpha_s L^2) + \dots, \qquad L \equiv \ln \frac{1}{B}$$

This is a resummation of leading logarithms (LL),  $h_1(\alpha_s L^2)$ 

Will converge even for large values of the logarithm,  $\alpha_s L^2 \sim 1$ since  $h_1 \sim 1$ ,  $h_2 \sim 1$  [NB: traded  $L^{-1}$  for  $\sqrt{\alpha_s}$  in front of  $h_2$ ]
Step 1. Simplify matrix element.

- B measures transverse momentum flow relative to main event (  $\sim q\bar{q})$  axis.
- Secondary gluon splitting does not change observable (will cancel fully against virtuals)
- Take only independent emission:

$$d\Phi_n|M^2(k_1,\ldots,k_n)| \rightarrow \frac{1}{n!}\prod_{i=1}^n \frac{16}{3}\frac{\alpha_s}{\pi}\frac{dE_i}{E_i}\frac{d\theta_i}{\theta_i}$$

Minus corresponding virtual (loop) terms



## QCD beyond fixed order (p. 17)

## Try broadening resummation (cont.)

## Step 2. Simplify observable

 Calculate observable with *arbitrary number of emissions*. In soft and collinear limit it 'simplifies' to

$$B = \frac{1}{2Q} \left( \sum_{i=1}^{n} |\vec{k}_{ti}| + \left| \sum_{i \in right}^{n} \vec{k}_{ti} \right| + \left| \sum_{i \in left}^{n} \vec{k}_{ti} \right| \right)$$

• For now *approximate this* as

$$B = \frac{1}{Q} \max\left\{k_{t1}, k_{t2}, \dots k_{tn}\right\}$$

Since  $\ln^2[B \times \mathcal{O}(1)] = \ln^2 B + \mathcal{O}(1) \cdot \ln B$ , this does not change LL. Translate to limit on all  $k_{ti} = E_i \theta_i$ :

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \frac{16}{3} \frac{\alpha_s}{\pi} \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} \left[ \underbrace{\Theta(B - E_i\theta_i)}_{real} - \underbrace{1}_{virt} \right]$$
$$\simeq \exp\left[ -\frac{8}{3} \frac{\alpha_s L^2}{\pi} \right]$$
Exponentiated double logarit

#### QCD beyond fixed order (p. 17) LNLO breakdown, all-order log structure

# Try broadening resummation (cont.)

## Step 2. Simplify observable

• Calculate observable with *arbitrary number of emissions*. In soft and collinear limit it 'simplifies' to

$$B = \frac{1}{2Q} \left( \sum_{i=1}^{n} |\vec{k}_{ti}| + \left| \sum_{i \in right}^{n} \vec{k}_{ti} \right| + \left| \sum_{i \in left}^{n} \vec{k}_{ti} \right| \right)$$

• For now *approximate this* as

$$B = \frac{1}{Q} \max\left\{k_{t1}, k_{t2}, \dots, k_{tn}\right\}$$

Since  $\ln^2[B \times \mathcal{O}(1)] = \ln^2 B + \mathcal{O}(1) \cdot \ln B$ , this does not change LL. • Translate to limit on all  $k_{ti} = E_i \theta_i$ :

$$\Sigma(B) \simeq \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \frac{16}{3} \frac{\alpha_s}{\pi} \int \frac{dE_i}{E_i} \frac{d\theta_i}{\theta_i} \left[ \underbrace{\Theta(B - E_i\theta_i)}_{real} - \underbrace{1}_{virt} \right]$$
$$\simeq \exp\left[ -\frac{8}{3} \frac{\alpha_s L^2}{\pi} \right]$$
Exponentiated double logarit

#### QCD beyond fixed order (p. 17) LNLO breakdown, all-order log structure

# Try broadening resummation (cont.)

## Step 2. Simplify observable

• Calculate observable with *arbitrary number of emissions*. In soft and collinear limit it 'simplifies' to

$$B = \frac{1}{2Q} \left( \sum_{i=1}^{n} |\vec{k}_{ti}| + \left| \sum_{i \in right}^{n} \vec{k}_{ti} \right| + \left| \sum_{i \in left}^{n} \vec{k}_{ti} \right| \right)$$

• For now *approximate this* as

$$B = \frac{1}{Q} \max\left\{k_{t1}, k_{t2}, \dots, k_{tn}\right\}$$

Since  $\ln^{2}[B \times \mathcal{O}(1)] = \ln^{2} B + \mathcal{O}(1) \cdot \ln B$ , this does not change LL.

• Translate to limit on all  $k_{ti} = E_i \theta_i$ :

- exp[-α<sub>s</sub>L<sup>2</sup>] is typical of Sudakov suppression if you want broadening to be small, pay the price of suppressing emission (*i.e.* virtual terms).
- Exponentiated form does not always hold, *e.g.* 'Jade jet resolution,' y<sub>3</sub>.

$$\Sigma(y_{3J}) = 1 - \frac{4}{3} \frac{\alpha_s L^2}{\pi} + \frac{5}{12} \left(\frac{4}{3} \frac{\alpha_s L^2}{\pi}\right)^2 + \cdots$$

Brown & Stirling '90

When it *does* hold, ∃ more powerful reorganisation of logs

$$\Sigma(B) = \exp\left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + \mathcal{O}\left(\alpha_s^n L^n\right)\right]$$
$$= \exp\left[\underbrace{Lg_1(\alpha_s L)}_{LL} + \underbrace{g_2(\alpha_s L)}_{NLL} + \underbrace{\alpha_s g_3(\alpha_s L)}_{NNLL} + \dots\right]$$

Better than previous hierarchy: valid up to  $L \sim 1/\alpha_s$  (rather than  $L \sim 1/\sqrt{\alpha_s}$ ) and successive terms suppressed by  $\alpha_s$  (instead of  $\sqrt{\alpha_s}$ ).

- exp[-α<sub>s</sub>L<sup>2</sup>] is typical of Sudakov suppression if you want broadening to be small, pay the price of suppressing emission (*i.e.* virtual terms).
- Exponentiated form does not always hold, e.g. 'Jade jet resolution,' y<sub>3</sub>.

$$\Sigma(y_{3J}) = 1 - \frac{4}{3} \frac{\alpha_s L^2}{\pi} + \frac{5}{12} \left(\frac{4}{3} \frac{\alpha_s L^2}{\pi}\right)^2 + \cdots$$

Brown & Stirling '90

• When it *does* hold,  $\exists$  more powerful reorganisation of logs

$$\Sigma(B) = \exp\left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + \mathcal{O}\left(\alpha_s^n L^n\right)\right]$$
$$= \exp\left[\underbrace{Lg_1(\alpha_s L)}_{LL} + \underbrace{g_2(\alpha_s L)}_{NLL} + \underbrace{\alpha_s g_3(\alpha_s L)}_{NNLL} + \dots\right]$$

Better than previous hierarchy: valid up to  $L \sim 1/\alpha_s$  (rather than  $L \sim 1/\sqrt{\alpha_s}$ ) and successive terms suppressed by  $\alpha_s$  (instead of  $\sqrt{\alpha_s}$ ).

- exp[-α<sub>s</sub>L<sup>2</sup>] is typical of Sudakov suppression if you want broadening to be small, pay the price of suppressing emission (*i.e.* virtual terms).
- Exponentiated form does not always hold, e.g. 'Jade jet resolution,' y<sub>3</sub>.

$$\Sigma(y_{3J}) = 1 - \frac{4}{3} \frac{\alpha_s L^2}{\pi} + \frac{5}{12} \left(\frac{4}{3} \frac{\alpha_s L^2}{\pi}\right)^2 + \cdots$$
  
Brown & Stirling '90

• When it *does* hold,  $\exists$  more powerful reorganisation of logs

$$\Sigma(B) = \exp\left[\sum_{n=1}^{\infty} G_{n,n+1} \alpha_s^n L^{n+1} + \mathcal{O}\left(\alpha_s^n L^n\right)\right]$$
  
=  $\exp\left[\underbrace{Lg_1(\alpha_s L)}_{LL} + \underbrace{g_2(\alpha_s L)}_{NLL} + \underbrace{\alpha_s g_3(\alpha_s L)}_{NNLL} + \dots\right]$ 

Better than previous hierarchy: valid up to  $L \sim 1/\alpha_s$  (rather than  $L \sim 1/\sqrt{\alpha_s}$ ) and successive terms suppressed by  $\alpha_s$  (instead of  $\sqrt{\alpha_s}$ ).

Next-to-leading-logarithmic (NLL) accuracy is currently *state of the art* for QCD final-state resummations.

Ingredients (in addition to those shown so far):

- Full treatment of observable
- Proper coupling (scheme, two-loop running)
- Careful evaluation of sum over emissions

Pioneered: Catani, Trentadue, Turnock, Webber (CTTW) '92 Broadening: CTW '92; Dokshitzer, Lucenti, Marchesini & GPS '98 NB: simple observable (EEC) recently done at NNLL: de Florian & Grazzini '04

QCD beyond fixed order (p. 20) NLO breakdown, all-order log structure

## Broadening distribution at NLO+NLL



NLL shape OKish! NB: peak is at  $\alpha_s L \sim 1$ .

Remaining difference ascribed to parton-hadron transition, *hadronisation* 

Only with resummation can hadronisation be separated from perturbative part

QCD beyond fixed order (p. 20) NLO breakdown, all-order log structure

## Broadening distribution at NLO+NLL



 $\frac{\text{NLL shape OKish!}}{\text{NB: peak is at}}$  $\alpha_{s}L \sim 1.$ 

Remaining difference ascribed to parton-hadron transition, *hadronisation* 

Only with resummation can hadronisation be separated from perturbative part

QCD beyond fixed order (p. 20) NLO breakdown, all-order log structure

## Broadening distribution at NLO+NLL



 $\frac{\text{NLL shape OKish!}}{\text{NB: peak is at}}$  $\alpha_s L \sim 1.$ 

Remaining difference ascribed to parton-hadron transition, *hadronisation* 

Only with resummation can hadronisation be separated from perturbative part

| e <sup>+</sup> e <sup>-</sup> 2 jets | $\rho_h$ , $\rho_I$ , $\rho_1$ , $\tau$ , $B_T$ , $B_W$ , $B_N$ , $y_3^D$ , $y_3^C$ , $T_M$ , Angularities |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|
| DIS 1+1 jets                         | $\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$                                                        |
| Multijet                             | $e^+e^-  ightarrow 3j \ T_m, \ T_{m,N}, \ D; \ {\sf DIS}(1+2) \ K_{out}$                                   |
|                                      | $pp \rightarrow W + 1j \ K_{out}; \ pp \rightarrow 2j \ gap-probability \ (cone, k_t)$                     |

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi. [Since 1992]

Doing things manually is error-prone. Many oversights...

| $e^+e^-$ 2 jets | $\rho_h, \rho_I, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M, Angularities$                           |
|-----------------|----------------------------------------------------------------------------------------------------------|
| DIS 1+1 jets    | $\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$                                                      |
| Multijet        | $e^+e^-  ightarrow 3j  T_m,  T_{m,N},  D;  {\sf DIS}(1+2)  {\sf K}_{out}$                                |
|                 | $pp \rightarrow W + 1j \; K_{out}; \; pp \rightarrow 2j \; \text{gap-probability} \; (\text{cone}, k_t)$ |

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi. [Since 1992]

Doing things manually is **error-prone**. Many oversights...

| $e^+e^-$ 2 jets | $\rho_h, \rho_I, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M, Angularities$         |
|-----------------|----------------------------------------------------------------------------------------|
| DIS 1+1 jets    | $\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$                                    |
| Multijet        | $e^+e^-  ightarrow 3j T_m, T_{m,N}, D; DIS(1+2) K_{out}$                               |
|                 | $pp \rightarrow W + 1j \ K_{out}; \ pp \rightarrow 2j \ gap-probability \ (cone, k_t)$ |

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi. [Since 1992]

Doing things manually is error-prone. Many oversights...

| $e^+e^-$ 2 jets | $\rho_h, \rho_I, \rho_1, \tau, B_T, B_W, B_N, y_3^D, y_3^C, T_M, Angularities$         |
|-----------------|----------------------------------------------------------------------------------------|
| DIS 1+1 jets    | $\tau_{zQ}, \tau_{zE}, B_{zQ}, B_{tQ}, C_E, \rho_E$                                    |
| Multijet        | $e^+e^-  ightarrow 3j T_m, T_{m,N}, D; DIS(1+2) K_{out}$                               |
|                 | $pp \rightarrow W + 1j \ K_{out}; \ pp \rightarrow 2j \ gap-probability \ (cone, k_t)$ |

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori, Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling, Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi. [Since 1992]

Doing things manually is error-prone. Many oversights...

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 

making  $B\ll 1$  restricts emissions everywhere.

Coherence + globalness:

 emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 

making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in H<sub>R</sub>.

WRONG AT NLL ACCURACY

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



- making  $B \ll 1$  restricts emissions everywhere.
- Coherence + globalness:
- emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 

making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

- Tempting to *assume* one can:
- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in H<sub>R</sub>.

WRONG AT NLL ACCURACY J

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



making  $B \ll 1$  restricts emissions everywhere.

 ${\sf Coherence} + {\sf globalness:}$ 

 emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 

making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in  $\mathcal{H}_{\mathcal{R}}$ .

NUT ACCURACY (

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



- making  $B \ll 1$  restricts emissions everywhere.
- ${\sf Coherence} + {\sf globalness:}$
- emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 



making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in  $\mathcal{H}_{\mathcal{R}}$ .

NRONG AT NLL ACCURACY

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



making  $B \ll 1$  restricts emissions everywhere.

 ${\sf Coherence} + {\sf globalness:}$ 

 emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 



making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in  $\mathcal{H}_{\mathcal{R}}$ .

WRONG AT NLL ACCURACY

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



making  $B \ll 1$  restricts emissions everywhere.

 ${\sf Coherence} + {\sf globalness:}$ 

 emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 



making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in  $\mathcal{H}_{\mathcal{R}}$ .

WRONG AT NLL ACCURACY

# Sources of difficulty (globalness)

### Global observable:

e.g. total  $e^+e^-$  Broadening,  $B_T$ 



making  $B \ll 1$  restricts emissions everywhere.

 ${\sf Coherence} + {\sf globalness:}$ 

 emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening,  $B_R$ 



making  $B_R \ll 1$  restricts emissions in right-hand hemisphere  $(\mathcal{H}_R)$ .

Tempting to *assume* one can:

- ignore left hemisphere  $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in  $\mathcal{H}_{\mathcal{R}}$ .

WRONG AT NLL ACCURACY

# Resummation of NG observables

## All-orders:

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)



### Difficulties, features:

• Logarithms resummed so far only in large-*N<sub>c</sub>* limit

Dasgupta & GPS '01, '02 Banfi, Marchesini & Smye '02

- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (*e.g.* with jet algo).
   Appleby & Seymour '02, '03 Banfi & Dasgupta '05

 Unexpected relations with BK, BFKL and JIMWLK equations in small-x (high-energy) limit of QCD
 Weigert '03
 Marchesini & Mueller '03
 Marchesini & Onofri '04

### **All-orders:**

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)



### Difficulties, features:

• Logarithms resummed so far only in large-*N<sub>c</sub>* limit

Dasgupta & GPS '01, '02 Banfi, Marchesini & Smye '02

- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (*e.g.* with jet algo).
   Appleby & Seymour '02, '03 Banfi & Dasgupta '05

 Unexpected relations with BK, BFKL and JIMWLK equations in small-x (high-energy) limit of QCD
 Weigert '03

Marchesini & Mueller '03, Marchesini & Onofri '04

### **All-orders:**

Unrestricted semi-soft gluons (left) change pattern of radiation of large-angle soft gluons (right)



### Difficulties, features:

• Logarithms resummed so far only in large-*N<sub>c</sub>* limit

Dasgupta & GPS '01, '02 Banfi, Marchesini & Smye '02

- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (*e.g.* with jet algo).
   Appleby & Seymour '02, '03 Banfi & Dasgupta '05
- Unexpected relations with BK, BFKL and JIMWLK equations in small-x (high-energy) limit of QCD
   Weigert '03

Marchesini & Mueller '03, Marchesini & Onofri '04

E.g.

Other difficulty is in handling the soft-collinear limit of the observable:

- calculate how limit on observable constrains momenta of *n* particles
- then express constraint in factorised form, if it exists

$$\Theta(y_{3C}Q^2 - \max(k_{t1}^2, k_{t2}^2, \dots, k_{tn}^2)) \to \prod_{i=1}^n \Theta(y_{3C}Q^2 - k_{ti}^2)$$

 $y_{3C} = 3$ -jet resolution, Cambridge algorithm

Most cases are more complex

$$\Theta(\tau Q - k_{t1} - k_{t2} - \ldots - k_{tn})) \rightarrow \int \frac{d\nu}{2\pi i\nu} e^{\nu\tau Q} \prod_{i=1}^{n} e^{-\nu k_{ti}}$$

 $\tau=$  any thrust-like observable

Some may even be insoluble analytically

 $\Theta(T_M Q - \max_{\vec{n}} (\vec{k}_{t1} + \vec{k}_{t2} + \ldots + \vec{k}_{tn})) \rightarrow ???$  $T_M = \text{thrust-major, done numerically Banfi, GPS \& Zanderighi '01$ 

### What we would like:

### Something as good as manual analytical resummation

- Guaranteed (verifiable) accuracy, exponentiation
- Separate LL, NLL functions,  $g_1(\alpha_s L)$ ,  $g_2(\alpha_s L)$
- Expansions of  $g_1$  and  $g_2$  to fixed order in  $lpha_s$

### Monte Carlo resummation:

Event generators (Herwig, Pythia, ...) generate multiple divergent soft-collinear radiation = powerful automated resummation programs!

- $\checkmark \checkmark \mathsf{Observable treated exactly} \Leftrightarrow \mathsf{very flexible}.$ 
  - ✓ Includes hadronisation model
  - X Accuracy sometimes unclear (depends on observable, no NLL for multi-jet processes)
  - X Difficult to estimate uncertainties of calculation
  - X Combining with fixed order is tricky limited analytical information

### What we would like:

### Something as good as manual analytical resummation

- Guaranteed (verifiable) accuracy, exponentiation
- Separate LL, NLL functions,  $g_1(\alpha_s L)$ ,  $g_2(\alpha_s L)$
- Expansions of  $g_1$  and  $g_2$  to fixed order in  $\alpha_s$

### Monte Carlo resummation:

Event generators (Herwig, Pythia, ...) generate multiple divergent soft-collinear radiation = powerful automated resummation programs!

- $\checkmark \checkmark \mathsf{Observable treated exactly} \Leftrightarrow \mathsf{very flexible}.$ 
  - $\checkmark$  Includes hadronisation model
  - Accuracy sometimes unclear (depends on observable, no NLL for multi-jet processes)
  - X Difficult to estimate uncertainties of calculation
  - X Combining with fixed order is tricky limited analytical information



Follow model of fixed order calculations

Identify combination of

- properties of QCD matrix elements
- requirements on observable

such that a systematic approximation procedure emerges.

NB: will consider only *global* observables, so as to simplify problem.

















#### QCD beyond fixed order (p. 28) Resummation done systematically Strategy

# Introduce observable (& 1 emission)



Take general observable,  $V(p_1,...)$ .

Require that it vanish smoothly in soft, collinear limits:

 $V(p_1,p_2,k)\sim (k_t/Q)^a e^{-b|\eta|}$ 

Requirement  $V(...) < v \rightarrow$  boundary of a *vetoed region* for 1 emission

> $\ln v = a \ln \frac{k_t}{Q} - b|\eta|$ diagram shows a = b = 1

Real-virtual cancels *everywhere but* vetoed region, leaving:



 $\begin{array}{l} \mathsf{NB:} -\alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \\ \sim -\alpha_s \, d \ln k_t \, d\eta \end{array}$ 

#### QCD beyond fixed order (p. 28) Resummation done systematically Strategy

# Introduce observable (& 1 emission)



Take general observable,  $V(p_1,...)$ .

Require that it vanish smoothly in soft, collinear limits:

 $V(p_1,p_2,k)\sim (k_t/Q)^a e^{-b|\eta|}$ 

Requirement  $V(...) < v \rightarrow$  boundary of a *vetoed region* for 1 emission

$$\ln v = a \ln \frac{k_t}{Q} - b |\eta|$$
diagram shows  $a = b = 1$ 

Real-virtual cancels *everywhere but* vetoed region, leaving:



 $\begin{array}{l} \mathsf{NB:} -\alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \\ \sim -\alpha_s \, d \ln k_t \, d\eta \end{array}$ 

#### QCD beyond fixed order (p. 28) Resummation done systematically Strategy

# Introduce observable (& 1 emission)



Take general observable,  $V(p_1,...)$ .

Require that it vanish smoothly in soft, collinear limits:

 $V(p_1,p_2,k)\sim (k_t/Q)^a e^{-b|\eta|}$ 

Requirement  $V(...) < v \rightarrow$  boundary of a *vetoed region* for 1 emission

$$\ln v = a \ln \frac{k_t}{Q} - b |\eta|$$
diagram shows  $a = b = 1$ 

Real-virtual cancels *everywhere but vetoed region*, leaving:

$$\Sigma(V < v) = 1 + \underbrace{G_{12} \alpha_s L^2}_{\text{Vetoed area}} + \underbrace{G_{11} \alpha_s L}_{\text{edges}}$$

 $\begin{array}{l} \mathsf{NB:} -\alpha_s \frac{dE}{E} \frac{d\theta}{\theta} \\ \sim -\alpha_s \, d \ln k_t \, d\eta \end{array}$


Fixed order: series in α<sub>s</sub>, so consider limit α<sub>s</sub> → 0 for fixed V(p<sub>1</sub>,...)
 Resummation expansion:

 $\ln \Sigma = \alpha_s^{-1} g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots,$ 

so take  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  constant

For 1 emission, rescaling of L and α<sub>s</sub> equivalent to remapping of phase-space:

Question: how does observable behave under such a scaling of momenta when there are many emissions?



- Fixed order: series in  $\alpha_s$ , so consider limit  $\alpha_s \to 0$  for fixed  $V(p_1,...)$
- Resummation expansion:

$$\ln \Sigma = \alpha_s^{-1} g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots,$$

so take  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  constant

For 1 emission, rescaling of L and α<sub>s</sub> equivalent to remapping of phase-space:





- Fixed order: series in  $\alpha_s$ , so consider limit  $\alpha_s \to 0$  for fixed  $V(p_1,...)$
- Resummation expansion:

$$\ln \Sigma = \alpha_s^{-1} g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots,$$

so take  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  constant

For 1 emission, rescaling of L and α<sub>s</sub> equivalent to remapping of phase-space:



### Multiple emission properties

#### • Parametrise emission momenta by effect on observable:

 $\kappa(\bar{v})$  is a momentum such that  $V(\{p\},\kappa(\bar{v}))=\bar{v}$ 

A specific function  $\kappa(\bar{v})$  maps out a path in  $\eta,\,\ln k_t$  space

Require observable to scale universally for any number of emissions:

$$\lim_{\overline{\nu}\to 0} \frac{1}{\overline{\nu}} V(\{p\}, \kappa_1(\zeta_1\overline{\nu}), \kappa_2(\zeta_2\overline{\nu}), \ldots) = f(\zeta_1, \zeta_2, \ldots)$$

For any  $\{\zeta_i\}$ , and any set of paths  $\{\kappa_i\}$ 

This allows us to give meaning to the limit  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  fixed, for any number of emissions — because scaling properties of observable are independent of number of emissions.

All subsequent discussion is to be imagined in this scaling limit.

### Multiple emission properties

• Parametrise emission momenta by effect on observable:

 $\kappa(ar{v})$  is a momentum such that  $V(\{p\},\kappa(ar{v}))=ar{v}$ 

A specific function  $\kappa(\bar{\nu})$  maps out a path in  $\eta$ , ln  $k_t$  space

• Require observable to scale universally for any number of emissions:

$$\lim_{\bar{\nu}\to 0} \frac{1}{\bar{\nu}} V(\{p\}, \kappa_1(\zeta_1\bar{\nu}), \kappa_2(\zeta_2\bar{\nu}), \ldots) = f(\zeta_1, \zeta_2, \ldots)$$
  
For any  $\{\zeta_i\}$ , and any set of paths  $\{\kappa_i\}$ 

This allows us to give meaning to the limit  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  fixed, for any number of emissions — because scaling properties of observable are independent of number of emissions.

All subsequent discussion is to be imagined in this scaling limit.

#### Multiple emission properties

• Parametrise emission momenta by effect on observable:

 $\kappa(ar{v})$  is a momentum such that  $V(\{p\},\kappa(ar{v}))=ar{v}$ 

A specific function  $\kappa(\bar{\nu})$  maps out a path in  $\eta$ , ln  $k_t$  space

• Require observable to scale universally for any number of emissions:

$$\lim_{\overline{\nu}\to 0} \frac{1}{\overline{\nu}} V(\{p\}, \kappa_1(\zeta_1\overline{\nu}), \kappa_2(\zeta_2\overline{\nu}), \ldots) = f(\zeta_1, \zeta_2, \ldots)$$
  
For any  $\{\zeta_i\}$ , and any set of paths  $\{\kappa_i\}$ 

This allows us to give meaning to the limit  $\alpha_s \rightarrow 0$  with  $\alpha_s L$  fixed, for any number of emissions — because scaling properties of observable are independent of number of emissions.

All subsequent discussion is to be imagined in this scaling limit.





**Observable** 

Need condition like IRC safety

- 'softness' defined in terms of effect on observable
- soft limit must *commute* with scaling limit

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

➡Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.





**Observable** 

Need condition like IRC safety

- 'softness' defined in terms of effect on observable
- soft limit must *commute* with scaling limit

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

➡Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions? Only if they don't affect observable





**Observable** 

Need condition like IRC safety

- 'softness' defined in terms of effect on observable
- soft limit must *commute* with scaling limit

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

➡Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.





### **Observable**

Need condition like IRC safety

- 'softness' defined in terms of effect on observable
- soft limit must *commute* with scaling limit

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

➡Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.





#### <u>Matrix element</u>

Problem with arbitrary set of emissions is too complex.

Need to simplify it (like we simplified fixed-order PT at beginning).

➡Keep just subset of emissions.

But, are we allowed to throw away the remaining emissions?

Only if they don't affect observable and cancel with virtuals in M.E.

- anything very soft cancels with corresponding virtual correction
- emissions on disparate angular scales behave independently

QCD coherence

### Recall scaling property

### • Parametrise emission momenta by effect on observable:

 $\kappa(ar{v})$  is any momentum such that  $V(\{p\},\kappa(ar{v}))=ar{v}$ 

• Require observable to *scale universally* for any number of emissions:

$$\lim_{\overline{\nu}\to 0} \frac{1}{\overline{\nu}} V(\{p\}, \kappa_1(\zeta_1\overline{\nu}), \kappa_2(\zeta_2\overline{\nu}), \ldots) = f(\zeta_1, \zeta_2, \ldots)$$

Recursive IRC safety:

• Require *recursive* infrared-collinear safety:

Or:  

$$\lim_{\zeta_n \to 0} f(\zeta_1, \zeta_2, \dots, \zeta_{n-1}, \zeta_n) = f(\zeta_1, \zeta_2, \dots, \zeta_{n-1})$$

$$\lim_{\overline{v} \to 0} \lim_{\zeta_n \to 0} \left[ \frac{1}{\overline{v}} V(\{p\}, \kappa_1(\zeta_1 \overline{v}), \kappa_2(\zeta_2 \overline{v}), \dots, \kappa_n(\zeta_n \overline{v})) = 0 \right]$$

### Recall scaling property

### • Parametrise emission momenta by effect on observable:

 $\kappa(ar{v})$  is any momentum such that  $V(\{p\},\kappa(ar{v}))=ar{v}$ 

• Require observable to *scale universally* for any number of emissions:

$$\lim_{\overline{\nu}\to 0} \frac{1}{\overline{\nu}} V(\{p\}, \kappa_1(\zeta_1\overline{\nu}), \kappa_2(\zeta_2\overline{\nu}), \ldots) = f(\zeta_1, \zeta_2, \ldots)$$

Recursive IRC safety:

• Require *recursive* infrared-collinear safety:

$$\lim_{\substack{\zeta_n \to 0}} f(\zeta_1, \zeta_2, \dots, \zeta_{n-1}, \zeta_n) = f(\zeta_1, \zeta_2, \dots, \zeta_{n-1})$$
  
Dr:  
$$\left[\lim_{\bar{v} \to 0}, \lim_{\zeta_n \to 0}\right] \frac{1}{\bar{v}} V(\{p\}, \kappa_1(\zeta_1 \bar{v}), \kappa_2(\zeta_2 \bar{v}), \dots, \kappa_n(\zeta_n \bar{v})) = 0$$

|                  | normal IRC safety | recursive IRC safety   |
|------------------|-------------------|------------------------|
| softness defined | hard scale        | soft scale of          |
| relative to      |                   | observable             |
| problem reduces  | low <i>number</i> | low <i>density</i>     |
| to one of        | of emissions      | of emissions in $\eta$ |
| allowing use of  | fixed-order PT    | independent emission   |
|                  |                   | approximation          |

NB: independent emission approximation results from coherence  $\equiv$  emissions widely separated in angle are independent.

- Coherence recently questioned at subleading  $N_c$  and high orders  $(\alpha_s^4 L^5)$  in  $pp \rightarrow 2$  jets
  - [Forshaw, Kyrieleis and Seymour '06]

### Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \to e^{\alpha_s^n L^{n+2}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density ~  $\alpha_s$ ; coherence  $\rightarrow$  treat them as independent

• NNLL: account for corners

### Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \to e^{\alpha_s^n L^{n+1}}$ 

 NLL: need to account for edges
 α<sub>s</sub>L → e<sup>α<sup>n</sup><sub>s</sub>L<sup>n</sup></sup>
 In blue band: sum over widely
 separated individual emissions
 low density ~ α<sub>s</sub>; coherence
 → treat them as independent

• NNLL: account for corners

## Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density  $\sim \alpha_s$ ; coherence  $\rightarrow$  treat them as independent

• NNLL: account for corners

## Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density  $\sim \alpha_s$ ; coherence  $\rightarrow$  treat them as independent

• NNLL: account for corners



### Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density  $\sim \alpha_s$ ; coherence  $\rightarrow$  treat them as independent

• NNLL: account for corners

## Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density  $\sim \alpha_s$ ; coherence  $\rightarrow$  treat them as independent

• NNLL: account for corners



### Schematic framework



Sum over real and virtual emissions in blue band and above is sufficient for any resummation accuracy.

• LL: consider just exponential of virtuals in vetoed region:

 $\alpha_s L^2 \rightarrow e^{\alpha_s^n L^{n+1}}$ 

• NLL: need to account for edges  $\alpha_s L \rightarrow e^{\alpha_s^n L^n}$ In blue band: sum over widely separated individual emissions low density  $\sim \alpha_s$ ; coherence  $\rightarrow$  treat them as independent

NNLL: account for corners

 $\alpha_s \to e^{\alpha_s^n L^{n-1}}$  and 1 correlated pair of emissions (+ any # of indep. emissions)

### Analytical work (done once and for all)

- A1. formulate exact applicability conditions for the approach (its scope)
- A2. derive a master formula for a generic observable in terms of simple properties of the observable

### Numerical work (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for a master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

#### Note: N1 and N2 are core of automation

- a) they will require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validation of hypotheses uses methods inspired by "Experimental Mathematics"

### Analytical work (done once and for all)

- A1. formulate exact applicability conditions for the approach (its scope)
- A2. derive a master formula for a generic observable in terms of simple properties of the observable

<u>Numerical work</u> (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for a master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

#### Note: N1 and N2 are core of automation

- a) they will require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validation of hypotheses uses methods inspired by "Experimental Mathematics"

### Analytical work (done once and for all)

- A1. formulate exact applicability conditions for the approach (its scope)
- A2. derive a master formula for a generic observable in terms of simple properties of the observable

<u>Numerical work</u> (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for a master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation

- a) they will require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validation of hypotheses uses methods inspired by "Experimental Mathematics"



$$V(\{p\},k) = \frac{d_{\ell}}{d_{\ell}} \left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta} g_{\ell}(\phi) \,.$$

Born momenta soft collinear emission

- Determine coefficients  $a_{\ell}$ ,  $b_{\ell}$ ,  $d_{\ell}$  and  $g_{\ell}(\phi)$  for emissions close to each hard Born parton (leg)  $\ell$ .
- Require continuous globalness, i.e. uniform dependence on k<sub>t</sub> independently of emission direction (a<sub>1</sub> = a<sub>2</sub> = ··· = a)
- Require scaling and recursive IRC safety We've mostly discussed soft part, ∃ also a collinear part



$$V(\{p\},k) = d_{\ell}\left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta}g_{\ell}(\phi).$$

Born momenta soft collinear emissio

- Determine coefficients a<sub>ℓ</sub>, b<sub>ℓ</sub>, d<sub>ℓ</sub> and g<sub>ℓ</sub>(φ) for emissions close to each hard Born parton (leg) ℓ.
- Require *continuous globalness*, *i.e.* uniform dependence on  $k_t$  independently of emission direction  $(a_1 = a_2 = \cdots = a)$
- Require scaling and *recursive IRC safety*



$$V(\{p\}, k) = d_{\ell} \left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta} g_{\ell}(\phi) .$$
  
Born momenta soft collinear emission

- Determine coefficients a<sub>ℓ</sub>, b<sub>ℓ</sub>, d<sub>ℓ</sub> and g<sub>ℓ</sub>(φ) for emissions close to each hard Born parton (leg) ℓ.
- Require *continuous globalness*, *i.e.* uniform dependence on  $k_t$  independently of emission direction  $(a_1 = a_2 = \cdots = a)$
- Require scaling and *recursive IRC safety*



$$V(\{p\}, k) = d_{\ell} \left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta} g_{\ell}(\phi) .$$
  
Born momenta soft collinear emission

- Determine coefficients a<sub>ℓ</sub>, b<sub>ℓ</sub>, d<sub>ℓ</sub> and g<sub>ℓ</sub>(φ) for emissions close to each hard Born parton (leg) ℓ.
- Require *continuous globalness*, *i.e.* uniform dependence on  $k_t$  independently of emission direction  $(a_1 = a_2 = \cdots = a)$
- Require scaling and *recursive IRC safety*



$$V(\{p\}, k) = d_{\ell} \left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta} g_{\ell}(\phi) .$$
  
Born momenta soft collinear emission

- Determine coefficients a<sub>ℓ</sub>, b<sub>ℓ</sub>, d<sub>ℓ</sub> and g<sub>ℓ</sub>(φ) for emissions close to each hard Born parton (leg) ℓ.
- Require *continuous globalness*, *i.e.* uniform dependence on  $k_t$  independently of emission direction  $(a_1 = a_2 = \cdots = a)$
- Require scaling and *recursive IRC safety*



$$V(\{p\}, k) = d_{\ell} \left(\frac{k_t}{Q}\right)^{a_{\ell}} e^{-b_{\ell}\eta} g_{\ell}(\phi) .$$
  
Born momenta soft collinear emission

- Determine coefficients a<sub>ℓ</sub>, b<sub>ℓ</sub>, d<sub>ℓ</sub> and g<sub>ℓ</sub>(φ) for emissions close to each hard Born parton (leg) ℓ.
- Require *continuous globalness*, *i.e.* uniform dependence on  $k_t$  independently of emission direction  $(a_1 = a_2 = \cdots = a)$
- Require scaling and *recursive IRC safety*

The formulae

Given info from previous pages, *final answer is analytical:* 

$$\begin{split} \ln \Sigma(v) &= -\sum_{\ell=1}^{n} C_{\ell} \left[ r_{\ell}(L) + r'_{\ell}(L) \left( \ln \bar{d}_{\ell} - b_{\ell} \ln \frac{2E_{\ell}}{Q} \right) \right. \\ &+ B_{\ell} T \left( \frac{L}{a + b_{\ell}} \right) \right] + \sum_{\ell=1}^{n_{i}} \ln \frac{q_{\ell}(x_{\ell}, e^{-\frac{2L}{a + b_{\ell}}} \mu_{f}^{2})}{q_{\ell}(x_{\ell}, \mu_{f}^{2})} \\ &+ \ln S \left( T(L/a) \right) + \ln \mathcal{F}(C_{1}r'_{1}, \dots, C_{n}r'_{n}) \,, \end{split}$$

 $C_{\ell} = \text{colour factor; } q_{\ell} = \text{PDF}$  $r_{\ell}(L) \Rightarrow \alpha_s^n L^{n+1}; r_{\ell}'(L), T(L) \Rightarrow \alpha_s^n L^n$ 

Non-trivial parts:

S(T(L/a)) = large-angle logarithms (proc. dep.)
 Botts-Kidonakis-Oderda-Sterman '89-'98; Bonciani et al '03

•  $\mathcal{F}(...) \sim \langle \exp(-R'f(\zeta_1, \zeta_2, ..., )) \rangle_{\text{summed over emissions in blue band}}$ observable-dependent — this part done by Monte Carlo (pure  $\alpha_s^n L^n$ ) Given info from previous pages, *final answer is analytical:* 



Given info from previous pages, *final answer is analytical:* 



observable-dependent — this part done by Monte Carlo (pure  $lpha_s^n L^n$ )

Given info from previous pages, *final answer is analytical:* 





### CAESAR flow chart

### Computer Automated Expert Semi-Analytical Resummer Banfi, GPS, Zanderighi '03–'05



- Observables that vanish other than through suppression of radiation (*e.g.* Vector Boson  $p_t$  spectrum) have divergence in  $g_2(\alpha_s L)$  beyond fixed value of  $\alpha_s L$ . Rakow & Webber '81; Dasgupta & GPS '02
  - for very-inclusive 2-jet cases analytical resummations are in any case more accurate (NNLL)
     Higgs p<sub>t</sub>: Bozzi et al '03–05

Back-to-back EEC: de Florian & Grazzini '04

- For less-inclusive cases, this problem is sometimes 'academic' (in region of vanishing X-section).
- Non-global observables are beyond its scope (but perhaps could be included in future).
  - Individual jet properties, or subsets of jets
  - Gap resummations Appleby, Banfi, C. Berger, Dasgupta, Forshaw Kucs, Kyrieleis, Oderda, Seymour, Sterman, ...
- Threshold resummations not yet thought about in this framework.
- Reproduced/verified all known analytical global resummations
- Except for 1 case where it replaces an incomplete result

 $y_3^D$ : widely used in fits to  $\alpha_s$ Banfi, GPS & Zanderighi '01

- Correctly identifies cases where it is not able to give correct answer.
- New multi-jet resummations in  $e^+e^-$  and DIS
- First event-shape resummation for hadron-hadron dijet events Uses soft-logarithms from Stony Brook group

All results available at http://qcd-caesar.org

Program available on request

| Event-shape                                               | Impact of $n$  | Resummation  | Underlying                    | Jet                         |
|-----------------------------------------------------------|----------------|--------------|-------------------------------|-----------------------------|
| Event shape                                               | Impact of Imax | breakdown    | Event                         | hadronisation               |
| $	au_{\perp,g}$                                           | tolerable      | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/Q$                  |
| $T_{m,g}$                                                 | tolerable      | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/(\sqrt{lpha_{s}}Q)$ |
| <i>Y</i> 23                                               | tolerable      | none         | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$      |
| $	au_{\perp,\mathcal{E}}, \  ho_{\mathbf{X},\mathcal{E}}$ | negligible     | none         | $\sim 1/Q$                    | $\sim 1/Q$                  |
| $B_{X,\mathcal{E}}$                                       | negligible     | none         | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_s}Q)$   |
| $T_{m,\mathcal{E}}$                                       | negligible     | serious      | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_s}Q)$   |
| <i>Y</i> 23, <i>E</i>                                     | negligible     | none         | $\sim 1/Q$                    | $\sim \sqrt{y_{23}}/Q$      |
| $	au_{\perp,\mathcal{R}},\  ho_{X,\mathcal{R}}$           | none           | serious      | $\sim 1/Q$                    | $\sim 1/Q$                  |
| $T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$                    | none           | tolerable    | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_s}Q)$   |
| <b>Y</b> 23, <i>R</i>                                     | none           | intermediate | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$      |

The study of such a wide range of observables would have been nearly impossible without automation...

Normal QCD perturbation theory relies on *infrared & collinear safety* of observable to allow one to restrict matrix elements for N<sup>*p*</sup>LO calculation to  $n_{Born} + p$  partons.

In certain (exclusive) regions of phase-space, while formally  $(\alpha_s \rightarrow 0)$  OK, this is practically insufficient: need *all-order resummation* of logarithmically enhanced terms.

New condition: **recursive infrared and collinear safety**, ensures (together with globalness, coherence) that, for NLL resummed accuracy, it is safe to approximate *n*-parton soft-collinear matrix-element as independent emission.

 $\label{eq:Enables} \begin{array}{l} \text{Enables automation of resummation} \rightarrow \text{CAESAR!} \\ \text{First hadron-hadron dijet event-shape resummations} \end{array}$ 

*Many questions for future.* Can the automated resummation be made practical beyond NLL accuracy? Are there issues with coherence in processes with incoming hadrons?

# EXTRA SLIDES

# **Contradiction?**

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam  $|\eta| < \eta_{\max}$  $\Rightarrow$  Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

# **Contradiction?**

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam  $|\eta| < \eta_{\max}$  $\Rightarrow$  Problems with globalness



Take cut as being edge of most forward detector with momentum or energy resolution:

| Tevatron | LHC |
|----------|-----|
| 3.5      | 5.0 |

# **Contradiction?**

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam  $|\eta| < \eta_{max}$  $\Rightarrow$  Problems with globalness



Take cut as being edge of most forward detector with momentum or energy resolution:

|               | Tevatron | LHC |
|---------------|----------|-----|
| $\eta_{\max}$ | 3.5      | 5.0 |

Particles from beyond max rapidity contribute significantly only for small  $V \lesssim e^{-(a+b_\ell)\eta_{\text{max}}}$ .

Most of cross section may be *above that limit* — rapidity cut irrelevant. Banfi et al. '01

#### <u>Alternative</u>

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

$${\cal R}_{\perp,{\cal C}} \equiv rac{1}{Q_{\perp,{\cal C}}} \left| \sum_{i \in {\cal C}} ec q_{\perp i} 
ight| \, ,$$

# Global thrust



Here  $g_2(\alpha_s L)$  diverges for  $L \sim 1/\alpha_s$  (due to cancellations in vector sum) – study distribution only before divergence.

Particles from beyond max rapidity contribute significantly only for small  $V \lesssim e^{-(a+b_\ell)\eta_{\text{max}}}$ .

Most of cross section may be *above that limit* — rapidity cut irrelevant. Banfi et al. '01

## Alternative

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

$${\cal R}_{\perp,{\cal C}} \equiv rac{1}{Q_{\perp,{\cal C}}} \left| \sum_{i \in {\cal C}} ec q_{\perp i} 
ight| \, ,$$

Jet-broadening, jet-mass  $(+k_t/Qe^{-|\eta|})$ 



Here  $g_2(\alpha_s L)$  diverges for  $L \sim 1/\alpha_s$  (due to cancellations in vector sum) – study distribution only before divergence.

Particles from beyond max rapidity contribute significantly only for small  $V \lesssim e^{-(a+b_\ell)\eta_{\max}}$ .

Most of cross section may be *above that limit* — rapidity cut irrelevant. Banfi et al. '01

## Alternative

Measure just centrally & add recoil term (indirect sensitivity to rest of event):

$$\mathcal{R}_{\perp,\mathcal{C}} \equiv rac{1}{Q_{\perp,\mathcal{C}}} \left| \sum_{i \in \mathcal{C}} ec{q}_{\perp i} 
ight|$$



Here  $g_2(\alpha_s L)$  diverges for  $L \sim 1/\alpha_s$  (due to cancellations in vector sum) – study distribution only before divergence.

# Summary of observables

| Event-shape                                                | Impact of $\eta_{max}$ | Resummation  | Underlying                    | Jet                          |
|------------------------------------------------------------|------------------------|--------------|-------------------------------|------------------------------|
|                                                            | in page of spinax      | breakdown    | Event                         | hadronisation                |
| $	au_{\perp,g}$                                            | tolerable              | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/Q$                   |
| $T_{m,g}$                                                  | tolerable              | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/(\sqrt{lpha_{s}} Q)$ |
| <i>y</i> <sub>23</sub>                                     | tolerable              | none         | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$       |
| $	au_{\perp,\mathcal{E}}$ , $ ho_{\mathbf{X},\mathcal{E}}$ | negligible             | none         | $\sim 1/Q$                    | $\sim 1/Q$                   |
| $B_{X,\mathcal{E}}$                                        | negligible             | none         | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}} Q)$ |
| $T_{m,\mathcal{E}}$                                        | negligible             | serious      | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}}Q)$  |
| У23, <i>Е</i>                                              | negligible             | none         | $\sim 1/{\it Q}$              | $\sim \sqrt{y_{23}}/Q$       |
| $	au_{\perp,\mathcal{R}}$ , $ ho_{\mathbf{X},\mathcal{R}}$ | none                   | serious      | $\sim 1/Q$                    | $\sim 1/Q$                   |
| $T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$                     | none                   | tolerable    | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}}Q)$  |
| <b>Y</b> 23,R                                              | none                   | intermediate | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$       |

NB: there may be surprises after more detailed study, *e.g.* matching to NLO... Grey entries are definitely subject to uncertainty

Note complementarity between observables

# Summary of observables

| Event-shape                                                | Impact of $\eta_{max}$ | Resummation  | Underlying                    | Jet                          |
|------------------------------------------------------------|------------------------|--------------|-------------------------------|------------------------------|
|                                                            | in page of spinax      | breakdown    | Event                         | hadronisation                |
| $	au_{\perp,g}$                                            | tolerable              | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/Q$                   |
| $T_{m,g}$                                                  | tolerable              | none         | $\sim \eta_{\sf max}/{\it Q}$ | $\sim 1/(\sqrt{lpha_{s}} Q)$ |
| <i>y</i> <sub>23</sub>                                     | tolerable              | none         | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$       |
| $	au_{\perp,\mathcal{E}}$ , $ ho_{\mathbf{X},\mathcal{E}}$ | negligible             | none         | $\sim 1/Q$                    | $\sim 1/Q$                   |
| $B_{X,\mathcal{E}}$                                        | negligible             | none         | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}} Q)$ |
| $T_{m,\mathcal{E}}$                                        | negligible             | serious      | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}}Q)$  |
| У23, <i>Е</i>                                              | negligible             | none         | $\sim 1/{\it Q}$              | $\sim \sqrt{y_{23}}/Q$       |
| $	au_{\perp,\mathcal{R}}$ , $ ho_{\mathbf{X},\mathcal{R}}$ | none                   | serious      | $\sim 1/Q$                    | $\sim 1/Q$                   |
| $T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$                     | none                   | tolerable    | $\sim 1/Q$                    | $\sim 1/(\sqrt{lpha_{s}}Q)$  |
| <b>Y</b> 23,R                                              | none                   | intermediate | $\sim \sqrt{y_{23}}/Q$        | $\sim \sqrt{y_{23}}/Q$       |

NB: there may be surprises after more detailed study, *e.g.* matching to NLO... Grey entries are definitely subject to uncertainty

Note complementarity between observables