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QCD beyond fixed order (p. 2)

Introduction Today’s colliders are QCD machines

Current and forthcoming high-energy colliders:

HERA Tevatron LHC

e±p p̄p pp

All involve protons — understanding what’s going on unavoidably involves

QCD

Tevatron: main ‘new’ object of study is top quark, interest is in checking
its couplings and measuring its mass (e.g. implications for Higgs).

LHC: don’t yet know what ‘new’ objects will be — but ability to extract
them from (QCD) backgrounds and measure their properties will almost
certainly be limited by the quality of our understanding of QCD.

So where’s the problem? It’s just Feynman diagrams. . .



QCD beyond fixed order (p. 3)

Introduction Real events

Real events bear superficial resemblance to perturbative picture

OPAL
But

(a) Fundamental problem: want a
better understanding of
correspondence between (i) the
perturbative language used for
calculations and (ii) the
hadrons that are observed.

(b) To get the most out of QCD
events for doing ‘other physics’
(searches etc.) → understand,
quantitatively, how they differ
from naive Feynman diags.

E.g. how do you relate the true mass of a new particle to the mass
measured by isolating the jets it decays into?



QCD beyond fixed order (p. 4)

Introduction Playground

One way of improving situation is by

Refining our understanding of perturbative QCD

Next-to-Next-to-Leading-Order (NNLO), multi-leg NLO Much activity

Approximations to the behaviour of QCD at all orders This talk

When discussing new techniques, it’s useful to have a playground:

Simple collider environments: e+e− (LEP), DIS (HERA).

Special observables: event shapes — measures of deviation from
idealised lowest order Feynman diagrams.

Then apply understanding to real analyses at hadron colliders

This talk will examine principles of all-order calculations in the simplest
possible environment (e+e− → 2 jets), attempting to illustrate lessons that
hold in general.
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QCD beyond fixed order (p. 5)

Introduction Structure of talk

Perturbative QCD at fixed orders

Soft and collinear divergences
Infrared and collinear safety ↔ (pseudo)-convergent perturbation series

Fixed-order breakdown, all-order log-enhanced structures

fixed orders insufficient for describing most common events
understanding of divergences ↔ all-order rearrangement of perturbation
series

Resummation done systematically

issues
recursive infrared collinear safety
automated resummation



QCD beyond fixed order (p. 6)

Fixed order calculations Soft, collinear limits

Consider Feynman diagram (c.o.m. energy = Q)

θ
p1p2

k

Simplest limit:

emitted gluon has small energy Ek ≪ Q (soft)

is at small angle wrt quark, θ ≪ 1 (collinear)

Propagator goes on-shell ↔ divergence:

dΦqq̄g |M2
qq̄g | ≃ dΦqq̄|M2

qq̄| ·
8

3

αs

π
· dEk

Ek

dθ

θ

Such soft and collinear divergences are pivotal in this talk.
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QCD beyond fixed order (p. 7)

Fixed order calculations Probability of emitting 1 gluon

Based on soft-collinear limit, probability for emitting 1 gluon is

Prob(1 gluon) ∼ 16

3

αs

π

∫ Q

0

dE

E

∫ π/2

0

dθ

θ

This is infinite. Perhaps integrals should not go below non-perturbative
scale Λ?

Put cut-off:

Prob(1 gluon) ∼ 16

3

αs

π

∫ Q

Λ

dE

E

∫ π/2

Λ/Q

dθ

θ
∼ 16

3π
αs ln2 Q

Λ

Two large logarithms, one ‘soft’, one ‘collinear’ (both depend on cutoff).

Does small coupling save us? αs = 1/(b0 lnQ/Λ):

Prob(1 gluon) ∼ 16

3πb0
ln

Q

Λ

This is not small! Perturbation theory seems to be no good. . .
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QCD beyond fixed order (p. 8)

Fixed order calculations Jet broadening

Instead of calculating ‘flow of gluons’, let’s try and look at flow of energy.

E.g. ‘jet broadening’, BT (transverse momentum flow wrt jet axis)

BT =
1

2Q

∑

i

|~qi × ~n| ≃ Ekθ

Q
(θ ≪ 1)

p1

k

θ n

p2

Do perturbative calculation for mean value of broadening:

〈BT 〉 ∼ 16

3

αs

π

∫ Q

0

dE

E

∫ π/2

0

dθ

θ
· Eθ

Q

Divergences are cancelled, because ‘observable’ (BT ) vanishes when the
gluon is soft or collinear. Result is truly perturbative.

Suitable observables are straightforwardly calculable.
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QCD beyond fixed order (p. 9)

Fixed order calculations Infrared (soft) and collinear safety

Crucial property of broadening was that effect of an additional gluon
vanished ∝ a power of its softness and collinearity.

Infrared and collinear (IRC) safety

Sterman & Weinberg ’77

For an observable’s distribution to be calculable in perturbation
theory, the observable should be infra-red [and collinear] safe, i.e.
insensitive to the emission of soft or collinear gluons. In particular if
~pi is any momentum occurring in its definition, it must be invariant
under the branching

~pi → ~pj + ~pk

whenever ~pj and ~pk are parallel [collinear] or one of them is small
[infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]
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QCD beyond fixed order (p. 10)

Fixed order calculations IRC safety and higher orders

Next: calculate higher-order corrections. At each order, probability of
emitting gluon ≫ 1 → complex configurations with many gluons:

p1
p2

But: high multiplicity comes from soft, collinear region – these gluons
don’t affect observable (IRC safety), and cancel nearly fully with virtual
corrections.

Field theory: real-virtual cancellation
Observable: IRC safety

⇒

Combination of field theory and observable properties allow us to pretend
that the real world looks like perturbation theory.
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QCD beyond fixed order (p. 11)

Fixed order calculations Next-to-leading order (NLO) predictions

Consider pure α2
s contributions. Conceptually simple:

p1
p2

+

p1
p2

In practice

Physicist calculates matrix elements once → into computer program.

Program generates random configurations (real & virtual), calculates
arbitrary IRC-safe observable (subroutine), weights with matrix elements.

Subtlety: how do you combine

observable in 4-dimensions,

matrix elements in 4 + 2ǫ dimensions (dim.-reg.)?

General NLO solution: Catani & Seymour ’96 + Dittmaier & Trocsanyi ’02

First NNLO solution: Gehrmann-De Ridder, Gehrmann & Glover ’05
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QCD beyond fixed order (p. 12)

NLO breakdown, all-order log structure Broadening distribution at NLO

 0.1
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 d
σ

/d
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s
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(divergent)
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data
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QCD beyond fixed order (p. 13)

NLO breakdown, all-order log structure What’s happening?

What is probability, Σ(B), that broadening < some value B?

Σ(B) ∼ 1 +
16

3

αs

π

∫

0

dE

E

dθ

θ
Θ(B − Eθ

Q
)

︸ ︷︷ ︸

p1

k

θ n

p2

− 16

3

αs

π

∫

0

dE

E

dθ

θ
︸ ︷︷ ︸

n

p2 p1

∼ 1 − 16

3

αs

π

∫

0

dE

E

dθ

θ
Θ(

Eθ

Q
− B) ∼ 1 − 8

3

αs

π
ln2 B

Double logarithm due to incomplete real-virtual cancellation of soft
and collinear divergences, when considering narrow jets.

NB: resulting distribution diverges

dΣ

dB
∼ 16

3

αs

π

ln 1/B

B



QCD beyond fixed order (p. 14)

NLO breakdown, all-order log structure What will happen at next order?

Examine soft-collinear limit of two gluons:

p2p1

kb

ka

p2p1

ka
kb

p2p1

kb

ka

Two propagators nearly on-shell ↔ 4 divergences (Ea ≪ Eb) . Can be
viewed as two parts (approx.):

independent emission of two gluons (diags, 1,3)

nested branching of gluon a (diag. 2)

All diagrams could potentially give us α2
s ln4 B
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QCD beyond fixed order (p. 15)

NLO breakdown, all-order log structure All orders?

Normal perturbative expansion is fine in formal perturbative αs → 0 limit

Σ(B) = 1 + αs f1(B) + α2
s f2(B) + . . . fn(B) ∼ ln2n B for B ≪ 1

In region where you have most of the data lnB ≫ 1 and αn
s fn(B) ∼ 1 —

series does not converge.

But origin of logs is simple: residual non-cancellation of real and virtual
soft-collinear divergences. Can imagine calculating them at all orders:

Σ(B) ≃
∞∑

n=0

Hn,2n αn
s ln2n B + O

(
αn

s ln2n−1 B
)

= h1(αsL
2) +

√
αsh2(αsL

2) + . . . , L ≡ ln
1

B

This is a resummation of leading logarithms (LL), h1(αsL
2)

Will converge even for large values of the logarithm, αsL
2 ∼ 1

since h1 ∼ 1, h2 ∼ 1 [NB: traded L−1 for
√

αs in front of h2]
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QCD beyond fixed order (p. 16)

NLO breakdown, all-order log structure Try broadening resummation

Step 1. Simplify matrix element.

B measures transverse momentum flow relative to main event (∼ qq̄)
axis.

Secondary gluon splitting does not change observable (will cancel fully
against virtuals)

Take only independent emission:

dΦn|M2(k1, . . . kn)| → 1

n!

n∏

i=1

16

3

αs

π

dEi

Ei

dθi

θi

Minus corresponding virtual (loop) terms

p2p1

kb

ka

p2p1

ka
kb

p2p1

kb

ka
kb

ka

p21p



QCD beyond fixed order (p. 17)

NLO breakdown, all-order log structure Try broadening resummation (cont.)

Step 2. Simplify observable

Calculate observable with arbitrary number of emissions. In soft and
collinear limit it ‘simplifies’ to

B =
1

2Q

(
n∑

i=1

|~kti | +
∣
∣
∣

n∑

i∈right

~kti

∣
∣
∣ +

∣
∣
∣

n∑

i∈left

~kti

∣
∣
∣

)

For now approximate this as

B =
1

Q
max {kt1, kt2, . . . ktn}

Since ln2[B ×O (1)] = ln2 B + O (1) · ln B, this does not change LL.

Translate to limit on all kti = Eiθi :

Σ(B) ≃
∞∑

n=0

1

n!

n∏

i=1

16

3

αs

π

∫
dEi

Ei

dθi

θi

[
Θ(B − Eiθi)
︸ ︷︷ ︸

real

− 1
︸︷︷︸

virt

]

≃ exp

[

−8

3

αsL
2

π

]

Exponentiated double logarithms
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~kti

∣
∣
∣

)

For now approximate this as

B =
1

Q
max {kt1, kt2, . . . ktn}

Since ln2[B ×O (1)] = ln2 B + O (1) · ln B, this does not change LL.

Translate to limit on all kti = Eiθi :

Σ(B) ≃
∞∑

n=0

1

n!

n∏

i=1

16

3

αs

π

∫
dEi

Ei

dθi

θi

[
Θ(B − Eiθi)
︸ ︷︷ ︸

real

− 1
︸︷︷︸

virt

]

≃ exp

[

−8

3

αsL
2

π

]

Exponentiated double logarithms



QCD beyond fixed order (p. 17)

NLO breakdown, all-order log structure Try broadening resummation (cont.)
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QCD beyond fixed order (p. 18)

NLO breakdown, all-order log structure Exponentiation

exp[−αsL
2] is typical of Sudakov suppression — if you want broadening

to be small, pay the price of suppressing emission (i.e. virtual terms).

Exponentiated form does not always hold, e.g. ‘Jade jet resolution,’ y3J :

Σ(y3J) = 1 − 4

3

αsL
2

π
+

5

12

(
4

3

αsL
2

π

)2

+ · · ·

Brown & Stirling ’90

When it does hold, ∃ more powerful reorganisation of logs

Σ(B) = exp

[
∞∑

n=1

Gn,n+1 αn
s L

n+1 + O (αn
s L

n)

]

= exp
[
Lg1(αsL)
︸ ︷︷ ︸

LL

+ g2(αsL)
︸ ︷︷ ︸

NLL

+ αsg3(αsL)
︸ ︷︷ ︸

NNLL

+ . . .
]

Better than previous hierarchy: valid up to L ∼ 1/αs (rather than
L ∼ 1/

√
αs) and successive terms suppressed by αs (instead of

√
αs).
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QCD beyond fixed order (p. 19)

NLO breakdown, all-order log structure NLL resummations

Next-to-leading-logarithmic (NLL) accuracy is currently state of the art for
QCD final-state resummations.

Ingredients (in addition to those shown so far):

Full treatment of observable

Proper coupling (scheme, two-loop running)

Careful evaluation of sum over emissions

Pioneered: Catani, Trentadue, Turnock, Webber (CTTW) ’92

Broadening: CTW ’92; Dokshitzer, Lucenti, Marchesini & GPS ’98

NB: simple observable (EEC) recently done at NNLL: de Florian & Grazzini ’04



QCD beyond fixed order (p. 20)

NLO breakdown, all-order log structure Broadening distribution at NLO+NLL
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NLL shape OKish!
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αsL ∼ 1.
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to parton-hadron
transition, hadro-
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Only with resum-

mation can hadro-
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QCD beyond fixed order (p. 21)

NLO breakdown, all-order log structure Manual NLL calculations

Unlike NLO (matrix-element done once, rest done my Monte Carlo), NLL
‘event-shape’ resummation nearly always been done manually, analytically.

e+e− 2 jets ρh, ρl , ρ1, τ , BT , BW , BN , yD
3 , yC

3 , TM , Angularities

DIS 1+1 jets τzQ , τzE , BzQ , BtQ , CE , ρE

Multijet e+e− → 3j Tm, Tm,N , D; DIS(1+2) Kout

pp → W + 1j Kout ; pp → 2j gap-probability (cone,kt )

Antonelli, Appleby, Banfi, Berger, Burby, Catani, Dasgupta, Dissertori,
Dokshitzer, Glover, Kucs, Lucenti, Marchesini, Oderda, Salam, Schmelling,

Seymour, Smye, Sterman, Trentadue, Turnock, Webber, Zanderighi.
[Since 1992]

Doing things manually is error-prone. Many oversights. . .
Few practitioners unscathed
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QCD beyond fixed order (p. 22)

Resummation done systematically

Issues
Sources of difficulty (globalness)

Global observable:

e.g. total e+e− Broadening, BT

making B ≪ 1 restricts emissions
everywhere.

Coherence + globalness:

➥ emissions can be resummed as if
independent (proved)

Answers guaranteed to NLL
accuracy

Non-Global observable:

Right-hemisphere Broadening, BR

making BR ≪ 1 restricts emissions
in right-hand hemisphere (HR).

Tempting to assume one can:

ignore left hemisphere (HL)

use independent emission
approximation in HR.

WRONG AT NLL ACCURACY

Dasgupta & GPS ’01
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QCD beyond fixed order (p. 23)

Resummation done systematically

Issues
Resummation of NG observables

All-orders:
Unrestricted semi-soft gluons

(left) change pattern of
radiation of large-angle soft

gluons (right)

(H  )L (H  )R

➥ αn
s lnn BR

Difficulties, features:

Logarithms resummed so far only
in large-Nc limit

Dasgupta & GPS ’01, ’02

Banfi, Marchesini & Smye ’02

In general, boundary between the
two regions may have arbitrary
shape.

It may depend on the pattern of
emissions (e.g. with jet algo).

Appleby & Seymour ’02, ’03

Banfi & Dasgupta ’05

Unexpected relations with BK, BFKL and JIMWLK equations in small-x
(high-energy) limit of QCD Weigert ’03

Marchesini & Mueller ’03, Marchesini & Onofri ’04
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QCD beyond fixed order (p. 24)

Resummation done systematically

Issues
Sources of difficulty (observable)

Other difficulty is in handling the soft-collinear limit of the observable:

calculate how limit on observable constrains momenta of n particles

then express constraint in factorised form, if it exists

E.g.

Θ(y3CQ2 − max(k2
t1, k

2
t2, . . . , k

2
tn)) →

n∏

i=1

Θ(y3CQ2 − k2
ti )

y3C = 3-jet resolution, Cambridge algorithm

Most cases are more complex

Θ(τQ − kt1 − kt2 − . . . − ktn)) →
∫

dν

2πiν
eντQ

n∏

i=1

e−νkti

τ = any thrust-like observable
Some may even be insoluble analytically

Θ(TMQ − max
~n

(~kt1 + ~kt2 + . . . + ~ktn)) → ???

TM = thrust-major, done numerically Banfi, GPS & Zanderighi ’01



QCD beyond fixed order (p. 25)

Resummation done systematically

Strategy
Generic resummation?

What we would like:
Something as good as manual analytical resummation

Guaranteed (verifiable) accuracy, exponentiation

Separate LL, NLL functions, g1(αsL), g2(αsL)

Expansions of g1 and g2 to fixed order in αs

Monte Carlo resummation:
Event generators (Herwig, Pythia, . . . ) generate multiple divergent

soft-collinear radiation = powerful automated resummation programs!

✓✓ Observable treated exactly ⇔ very flexible.

✓ Includes hadronisation model

✗ Accuracy sometimes unclear (depends on observable, no NLL for
multi-jet processes)

✗ Difficult to estimate uncertainties of calculation

✗ Combining with fixed order is tricky — limited analytical information
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QCD beyond fixed order (p. 26)

Resummation done systematically

Strategy
Strategy

Follow model of fixed order calculations

Identify combination of

properties of QCD matrix elements

requirements on observable

such that a systematic approximation procedure emerges.

NB: will consider only global observables, so as to simplify problem.



QCD beyond fixed order (p. 27)

Resummation done systematically

Strategy
Phase space (e+

e
− → 2 jets)

Use ‘Lund’ representation of kinematic plane: ln kt and η = − ln tan θ/2

= ln Q/k
t

η 

hard + collinear:

tk  Q∼ η

/Qln kt
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QCD beyond fixed order (p. 28)

Resummation done systematically

Strategy
Introduce observable (& 1 emission)

soft +
 large angle

ha
rd

 +
 co

ll

= ln Q/k
t

η 

hard + collinear:

tk  Q∼ η

/Qln kt
Take general observable, V (p1, . . .).

Require that it vanish smoothly in
soft, collinear limits:

V (p1, p2, k) ∼ (kt/Q)ae−b|η|

Requirement V (. . .) < v → bound-
ary of a vetoed region for 1 emission

ln v = a ln
kt

Q
− b|η|

diagram shows a = b = 1

Real−virtual cancels everywhere but
vetoed region, leaving:

Σ(V < v) = 1 + G12 αsL
2

︸ ︷︷ ︸

Vetoed area

+ G11 αsL
︸ ︷︷ ︸

edges
NB: −αs

dE
E

dθ
θ

∼ −αs d lnkt dη
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tk  Q∼ η

/Qln kt

ln kt

Q
= −L

Take general observable, V (p1, . . .).

Require that it vanish smoothly in
soft, collinear limits:

V (p1, p2, k) ∼ (kt/Q)ae−b|η|

Requirement V (. . .) < v → bound-
ary of a vetoed region for 1 emission

ln v = a ln
kt

Q
− b|η|

diagram shows a = b = 1

Real−virtual cancels everywhere but
vetoed region, leaving:

Σ(V < v) = 1 + G12 αsL
2

︸ ︷︷ ︸

Vetoed area

+ G11 αsL
︸ ︷︷ ︸

edges
NB: −αs

dE
E

dθ
θ

∼ −αs d lnkt dη



QCD beyond fixed order (p. 29)

Resummation done systematically

Strategy
Scaling limit

Fixed order: series in αs , so consider limit αs → 0 for fixed V (p1, . . .)

Resummation expansion:

lnΣ = α−1
s g1(αsL) + g2(αsL) + αsg3(αsL) + . . . ,

so take αs → 0 with αsL constant

For 1 emission, rescaling of L and αs equivalent to remapping of
phase-space:

Question: how does observable behave under such a
scaling of momenta when there are many emissions?
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QCD beyond fixed order (p. 30)

Resummation done systematically

Strategy
Scaling requirements

Multiple emission properties

Parametrise emission momenta by effect on observable:

κ(v̄) is a momentum such that V ({p}, κ(v̄ )) = v̄

A specific function κ(v̄) maps out a path in η, ln kt space

Require observable to scale universally for any number of emissions:

lim
v̄→0

1

v̄
V ({p}, κ1(ζ1v̄), κ2(ζ2v̄), . . .) = f (ζ1, ζ2, . . .)

For any {ζi}, and any set of paths {κi}

This allows us to give meaning to the limit αs → 0 with αsL fixed, for any
number of emissions — because scaling properties of observable are
independent of number of emissions.

All subsequent discussion is to be imagined in this scaling limit.
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Scaling requirements

Multiple emission properties

Parametrise emission momenta by effect on observable:
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QCD beyond fixed order (p. 31)

Resummation done systematically

Strategy
What happens at all orders?

vetoed
region

η

/Qln kt

Problem with arbitrary set of emis-
sions is too complex.

Need to simplify it (like we simplified
fixed-order PT at beginning).

➥Keep just subset of emissions.

But, are we allowed to throw away
the remaining emissions?

Only if they don’t affect observable

and cancel with virtuals in M.E.

Observable

Need condition like IRC safety

‘softness’ defined in terms of effect on observable

soft limit must commute with scaling limit

recursive IRC safety
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QCD beyond fixed order (p. 31)

Resummation done systematically

Strategy
What happens at all orders?

vetoed
region

η

/Qln kt

Problem with arbitrary set of emis-
sions is too complex.

Need to simplify it (like we simplified
fixed-order PT at beginning).

➥Keep just subset of emissions.

But, are we allowed to throw away
the remaining emissions?

Only if they don’t affect observable

and cancel with virtuals in M.E.

Matrix element

anything very soft cancels with corresponding virtual correction

emissions on disparate angular scales behave independently
QCD coherence



QCD beyond fixed order (p. 32)

Resummation done systematically

Strategy
recursive IRC

Recall scaling property

Parametrise emission momenta by effect on observable:

κ(v̄ ) is any momentum such that V ({p}, κ(v̄ )) = v̄

Require observable to scale universally for any number of emissions:

lim
v̄→0

1

v̄
V ({p}, κ1(ζ1v̄), κ2(ζ2v̄), . . .) = f (ζ1, ζ2, . . .)

Recursive IRC safety:

Require recursive infrared-collinear safety:

lim
ζn→0

f (ζ1, ζ2, . . . , ζn−1, ζn) = f (ζ1, ζ2, . . . , ζn−1)

Or: [

lim
v̄→0

, lim
ζn→0

]
1

v̄
V ({p}, κ1(ζ1v̄), κ2(ζ2v̄), . . . , κn(ζnv̄)) = 0
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QCD beyond fixed order (p. 33)

Resummation done systematically

Strategy
Normal v. recursive IRC safety

normal IRC safety recursive IRC safety

softness defined hard scale soft scale of
relative to observable

problem reduces low number low density
to one of of emissions of emissions in η

allowing use of fixed-order PT independent emission
approximation

NB: independent emission approximation results from coherence
≡ emissions widely separated in angle are independent.

Coherence recently questioned at subleading Nc and high orders (α4
s L

5) in
pp → 2 jets

[Forshaw, Kyrieleis and Seymour ’06]



QCD beyond fixed order (p. 34)

Resummation done systematically

Strategy
Schematic framework

vetoed
region

η

/Qln kt

Sum over real and virtual emissions
in blue band and above is sufficient
for any resummation accuracy.

LL: consider just exponential of
virtuals in vetoed region:

αsL
2 → eαn

s L
n+1

NLL: need to account for edges
αsL → eαn

s Ln

In blue band: sum over widely
separated individual emissions

low density ∼ αs ; coherence

→ treat them as independent
NNLL: account for corners

αs → eαn
s L

n−1

and 1 correlated pair of emissions (+ any # of indep. emissions)
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QCD beyond fixed order (p. 34)

Resummation done systematically

Strategy
Schematic framework

vetoed
region

η

/Qln kt

Sum over real and virtual emissions
in blue band and above is sufficient
for any resummation accuracy.

LL: consider just exponential of
virtuals in vetoed region:

αsL
2 → eαn

s L
n+1

NLL: need to account for edges
αsL → eαn

s Ln

In blue band: sum over widely
separated individual emissions

low density ∼ αs ; coherence

→ treat them as independent
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αs → eαn
s L
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and 1 correlated pair of emissions (+ any # of indep. emissions)



QCD beyond fixed order (p. 35)

Resummation done systematically

Strategy
Strategy @ NLL

Analytical work (done once and for all)

A1. formulate exact applicability conditions for the approach (its scope)

A2. derive a master formula for a generic observable in terms of simple
properties of the observable

Numerical work (to be repeated for each observable)

N1. let an ”expert system” investigate the applicability conditions

N2. it also determines the inputs for a master formula

N3. straightforward evaluation of the master formula, including phase
space integration etc.

Note: N1 and N2 are core of automation

a) they will require high precision arithmetic to take asymptotic (soft &
collinear) limits

b) validation of hypotheses uses methods inspired by ”Experimental
Mathematics”
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Strategy
Strategy @ NLL

Analytical work (done once and for all)

A1. formulate exact applicability conditions for the approach (its scope)

A2. derive a master formula for a generic observable in terms of simple
properties of the observable

Numerical work (to be repeated for each observable)
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QCD beyond fixed order (p. 36)

Resummation done systematically

Practice
In practice?

Observable must have standard functional form for soft & collinear
gluon emission

V ({p}, k) = dℓ

(
kt

Q

)aℓ

e−bℓηgℓ(φ) .

Born momenta soft collinear emission

Determine coefficients aℓ, bℓ, dℓ and gℓ(φ) for emissions close to each
hard Born parton (leg) ℓ.

Require continuous globalness, i.e. uniform dependence on kt

independently of emission direction (a1 = a2 = · · · = a)

Require scaling and recursive IRC safety
We’ve mostly discussed soft part, ∃ also a collinear part
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QCD beyond fixed order (p. 37)

Resummation done systematically

Practice
The formulae

Given info from previous pages, final answer is analytical:

ln Σ(v) = −
n∑

ℓ=1

Cℓ

[

rℓ(L) + r ′ℓ(L)

(

ln d̄ℓ − bℓ ln
2Eℓ

Q

)

+ Bℓ T

(
L

a + bℓ

)]

+

ni∑

ℓ=1

ln
qℓ(xℓ, e

− 2L
a+b

ℓ µ2
f )

qℓ(xℓ, µ
2
f )

+ lnS (T (L/a)) + lnF(C1r
′
1, . . . ,Cnr

′
n) ,

Cℓ = colour factor; qℓ = PDF

rℓ(L) ⇒ αn
s L

n+1; r ′ℓ(L), T (L) ⇒ αn
s L

n

Non-trivial parts:

S(T (L/a)) = large-angle logarithms (proc. dep.)
Botts-Kidonakis-Oderda-Sterman ’89–’98; Bonciani et al ’03

F(. . .) ∼ 〈 exp (−R ′f (ζ1, ζ2, . . . , )) 〉summed over emissions in blue band

observable-dependent — this part done by Monte Carlo (pure α
n
s L

n)
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Cℓ = colour factor; qℓ = PDF

rℓ(L) ⇒ αn
s L

n+1; r ′ℓ(L), T (L) ⇒ αn
s L

n

Non-trivial parts:

S(T (L/a)) = large-angle logarithms (proc. dep.)
Botts-Kidonakis-Oderda-Sterman ’89–’98; Bonciani et al ’03

F(. . .) ∼ 〈 exp (−R ′f (ζ1, ζ2, . . . , )) 〉summed over emissions in blue band

observable-dependent — this part done by Monte Carlo (pure α
n
s L

n)
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Resummation done systematically

Practice
CAESAR flow chart

Computer Automated Expert Semi-Analytical Resummer

Banfi, GPS, Zanderighi ’03–’05
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Resummation done systematically

Practice
What it doesn’t do

Observables that vanish other than through suppression of radiation
(e.g. Vector Boson pt spectrum) have divergence in g2(αsL) beyond
fixed value of αsL. Rakow & Webber ’81; Dasgupta & GPS ’02

for very-inclusive 2-jet cases analytical resummations are in any case more
accurate (NNLL) Higgs pt : Bozzi et al ’03–05

Back-to-back EEC: de Florian & Grazzini ’04
For less-inclusive cases, this problem is sometimes ‘academic’ (in region of
vanishing X-section).

Non-global observables are beyond its scope (but perhaps could be
included in future).

Individual jet properties, or subsets of jets
Gap resummations Appleby, Banfi, C. Berger, Dasgupta, Forshaw

Kucs, Kyrieleis, Oderda, Seymour, Sterman, . . .

Threshold resummations not yet thought about in this framework.
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Resummation done systematically

Practice
What it has done

Reproduced/verified all known analytical global resummations

Except for 1 case where it replaces an incomplete result
yD
3 : widely used in fits to αs

Banfi, GPS & Zanderighi ’01

Correctly identifies cases where it is not able to give correct answer.

New multi-jet resummations in e+e− and DIS

First event-shape resummation for hadron-hadron dijet events
Uses soft-logarithms from Stony Brook group

All results available at http://qcd-caesar.org

Program available on request

http://qcd-caesar.org
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Resummation done systematically

Practice
Some hadron-collider dijet observables

Event-shape Impact of ηmax
Resummation
breakdown

Underlying
Event

Jet
hadronisation

τ⊥,g tolerable none ∼ ηmax/Q ∼ 1/Q
Tm,g tolerable none ∼ ηmax/Q ∼ 1/(

√
αsQ)

y23 tolerable none ∼ √
y23/Q ∼ √

y23/Q

τ⊥,E , ρX ,E negligible none ∼ 1/Q ∼ 1/Q
BX ,E negligible none ∼ 1/Q ∼ 1/(

√
αsQ)

Tm,E negligible serious ∼ 1/Q ∼ 1/(
√

αsQ)
y23,E negligible none ∼ 1/Q ∼ √

y23/Q

τ⊥,R, ρX ,R none serious ∼ 1/Q ∼ 1/Q
Tm,R, BX ,R none tolerable ∼ 1/Q ∼ 1/(

√
αsQ)

y23,R none intermediate ∼ √
y23/Q ∼ √

y23/Q

The study of such a wide range of observables would have been nearly
impossible without automation. . .
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Summary Summary & outlook

Normal QCD perturbation theory relies on infrared & collinear safety of
observable to allow one to restrict matrix elements for NpLO calculation to
nBorn + p partons.

In certain (exclusive) regions of phase-space, while formally (αs → 0) OK,
this is practically insufficient: need all-order resummation of
logarithmically enhanced terms.

New condition: recursive infrared and collinear safety, ensures
(together with globalness, coherence) that, for NLL resummed accuracy, it
is safe to approximate n-parton soft-collinear matrix-element as
independent emission.

Enables automation of resummation → CAESAR!

First hadron-hadron dijet event-shape resummations

Many questions for future. Can the automated resummation be made
practical beyond NLL accuracy? Are there issues with coherence in
processes with incoming hadrons?
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Extras

Hadron-Hadron dijet event shapes
Hadron collider event shapes

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range.

(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam |η| < ηmax

➥ Problems with globalness

Take cut as being edge of most forward detector with momentum or
energy resolution:

Tevatron LHC

ηmax 3.5 5.0
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Extras

Hadron-Hadron dijet event shapes
Practical hh event shapes

Particles from beyond max rapid-
ity contribute significantly only for
small V . e−(a+bℓ)ηmax .

Most of cross section may be above
that limit — rapidity cut irrelevant.

Banfi et al. ’01

Alternative

Measure just centrally & add recoil
term (indirect sensitivity to rest of
event):

R⊥,C ≡ 1

Q⊥,C

∣
∣
∣
∣
∣

∑

i∈C

~q⊥i

∣
∣
∣
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 )
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ln
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)/
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E⊥ ,min=50GeV
E⊥ ,min=200GeV

Here g2(αsL) diverges for L ∼ 1/αs (due to cancellations in vector sum) –
study distribution only before divergence.
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Extras

Hadron-Hadron dijet event shapes
Practical hh event shapes

Particles from beyond max rapid-
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study distribution only before divergence.
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Extras

Hadron-Hadron dijet event shapes
Practical hh event shapes
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Here g2(αsL) diverges for L ∼ 1/αs (due to cancellations in vector sum) –
study distribution only before divergence.
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Extras

Hadron-Hadron dijet event shapes
Summary of observables

Event-shape Impact of ηmax
Resummation
breakdown

Underlying
Event

Jet
hadronisation

τ⊥,g tolerable none ∼ ηmax/Q ∼ 1/Q
Tm,g tolerable none ∼ ηmax/Q ∼ 1/(

√
αsQ)

y23 tolerable none ∼ √
y23/Q ∼ √

y23/Q

τ⊥,E , ρX ,E negligible none ∼ 1/Q ∼ 1/Q
BX ,E negligible none ∼ 1/Q ∼ 1/(

√
αsQ)

Tm,E negligible serious ∼ 1/Q ∼ 1/(
√

αsQ)
y23,E negligible none ∼ 1/Q ∼ √

y23/Q

τ⊥,R, ρX ,R none serious ∼ 1/Q ∼ 1/Q
Tm,R, BX ,R none tolerable ∼ 1/Q ∼ 1/(

√
αsQ)

y23,R none intermediate ∼ √
y23/Q ∼ √

y23/Q

NB: there may be surprises after more de-
tailed study, e.g. matching to NLO...

Grey entries are definitely
subject to uncertainty

Note complementarity between observables
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