Recent progress in defining and understanding jets

Gavin Salam

LPTHE, Universities of Paris VI and VII and CNRS

A summary of work (in progress) with A. Banfi, M. Cacciari, M. Dasgupta, L. Magnea, G. Soyez, G. Zanderighi

> ISMD 2007 Berkeley, 5–9 August 2007

Jets essentially **project away the multiparticle dynamics**, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a single hard quark or gluon:

- A jet has almost the same momentum as the 'initiating parton'
- ► A jet may maintain heavy flavour from the initiating parton

But projection to jets is fundamentally ambiguous, reflecting divergent and quantum-mechanical nature of QCD.

Jets essentially **project away the multiparticle dynamics**, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a single hard quark or gluon:

- A jet has almost the same momentum as the 'initiating parton'
- ► A jet may maintain heavy flavour from the initiating parton

But projection to jets is fundamentally ambiguous, reflecting divergent and quantum-mechanical nature of QCD.

➡ A RICH SUBJECT

Jets essentially **project away the multiparticle dynamics**, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a single hard quark or gluon:

- A jet has almost the same momentum as the 'initiating parton'
- ► A jet may maintain heavy flavour from the initiating parton

But projection to jets is fundamentally ambiguous, reflecting divergent and quantum-mechanical nature of QCD.

➡ A RICH SUBJECT

- Periodic key developments in jet definitions spurred by ever-increasing experimental sophistication.
- Approach of LHC provides motivation for taking a new, fresh, systematic look at jets.
- This talk: some of the discoveries along the way

Number of particles:

Experiment	Ν
LEP, HERA	50
Tevatron	100-400
LHC low-lumi	800
LHC high-lumi	4000
LHC PbPb	30000

Range of processes:

- ▶ jets, $t\bar{t}$, tj, Wj, Hj, $t\bar{t}j$, WWj, Wjj, ...
- Many NLO calculations being done
- ▶ 50 people \times 10 years (\$30 50M)
- Multijet-NLO calculations only make sense for *infrared safe* jet definitions

Physics scales:

Experiment	Physics	Scale
LEP, HERA	Electroweak	
	+ Hadronisation	
Tevatron	+ Underlying event	
LHC	+ BSM	
	+ Pileup	

Number of particles:

Experiment	Ν
LEP, HERA	50
Tevatron	100-400
LHC low-lumi	800
LHC high-lumi	4000
LHC PbPb	30000

Range of processes:

- ▶ jets, $t\overline{t}$, tj, Wj, Hj, $t\overline{t}j$, WWj, Wjj, ...
- Many NLO calculations being done
- ▶ 50 people \times 10 years (\$30 50M)
- Multijet-NLO calculations only make sense for *infrared safe* jet definitions

Physics scales:

Experiment	Physics	Scale
LEP, HERA	Electroweak	100 GeV
	+ Hadronisation	0.5 GeV
Tevatron	+ Underlying event	2.5-5 GeV
LHC	+ BSM	1 TeV?
	+ Pileup	$5-20~{ m GeV}$

Number of particles:

Experiment	Ν
LEP, HERA	50
Tevatron	100-400
LHC low-lumi	800
LHC high-lumi	4000
LHC PbPb	30000

Range of processes:

- ▶ jets, $t\overline{t}$, tj, Wj, Hj, $t\overline{t}j$, WWj, Wjj, ...
- Many NLO calculations being done
- ► 50 people × 10 years (\$30 50M)
- Multijet-NLO calculations only make sense for *infrared safe* jet definitions

Physics scales:

Experiment	Physics	Scale
LEP, HERA	Electroweak	100 GeV
	+ Hadronisation	0.5 GeV
Tevatron	+ Underlying event	2.5-5 GeV
LHC	+ BSM	1 TeV?
	+ Pileup	5 – 20 GeV

Cacciari & GPS '05

GPS & Soyez '07

Three (short) parts

- Technical advances
 - ▶ *k_t* and Cam/Aachen speed
 - seedless cone \leftrightarrow IR safety + speed
- Understanding of jet-alg. behaviour
 - Jet areas Cacciari, GPS & Soyez, prelim.
 - Hadronisation Cacciari, Dasgupta, Magnea & GPS, prelim.
- Using understanding to make better algorithms
 - Area-based subtraction Cacciari & GPS '07
 - The flavour- k_t alg, and b-jets

Banfi, GPS & Zanderighi '06-07

-

Sequential recombination	Cone
k_t , Jade, Cam/Aachen,	UA1, JetClu, Midpoint,
Bottom-up: Cluster 'closest' particles repeat- edly until few left \rightarrow jets.	Top-down: Find coarse regions of energy flow (cones), and call them jets.
Works because of mapping: <i>closeness</i> ⇔ <i>QCD divergence</i>	Works because <i>QCD only modifies</i> energy flow on small scales
Loved by e^+e^- , ep and theorists	Loved by <i>pp</i> and few(er) theorists

Sequential recombination algorithms

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: $N^2 d_{ij}$ searched through N times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ – 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CF Time reduced to Nn or NInN: 25ms for N=4000. Cacciari & GPS '05

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: $N^2 d_{ij}$ searched through N times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ – 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05

Sequential recombination algorithms

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: $N^2 d_{ij}$ searched through N times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ – 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, C Fime reduced to Nn or N In N: 25ms for N=4000. Cacciari & C

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- ► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- ► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05

Sequential recombination algorithms

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

• for N particles: $N^2 d_{ij}$ searched through N times = N^3

► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry

Borrow methods & tools from Computational Geometry:

Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP

Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '0

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- ► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry

Borrow methods & tools from Computational Geometry:

Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP

Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS

k_t algorithm

- Find smallest of all $d_{ij} = k_{ti}^2 \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: N² d_{ij} searched through N times = N³
- ► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N²
- Iterate from 'midpoints' between cones from seeds
 Midpoint cone, less IR unsafe, N³
- Seedless: try all subsets of particles IR safe, N2^N
 100 particles: 10¹⁷ years

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N²
- Iterate from 'midpoints' between cones from seeds
 Midpoint cone, less IR unsafe, N³

Seedless: try all subsets of particles IR safe, N2^N
 100 particles: 10¹⁷ years

Modern cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N²
- Iterate from 'midpoints' between cones from seeds
 Midpoint cone, less IR unsafe, N³
- Seedless: try all subsets of particles IR safe, N2^N
 100 particles: 10¹⁷ years

Among consequences of IR unsafety:

	Last meaningful order	
	lt. cone	MidPoint
Inclusive jets	LO	NLO
W/Z + 1 jet	LO	NLO
3 jets	none	LO
W/Z + 2 jets	none	LO
$m_{ m jet}$ in $2j + X$	none	none
Recall $\$30 - 50M$ investment in NLO		

Advance #2: IR safe seedless cone separate mom. and geometry (again) New comp. geometry techniques: 2D all distinct circular enclosures Then for each check whether \rightarrow stable cone Time reduced from $N2^N$ to $N^2 \ln N$: 6s for N=4000. GPS & Soyez '07

Among consequences of IR unsafety:

	Last meaningful order	
	lt. cone	MidPoint
Inclusive jets	LO	NLO
W/Z + 1 jet	LO	NLO
3 jets	none	LO
W/Z + 2 jets	none	LO
$m_{ m jet}$ in $2j + X$	none	none
Pocall \$30 50M invostment in NLO		

Advance #2: IR safe seedless cone separate mom. and geometry (again) New comp. geometry techniques: 2D all distinct circular enclosures Then for each check whether \rightarrow stable cone Time reduced from $N2^N$ to $N^2 \ln N$: 6s for N=4000. GPS & Soyez '07 Jet progress, G. Salam (p. 10) — Technical advances

Status in 2005

Single package, **FastJet**, to access all developments, natively (k_t, Cam/Aachen) or as plugins (SISCone): Cacciari, GPS & Soyez '05-07 http://www.lpthe.jussieu.fr/~salam/fastjet/ Jet progress, G. Salam (p. 10) — Technical advances

Status in 2007

http://www.lpthe.jussieu.fr/~salam/fastjet/

Jet Folklore

Jet discussions: polarised, often driven by unquantified statements

Instead let's quantify things:

- Areas = susceptibility to pileup and underlying event (UE)
- ► Hadronisation = change in momentum from parton → hadron level (excluding UE)

.

-

Jet areas

Can show that jet area goes as:

$$A = A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} + \mathcal{O}\left(\alpha_s^2 \ln p_t^2\right)$$
Cacciari, GPS & Soyez, prelim

Passive area: suscept. to point-like radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	1	0.56
Cam/Aachen	1	0.08
SISCone	1	-0.06

Analytical calcs capture main MC features

- k_t has larger area than cone, neither is πR^2
- Cam/Aachen is closest to πR^2

Jet areas

Can show that jet area goes as:

$$A = A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_{\rm s}(Q_0)}{\alpha_{\rm s}(Rp_t)} + \mathcal{O}\left(\alpha_{\rm s}^2 \ln p_t^2\right)$$

Cacciari, GPS & Soyez, prelim

Active area: suscept. to diffuse radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	1 ightarrow 0.81	$0.56 \rightarrow 0.52$
Cam/Aachen	1 ightarrow 0.81	$0.08 \rightarrow 0.08$
SISCone	$1 \rightarrow \textbf{0.25}$	-0.06 ightarrow 0.12

Analytical calcs capture main MC features

- k_t has larger area than cone, neither is πR^2
- Cam/Aachen is closest to πR^2

Jet areas

Can show that jet area goes as:

$$A = A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_{\rm s}(Q_0)}{\alpha_{\rm s}(Rp_t)} + \mathcal{O}\left(\alpha_{\rm s}^2 \ln p_t^2\right)$$

Cacciari, GPS & Soyez, prelim

Active area: suscept. to diffuse radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	1 ightarrow 0.81	$0.56 \rightarrow 0.52$
Cam/Aachen	1 ightarrow 0.81	$0.08 \rightarrow 0.08$
SISCone	$1 \rightarrow 0.25$	$-0.06 \rightarrow \textbf{0.12}$

- Analytical calcs capture main MC features
- k_t has larger area than cone, neither is πR^2
- Cam/Aachen is closest to πR^2

How does the jet p_t change in parton \rightarrow hadron transition?

Methods from e^+e^- event shapes predict same at LO for all algs:

quark jets:
$$\delta p_t \simeq -\frac{0.5 \text{ GeV}}{R} + \mathcal{O}(R)$$
gluon jets: $\delta p_t \simeq -\frac{1.1 \text{ GeV}}{R} + \mathcal{O}(R)$

Cacciari, Dasgupta, Magnea & GPS, prelim

How does the jet p_t change in parton \rightarrow hadron transition?

Methods from e^+e^- event shapes predict same at LO for all algs:

quark jets:
$$\delta p_t \simeq -\frac{0.5 \text{ GeV}}{R} + \mathcal{O}(R)$$
gluon jets: $\delta p_t \simeq -\frac{1.1 \text{ GeV}}{R} + \mathcal{O}(R)$

Cacciari, Dasgupta, Magnea & GPS, prelim

How does the jet p_t change in parton \rightarrow hadron transition?

Methods from e^+e^- event shapes predict same at LO for all algs:

quark jets:
$$\delta p_t \simeq -\frac{0.5 \text{ GeV}}{R} + \mathcal{O}(R)$$
gluon jets: $\delta p_t \simeq -\frac{1.1 \text{ GeV}}{R} + \mathcal{O}(R)$

Cacciari, Dasgupta, Magnea & GPS, prelim

These and other results help produce a **quantitative** picture of jet behaviour:

- Similarities between algorithms are greater than differences
- Once you have tools to quantify behaviours of algorithms you can start to think about designing new, better procedures and algorithms

Illustrations that follow:

- subtraction of pileup based on jet areas
- properly incorporating the '*flavour dimension*' into the k_t algorithm.

Basic Procedure:

- Use p_t/A from majority of jets (pileup jets) to get level, ρ, of pileup and UE in event
- Subtract pileup from hard jets:

$$p_t \rightarrow p_{t,sub} = p_t - A\rho$$

Cacciari & GPS '07

Illustration:

- semi-leptonic $t\bar{t}$ production at LHC
- high-lumi pileup (\sim 20 ev/bunch-X)

Same simple procedure works for a range of algorithms

Basic Procedure:

- Use p_t/A from majority of jets (pileup jets) to get level, ρ, of pileup and UE in event
- Subtract pileup from hard jets:

$$p_t \rightarrow p_{t,sub} = p_t - A\rho$$

Cacciari & GPS '07

Illustration:

- semi-leptonic $t\bar{t}$ production at LHC
- high-lumi pileup (\sim 20 ev/bunch-X)

Same simple procedure works for a range of algorithms

Basic Procedure:

- Use p_t/A from majority of jets (pileup jets) to get level, ρ, of pileup and UE in event
- Subtract pileup from hard jets:

$$p_t \rightarrow p_{t,sub} = p_t - A\rho$$

Cacciari & GPS '07

Illustration:

- semi-leptonic $t\bar{t}$ production at LHC
- high-lumi pileup (\sim 20 ev/bunch-X)

Same simple procedure works for a range of algorithms

Basic Procedure:

- Use p_t/A from majority of jets (pileup jets) to get level, ρ, of pileup and UE in event
- Subtract pileup from hard jets:

$$p_t \rightarrow p_{t,sub} = p_t - A\rho$$

Cacciari & GPS '07

Illustration:

- semi-leptonic $t\bar{t}$ production at LHC
- high-lumi pileup (~ 20 ev/bunch-X)

Same simple procedure works for a range of algorithms

Example: inclusive jet spectrum

- Speed makes it easy to run k_t and Cam/Aachen on all 30k particles in HI event
- Subtraction provides a way to get sensible results, without biases from cut on low-pt particles.

Example: inclusive jet spectrum

- Speed makes it easy to run k_t and Cam/Aachen on all 30k particles in HI event
- Subtraction provides a way to get sensible results, without biases from cut on low-pt particles.

One of the least accurate NLO predictions is for *b*-jets: $\pm \sim 50\%$

Experimental definition

- Run normal jet-algorithm
- a jet containing $\geq 1 \ b$, \overline{b} is a *b*-jet.

Even though $m_b \ll p_t$, this *b*-jet definition requires a fully massive calculation, and *higher order terms are enhanced by powers of* ln p_t/m_b . FCR = LO; FEX+GSP = NLO One of the least accurate NLO predictions is for *b*-jets: $\pm \sim 50\%$

Experimental definition

- Run normal jet-algorithm
- a jet containing $\geq 1 \ b$, \overline{b} is a *b*-jet.

Even though $m_b \ll p_t$, this *b*-jet definition requires a fully massive calculation, and *higher order terms are enhanced by powers of* ln p_t/m_b .

FCR = LO; FEX+GSP = NLO

Flavour-k_t

Jet with *b* and \overline{b} is *not* a *b-jet* Non-trivial experimentally But removes many logs 'Flavour- k_t ' distance measure: $d_{ij} = \frac{\Delta R_{ij}^2}{R^2} \times \begin{cases} \min(k_{ti}^2, k_{tj}^2) & \text{harder is } \beta \\ \max(k_{ti}^2, k_{tj}^2) & \text{harder is } b \end{cases}$ Reflects different divergences for q, g

This allows one to

- Resum remaining logs in *b*-PDF
 Collinear factorisation
- No logs left \rightarrow take massless limit
- Bring uncertainty down from 50% to 15%.
 Banfi, GPS & Zanderighi '06, '0'

Flavour-k_t

Jet with *b* and \overline{b} is *not* a *b-jet* Non-trivial experimentally But removes many logs 'Flavour- k_t ' distance measure: $d_{ij} = \frac{\Delta R_{ij}^2}{R^2} \times \begin{cases} \min(k_{ti}^2, k_{tj}^2) & \text{harder is } \beta \\ \max(k_{ti}^2, k_{tj}^2) & \text{harder is } b \end{cases}$ Reflects different divergences for q, g

This allows one to

- Resum remaining logs in *b*-PDF
 Collinear factorisation
- No logs left \rightarrow take massless limit
- Bring uncertainty down from 50% to 15%.
 Banfi, GPS & Zanderighi '06, '0

Flavour-k_t

Major technical advances in computational aspects of jet-clustering:

- sequential recombination is now 'fastest kid on the block'
- proper (seedless) cone algorithm is now a reality, eliminating need for hacks & approximations

Different jet algorithms starting to be compared quantitatively

- Measures of jet areas (ightarrow surprises: cone area not πR^2)
- Hadronisation has simple fairly universal 1/R behaviour
- Many comparisons in progress for Les Houches Workshop

$\mathsf{Better} \ \mathsf{understanding} \to \mathsf{better} \ \mathsf{results}$

- Area-based pileup subtraction for a range of algorithms
- ▶ jet flavour algorithms improves *b*-jet uncertainties by factor 3

Major technical advances in computational aspects of jet-clustering:

- sequential recombination is now 'fastest kid on the block'
- proper (seedless) cone algorithm is now a reality, eliminating need for hacks & approximations

Different jet algorithms starting to be compared quantitatively

- Measures of jet areas (\rightarrow surprises: cone area not πR^2)
- Hadronisation has simple fairly universal 1/R behaviour
- Many comparisons in progress for Les Houches Workshop

Better understanding \rightarrow better results

- Area-based pileup subtraction for a range of algorithms
- ▶ jet flavour algorithms improves *b*-jet uncertainties by factor 3

Major technical advances in computational aspects of jet-clustering:

- sequential recombination is now 'fastest kid on the block'
- proper (seedless) cone algorithm is now a reality, eliminating need for hacks & approximations

Different jet algorithms starting to be compared quantitatively

- Measures of jet areas (\rightarrow surprises: cone area not πR^2)
- Hadronisation has simple fairly universal 1/R behaviour
- Many comparisons in progress for Les Houches Workshop

Better understanding \rightarrow better results

- Area-based pileup subtraction for a range of algorithms
- ▶ jet flavour algorithms improves *b*-jet uncertainties by factor 3