### Characterising non-perturbative effects in jets

Gavin Salam

LPTHE, Universities of Paris VI and VII and CNRS

work in progress with M. Cacciari + close links with with M. Dasgupta & L. Magnea

Ringberg workshop on non-perturbative QCD of jets 8–10 January 2007

History

Much work done on non-perturbative effects in  $e^+e^-$  and DIS event shapes. But little understood about jets.

Webber hep-ph/9510283: 3-jet resolution,  $y_3$ , gets  $\Lambda^2/Q^2$  corrections 'Higher' orders give  $\sqrt{y_3}\Lambda/Q$  or  $\sqrt{y_3}\ln y_3\Lambda/Q$ 

Seymour, NPB513(1998)269: differential jet shape at angular distance r from jet axis gets correction  $\frac{\Lambda}{r^2 p_T}$ 

Mangano, hep-ph/9911256: hadron-collider inclusive jet-spectrum gets a roughly  $p_T$ -independent shift of order  $\Lambda$ .

Can we gain a global understanding of NP effects in hadron-collider jets so as to guide discussion, choices and strategies for LHC jet-finding?

History

Much work done on non-perturbative effects in  $e^+e^-$  and DIS event shapes. But little understood about jets.

Webber hep-ph/9510283: 3-jet resolution,  $y_3$ , gets  $\Lambda^2/Q^2$  corrections 'Higher' orders give  $\sqrt{y_3}\Lambda/Q$  or  $\sqrt{y_3}\ln y_3\Lambda/Q$ 

Seymour, NPB513(1998)269: differential jet shape at angular distance r from jet axis gets correction  $\frac{\Lambda}{r^2 p_T}$ 

Mangano, hep-ph/9911256: hadron-collider inclusive jet-spectrum gets a roughly  $p_T$ -independent shift of order  $\Lambda$ .

Can we gain a global understanding of NP effects in hadron-collider jets so as to guide discussion, choices and strategies for LHC jet-finding?

#### • 'Universal' hadronization:

the part associated with the high- $p_t$  scattering and which should be the same as in  $e^+e^-$  and DIS (current hemisphere).

#### Underlying event:

emissions from proton remnants, (multiple) interaction between two proton remnants.

#### Pileup:

at high luminosity, contribution from simultaneous *pp* collisions in the same bunch crossing.



#### • 'Universal' hadronization:

the part associated with the high- $p_t$  scattering and which should be the same as in  $e^+e^-$  and DIS (current hemisphere).

#### Underlying event:

emissions from proton remnants, (multiple) interaction between two proton remnants.

#### Pileup:

at high luminosity, contribution from simultaneous *pp* collisions in the same bunch crossing.



#### • 'Universal' hadronization:

the part associated with the high- $p_t$  scattering and which should be the same as in  $e^+e^-$  and DIS (current hemisphere).

#### Underlying event:

emissions from proton remnants, (multiple) interaction between two proton remnants.

#### Pileup:

at high luminosity, contribution from simultaneous *pp* collisions in the same bunch crossing.



► k<sub>t</sub>:

Combine pair of particles closest in  $k_t$ -distance; repeat until all particles separated by angular ( $\Delta R^2 = \Delta y^2 + \Delta \phi^2$ ) distance > R [inclusive] or  $k_t$  distance >  $d_{cut}$  [exclusive]. Catani et al '93; Ellis & Soper '93

#### **Cambridge/Aachen**:

Combine pair of particles closest in angular-distance; repeat until all particles separated by ang. dist. > R [inclusive], or make a particle into jet if about to cluster with harder particle and  $k_t$  dist.  $> d_{cut}$  [exclusive]. Dokshitzer et al '97; Wobisch & Wengler '99

#### ► Cone:

Find 'stable cones' of half-angle R; run a split-merge procedure on stable cones that overlap so as to get final jets. Sterman & Weinberg '77 Many variants since then...

Seedless IR Safe cone (SISCone): GPS & Soyez '07

### NP effects in top mass



#### Common statements:

- $k_t$  has larger UE & pileup corrections
- cone has larger hadronization corrections

But  $k_t$  and cone often used with different parameters (R = 1 v. R = 0.4).

Can we get analytic understanding of parameter & algorithm dependence for hadronisation and UE/pileup effects?

We will try to calculate N.P. corrections to jet transverse momentum. Easily related, e.g., to mass reconstructions

Starting point, as for many NP-calculations, is 1 hard parton (jet) + 1 soft gluon:

- This is a valid approximation only if the observable is linear in effects of multiple soft momenta.
   cf. Milan factor, Dokshitzer et al. '97–'98 crucial input in Lee & Sterman '06
- ▶ Many  $e^+e^-$  & DIS event shapes had some form of linearity.
- Jet algorithms are not linear.

But 1-gluon approx. may still be useful for getting first picture

▶  $k_t$ , Cam/Aachen & cone are **identical** @ 1 soft-gluon level

Assume soft gluon produced uniformly in y (rapidity) and  $\phi$  with transv. mom. density (averaged over many events):

$$\left\langle \frac{dp_{t,NP}}{dy \, d\phi} \right\rangle = \rho_{U.E.} \sim \Lambda, \quad \text{or} \quad \rho_{P.U.} \sim n_{P.U.}\Lambda,$$

independently of hard event (marginal for U.E.? Fine for P.U.).

NP effects in jets (p. 7)

1 soft gluon

The soft gluon (g) will be clustered into jet (j) if  $\Delta R_{gj} < R$ . This defines a *jet area* A in  $y, \phi$  space,  $A = \pi R^2$ , and the jet  $p_t$  is increased proportionally to its area:

$$\Delta p_{t,jet,UE} = \pi R^2 \rho_{UE}$$
(P-scheme)  
$$\Delta p_{t,jet,UE} = 2\pi R J_1(R) \rho_{UE} = \left(\pi R^2 - \frac{\pi}{8} R^4 + \dots\right) \rho_{UE}$$
(E-scheme)

Note:  $\mathcal{O}\left(R^{4}\right)$  depends on recombination scheme

Universality & Milan factor: calculate hadronisation by calculating effect of a *trigger gluon* (gluer) k on the observable. [keeping it simple!]

$$\delta V = C \sum_{dipoles} \int d\eta_{k,dip} d\phi_{k,dip} dk_{t,dip} \delta(k_{t,dip} - \Lambda) \left( V(\{\tilde{p}_i\},k) - V(\{p_i\}) \right)$$

with C known from many event shapes in  $e^+e^-$ :  $C\Lambda\simeq 0.5~{\rm GeV}.$ 



NB: recoiled hard momenta  $\{\tilde{p}_i\}$  v. orig.  $\{p_i\}$ .

Event shapes:  $V(\{p_i\}) = 0$ , recoil irrelevant;

For jets: 
$$V(\{p_i\}) = p_{t,3} \neq 0$$
  
 $V(\{\tilde{p}_i\}, k) = \tilde{p}_{t,3}[+k_t]$ 

 $\exists$  **ambiguity** in decision about how to assign *k*'s recoil between  $\tilde{p}_3$  and  $\tilde{p}_4$  Recoil ambiguity foils any 'traditional' calculation of hadronization corrections to jet  $p_t$ 's. Similar issue e.g. for thrust in 3-jet region Two approximate solutions:

- ► Go to threshold limit (recoil uniquely defined) → talk by Magnea
- Consider only small R: hadronisation dominated by gluer emission close to hard parton; assume recoil dominantly taken by that hard parton.

gluon in jet:  $p_{t,jet} = k_t + \tilde{p}_{t,3} = p_{t,3}$ gluon out of jet:  $p_{t,jet} = \tilde{p}_{t,3} = p_{t,3} - k_t$ 

$$\delta p_{t,jet} = C \int^{-\ln \tan R/2} d\eta_{dip} \left( -\Lambda \sinh \eta_{dip} \right) = C\Lambda \left( -\frac{1}{R} + \mathcal{O} \left( 1 \right) \right)$$

 $\label{eq:Gluonic jet has extra factor $C_A/C_F$$ 1/R structure coincides with threshold result by Dasgupta & Magnea Less accurate than D&M, but holds regardless of event structure $$ 1/R$ structure than D&M and the structure $$ 1/R$ structure than D&M and the structure $$ 1/R$ structure $$ 1/R$ structure than D&M and the structure $$ 1/R$ structure$ 

# Compare with MC



# Compare with MC



Analytical results have strong *R* dependence, but *do not depend on jet algorithm*.

Compare to MC:

- Broad features agree with MC
- *R*-dependence deviates a little
- moderate jet. alg. dependence is present:

 $k_t > \mathsf{Cam} > \mathsf{Cone}$ 

NB: normalisations depend on how one selects jets Jet algorithms are identical at level of 1 soft gluon. Can we understood nature of differences beyond 1 gluon?

Study just UE and pileup:

- They are easier, since no recoil to worry about
- UE larger than appears from previous page, often dominant default Herwig underestimates it
- Pileup will be huge at LHC, and will dominate over other effects.
   20 pp interactions per bunch crossing

*BUT: don't study U.E., pileup effect directly.* Instead assume PT content of jet is independent of U.E. & pileup, so that effect of U.E. & pileup is proportional to **jet area**, **A**:

$$\Delta p_{t,jet} = \rho A$$

Consider jet composed of two  $p_t$ -ordered perturbative partons,

#### $p_{t1} \gg p_{t2} \gg \Lambda$

separated by  $\Delta R$ . Scan a NP gluon, 'ghost', over the y- $\phi$  plane, and see when it goes into the jet containing  $p_1$ . From this deduce the jet area.











### Jet area v. $\Delta R_{12}$





NB: difference in areas is independent of softness of  $p_{t2}$ .

$$\langle \Delta A \rangle = \frac{2\alpha_{\rm s}C_F}{\pi} \int_{\Lambda}^{\rho_{t1}} \frac{d\rho_{t2}}{\rho_{t2}} \int_{0}^{2R} \frac{d\Delta R}{\Delta R} \Delta A(\Delta R)$$



Suppose incoming partons (colour charge  $C_i$ ) and outgoing jets (col. charge  $= C_o$ ) are not colour connected.

Mean outgoing jet area  $\langle A \rangle$  depends on jet  $P_t$  as follows:

$$\langle A \rangle = R^2 \left( \pi + (a_0 C_o + a_2 C_i R^2) \frac{\alpha_s}{\pi} \ln \frac{p_{t1}^2}{\Lambda^2} + \mathcal{O} \left( \alpha_s, \alpha_s^2 L^2 \right) \right)$$
  
Have neglected  $\mathcal{O} \left( C_o R^2 \right)$  term

 $\alpha_{s}^{n} \ln^{n} p_{t} / \Lambda$  terms build up anomalous dimension

| a <sub>0</sub> | a <sub>2</sub>                      | comment                                                                                               |
|----------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|
| +1.771         | +0.325                              | significant, positive                                                                                 |
| +0.249         | 0                                   | small, positive                                                                                       |
| -0.200         | -0.325                              | small, negative                                                                                       |
|                | $a_0$<br>+1.771<br>+0.249<br>-0.200 | $\begin{array}{c c} a_0 & a_2 \\ \hline +1.771 & +0.325 \\ +0.249 & 0 \\ -0.200 & -0.325 \end{array}$ |

For  $\Lambda\sim 10~{
m GeV}$  (pileup),  $P_t\sim 100-1000~{
m GeV}$ ,  $rac{lpha_{
m s}}{\pi}\ln P_t^2/Q_0^2\sim 0.2-0.4$ 

#### NB: ordering of algorithms is that seen in MC

#### Passive area

- Having just 1 NP gluon in event is convenient analytically
- But not very realistic
- In presence of many NP gluons, approx. is equivalent to pretending NP gluons don't cluster between each other: passive area

#### Active area

- ▶ Throw in  $\mathcal{O}(10^4)$  NP 'ghost' gluons ( $10^{-100}$  GeV)
- Run clustering on event including ghosts
- Count how many ghosts end up in each jet this is a more realistic measure/definition of area: active area

To run on 10<sup>4</sup> particles requires fast clustering  $k_t$  & Cam: FastJet [Cacciari & GPS '05]  $\sim N \ln N$  cone more difficult: SISCone  $\sim N^2 \ln N$ 

#### Passive area

- Having just 1 NP gluon in event is convenient analytically
- But not very realistic
- In presence of many NP gluons, approx. is equivalent to pretending NP gluons don't cluster between each other: passive area

#### Active area

- ▶ Throw in  $\mathcal{O}(10^4)$  NP 'ghost' gluons ( $10^{-100}$  GeV)
- Run clustering on event including ghosts
- Count how many ghosts end up in each jet this is a more realistic measure/definition of area: active area

To run on 10<sup>4</sup> particles requires fast clustering  $k_t$  & Cam: FastJet [Cacciari & GPS '05]  $\sim N \ln N$  cone more difficult: SISCone  $\sim N^2 \ln N$ 





















 Jet area expands when it is anchored by a hard parton.



Ghost v. hard jets:

• 
$$\langle A \rangle_{
m ghost-jet} \simeq 0.55 \pi R^2$$

• 
$$\langle A \rangle_{\rm parton} \simeq 0.8 \pi R^2$$

#### $k_t$ and Cam are similar Cone still being studied

#### Conclusions:

- Active area < Passive area</p>
- Jet area expands when it is anchored by a hard parton.



Ghost v. hard jets:

• 
$$\langle A \rangle_{
m ghost-jet} \simeq 0.55 \pi R^2$$

• 
$$\langle A \rangle_{\rm parton} \simeq 0.8 \pi R^2$$

 $k_t$  and Cam are similar Cone still being studied

#### Conclusions:

- Active area < Passive area</li>
- Jet area expands when it is anchored by a hard parton.



Ghost v. hard jets:

• 
$$\langle A \rangle_{
m ghost-jet} \simeq 0.55 \pi R^2$$

• 
$$\langle A \rangle_{\rm parton} \simeq 0.8 \pi R^2$$

 $k_t$  and Cam are similar Cone still being studied

#### Conclusions:

- Active area < Passive area</li>
- Jet area expands when it is anchored by a hard parton.

### Active area + PT substructure



Put 1 hard PT gluon, 1 soft PT gluon (separated by  $\Delta R$ ), as before.

Calculate passive and active areas.

Picture is same for both, but  $\sim$  rescaled. . .

2-parton anomalous dimension should hold also for active area Will cone also just be rescaled?



Areas not just theoretical tool.

Can be **measured jet-by-jet** in real events and used for pileup corrections.

Each jet corrected by area  $\times$  median ( $P_t$ /area)

E.g.: semileptonic  $t\bar{t}$  @ LHC with  $\langle n_{P.U.} \rangle \simeq 20.$ 

Naive analysis: no cuts; assume both b's tagged Take two hardest non-b jets — call them a WTake correct sign b, combine with  $W \rightarrow$  top

- ► In a first approx. all jet algorithms have *identical* NP effects.
  - hadronisation:  $-\Lambda/R$
  - UE & pileup:  $+\Lambda R^2$
- ▶ Differences that are often noted are mainly due to different *R*'s.
- Jet areas are a useful playground for understanding effects beyond 1-NP-gluon level.
  - $\blacktriangleright$  Perturbative sub-structure  $\rightarrow$  algorithm-specific anomalous dimensions
  - ► Accounting for self-clustering → rescaling of jet area
  - Full understanding of two together needs further work
- Jet areas are also a useful concept in jet-by-jet *corrections* of pileup contamination.

#### Les Houches '07 will have jets subgroup — input welcome!

- ▶ In a first approx. all jet algorithms have *identical* NP effects.
  - hadronisation:  $-\Lambda/R$
  - UE & pileup:  $+\Lambda R^2$
- ▶ Differences that are often noted are mainly due to different *R*'s.
- Jet areas are a useful playground for understanding effects beyond 1-NP-gluon level.
  - $\blacktriangleright$  Perturbative sub-structure  $\rightarrow$  algorithm-specific anomalous dimensions
  - ► Accounting for self-clustering → rescaling of jet area
  - Full understanding of two together needs further work
- Jet areas are also a useful concept in jet-by-jet *corrections* of pileup contamination.

#### Les Houches '07 will have jets subgroup — input welcome!

# EXTRA MATERIAL

### Jet areas



Jet areas in  $k_t$  algorithm are quite varied Because  $k_t$ -alg adapts to the jet structure

 Contamination from min-bias ~ area

Complicates corrections: minbias subtraction is different for each jet.

> Cone supposedly simpler Area =  $\pi R^2$ ? (Not quite...)

**But:** area can be measured for each jet, as can typical median  $p_t/a$ rea.









Uncorrected cone better than  $k_t$ .

Cam is intermediate  $(\langle A_{cam} \rangle \simeq \langle A_{cone} \rangle$ , but fluctuations larger)

Corrected Cam (and  $k_t$ ) is best.



 $\begin{array}{ll} \mbox{Most HI studies use just} \\ \mbox{particles with } p_t > \mbox{a few} \\ \mbox{GeV} & \mbox{IR unsafe} \\ \mbox{affected by quenching} \end{array}$ 

We use *all* particles and area-based subtraction.

Good results despite the huge subtraction being performed.