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Introduction

Background Knowledge
Jets

Jets are everywhere in QCD
Our window on partons

But not the same as partons:
Partons ill-defined; jets well-definable
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Introduction

Background Knowledge
Why do we see jets? Partons framgent

Perturbatively

◮ Quarks fragment: soft & collinear divergences for gluon emission

◮ Gluons fragment: soft & collinear divergences for gluon emission

Gluons fragment: soft & collinear divergences for quark emission

◮ Even perturbative coupling is not so small

Non-perturbatively

◮ precise process long way from being understood, even by lattice

◮ good models contain many parameters — complex process

High-energy partons unavoidably lead to collimated bunches
of hadrons.

See lectures by Dave Soper, Mike Seymour
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Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Jet cross section: data and theory agree over many orders of magnitude ⇔
probe of underlying interaction
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Introduction

Background Knowledge
Jets from heavy decays

picture: Juste LP05

Heavy objects: multi-jet final-states

◮ 107 tt̄ pairs for 10 fb−1

◮ Vast # of QCD multijet events

# jets # events for 10 fb−1

3 9 · 108

4 7 · 107

5 6 · 106

6 3 · 105

7 2 · 104

8 2 · 103

Tree level

pt(jet) > 60 GeV, θij > 30 deg, |yij | < 3

Draggiotis, Kleiss & Papadopoulos ’02
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Introduction

Background Knowledge
Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 108 events?
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Introduction

Background Knowledge
Jet definitions

◮ A jet definition is a fully specified set of rules for projecting information
from 100’s of hadrons, onto a handful of parton-like objects:
◮ or project 1000’s of calorimeter towers
◮ or project dozens of (showered) partons
◮ or project a handful of (unshowered) partons

◮ Resulting objects (jets) used for many things, e.g. :
◮ reconstructing decaying massive particles e.g. top → 3 jets
◮ constraining proton structure
◮ as a theoretical tool to attribute structure to an event

◮ You lose much information in projecting event onto jet-like structure:
◮ Sometimes information you had no idea how to use
◮ Sometimes information you may not trust, or of no relevance
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Introduction

Background Knowledge
Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

Projection to jets should be resilient to QCD effects
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Introduction

Background Knowledge
QCD jets flowchart

Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses
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Introduction

Background Knowledge
These lectures

Aims: to provide you with

◮ the “basics” needed to understand what goes into current jet-based
measurements;

◮ some insight into the issues that are relevant when thinking about a jet
measurement

Structure:

◮ General considerations

◮ Common jet definitions — we’ll look at 2 broad classes
◮ Sequential recombination today
◮ Cone today & tomorrow

◮ The physics of jets [briefly] tomorrow
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Introduction

General considerations
There is no unique jet definition

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet? Jet algorithm

+ parameters

2. how do you combine their momenta? Recombination scheme

Most commonly used: direct 4-vector sums (E -scheme)

Taken together, these different elements specify a choice of jet
definition
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Introduction

General considerations
The power of ambiguity

◮ Physical results (particle discovery, masses, PDFs, coupling) should be
independent of your choice of jet definition

a bit like renormalisation scale/scheme invariance

Tests independence on modelling of radiation, hadronisation, etc.

◮ Except when there is a good reason for this not to be the case
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Introduction

General considerations
Jetography, like photography

◮ Fine detail on bus ticket to
train station — shoot from
close up, focus = 40cm

[get to train station]

◮ Keep focus at 40cm

◮ Reset focus to 6m
Catch correct train
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Introduction

General considerations
Not all ambiguity is allowed

Jets should be invariant with respect to certain modifications of the event:

◮ collinear splitting

◮ infrared emission

Why?

◮ Because otherwise lose real-virtual cancellation in NLO/NNLO QCD
calculations → divergent results

◮ Hadron-level ‘jets’ fundamentally non-perturbative

◮ Detectors resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety
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Introduction

General considerations
Two main classes of jet alg.

Sequential recombination (kt , etc.)

◮ bottom-up

◮ successively undoes QCD branching

Cone

◮ top-down

◮ centred around idea of an ‘invariant’, directed energy flow
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Sequential recombination

Sequential recombination
jet algorithms
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Sequential recombination kt/Durham algorithm

Majority of QCD branching is soft & collinear, with following divergences:

[dkj ]|M
2
g→gigj

(kj )| ≃
2αsCA

π

dEj

min(Ei ,Ej )

dθij

θij

, (Ej ≪ Ei , θij ≪ 1) .

To invert branching process, take pair with strongest divergence between
them — they’re the most likely to belong together.

This is basis of kt/Durham algorithm (e+e−):

1. Calculate (or update) distances between all particles i and j :

yij =
2min(E 2

i ,E 2
j )(1 − cos θij)

Q2

NB: relative kt between particles2. Find smallest of yij

◮ If > ycut , stop clustering
◮ Otherwise recombine i and j , and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber ’91
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Sequential recombination kt/Durham algorithm features

◮ Gives hierarchy to event and jets
Event can be specified

by y23, y34, y45.

◮ Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

◮ Collinear safe: collinear particles recombined early on

◮ Infrared safe: soft particles have no impact on rest of clustering seq.
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Sequential recombination kt alg. at hadron colliders

1st attempt

◮ Lose absolute normalisation scale Q. So use unnormalised di j rather than
yij :

dij = 2min(E 2
i ,E 2

j )(1 − cos θij)

◮ Now also have beam remnants (go down beam-pipe, not measured)
Account for this with particle-beam distance

diB = 2E 2
i (1 − cos θiB)

squared transv. mom. wrt beam
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Sequential recombination kt alg. at hadron colliders

2nd attempt: make it longitudinally boost-invariant

◮ Formulate in terms of rapidity (y), azimuth (φ), pt

dij = min(p2
ti , p

2
tj)∆R2

ij , ∆R2
ij = (yi − yj)

2 + (φi − φj)
2

NB: not ηi , Eti

◮ Beam distance becomes
diB = p2

ti

squared transv. mom. wrt beam

Catani, Dokshitzer, Seymour & Webber ’93

Apart from measures, just like e+e− alg.
Known as exclusive kt algorithm.

Problem: at hadron collider, no single fixed scale (as in Q in e+e−). So
how do you choose dcut? See e.g. Seymour & Tevlin ’06
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Sequential recombination kt alg. at hadron colliders

3rd attempt: inclusive kt algorithm

◮ Introduce angular radius R (NB: dimensionless!)

dij = min(p2
ti , p

2
tj )

∆R2
ij

R2
, diB = p2

ti

◮ 1. Find smallest of dij , diB

2. if ij , recombine them
3. if iB, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left.

S.D. Ellis & Soper, ’93; the simplest to use

Jets all separated by at least R on y , φ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above
pt cut is IR safe.
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Sequential recombination kt is a form of Hierarchical Clustering

Idea behind kt alg. is
to be found over and
over in many areas of
(computer) science.
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Sequential recombination Sequential recombination

kt alg.: Find smallest of

dij = min(k2
ti , k

2
tj )∆R2

ij/R
2, diB = k2

ti

If dij recombine; if diB , i is a jet
Example clustering with kt algo-
rithm, R = 0.7

φ assumed 0 for all towers
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Sequential recombination Sequential recombination
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Sequential recombination Sequential recombination variants

Cambridge/Aachen: the simplest of hadron-collider algorithms

◮ Recombine pair of objects closest in ∆Rij

◮ Repeat until all ∆Rij > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge): more involved e+e− form

Wobisch & Wengler ’99 (Aachen): simple inclusive hadron-collider form

Anti-kt : formulated similarly to kt , but with

dij = min

(

1

k2
ti

,
1

k2
tj

)

∆R2
ij

R2
, diB =

1

k2
ti

Cacciari, GPS & Soyez, ’08 [+ Delsart unpublished]

privileges clustering with hard particles first

Privileging different divergences ⇔ different jets; more later. . .
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Privileging different divergences ⇔ different jets; more later. . .
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Sequential recombination Yet more variants

Plenty more variants too, mostly in e+e−, e.g.

◮ JADE: dij = m2
ij/Q

2 the original seq. rec. alg.

◮ Geneva dij = 8EiEj (1 − cos θij)/9(Ei + Ej)
2

◮ ARCLUS: perform 3 → 2 recombination

In pp, also have modifications of angular measure

◮ QCD-metric angular distance: ∆R2
ij → 2(cosh ∆yij − cos ∆φij)

And beyond just momentum

◮ Flavour-kt algorithm (e+e− and pp)
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Cone

Cone algorithms
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Cone Cone Origins

First ‘jet algorithm’ dates back to Sterman and Weinberg (1977) — the
original infrared-safe cross section:

Groundbreaking; good for 2 jets in e+e−; but never widely generalised
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Cone Cone algorithms today

Unifying idea: momentum flow within a cone only
marginally modified by QCD branching

But cones come in many variants
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Seeded, It. + Midpoints CDF MidPoint
PxCone

(ICmp) D0 Run II cone

Seedless (SC) SISCone

†JetClu also has “ratcheting”
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Cone Common features in discussion of cones

◮ Cones are always understood as circles in rapidity (y) and azimuth φ.

◮ A particle i is within the cone of radius R around the axis a if

∆R2
ia = (yi − ya)

2 + (φi − φa)
2 < R2

The usual hadron collider variables

◮ We’ll use R = 0.7 in the examples that follow

◮ And we’ll use events all of whose particles are at φ = 0, for simplicity
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Cone

xC-PR
Fixed Cone, Prog Removal (FC-PR)
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pt/GeV
The simplest of the cones

PyCell, CellJet, GetJet

Used e.g. BSM theory; Alpgen MLM

◮ Take hardest particle as seed for
cone axis

◮ Draw cone around it

◮ Convert contents into a “jet” and
remove them from the event

◮ Repeat until no particles left

Notes

◮ “Hardest particle” is collinear
unsafe more later...

◮ Cone and seed axis may not
coincide → iteration
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[End of lecture 1]

So far

◮ We’ve seen sequential recombination jet algorithms

◮ And we’ve started looking at cone algorithms and run into problems

Tomorrow

◮ Continue with the cones See more problems + some solutions

◮ Take a loot at the physics of jet algorithms
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Lecture 1 → 2

In lecture 1, we saw

◮ sequential recombination (kt , etc.) algorithms

◮ the first of a series of cone-algorithms, those with “progressive removal”
(xC-PR)

◮ and ran into collinear safety issues (from ordering of “seeds” for cone
direction)

Today

◮ see the other series of cone-algorithms (with split–merge, xC-SM)

◮ look more at the physics of jet algs.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)
CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)

CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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Avoid ordering seeds (coll. unsafe)

CDF JetClu† & ATLAS cones

◮ use every particle as possible seed
(no particular order)

◮ iterate until stable cone

◮ add the stable cone to the list of
protojets unless it’s already there

◮ until all seeds done

Note: protojets overlap. Certain
particles appear in many protojets

protojet 6= jet

Must resolve the overlaps.
Use a split–merge procedure.
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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IC-SM: split–merge part

60

50

40

20

0
0 1 2 3 4 y

30

10

pt/GeV Hardest overlapping protojet

SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .



Jets (p. 40)

Cone

xC-SM
IC-SM: split–merge part

60

50

40

20

0
0 1 2 3 4 y

30

10

pt/GeV
SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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pt/GeV Find hardest protojet

SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation

but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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pt/GeV Find hardest protojet

SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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SM in Tevatron Run II formulation
but common to most xC-SM

Introduce overlap threshold f

◮ Identify hardest protojet (PJ), p1

◮ Find hardest PJ that overlaps
with it, p2

◮ Calculated overlap,
O = pt,shared/pt,2

◮ if O < f , split along axis at center
of two PJs

◮ if O > f merge the two PJs

◮ If there is no overlap, PJ → jet.

◮ repeat. . .
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Soft emission, collinear splitting are both infinite in pert. QCD.
Infinities cancel with loop diagrams if jet-alg IRC safe

1−jet1−jet

IRC safe

sum is finite

1−jet2 jets

IRC unsafe

sum is infinite

+∞ +∞−∞ −∞

Some calculations simply become meaningless
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local minima of a potential.

Problem: set of iterative solution de-
pends on set of starting points.

Patch: after 1st round of itera-
tion, find midpoints between proto-
jets, use as new seeds

CDF Midpoint algorithm

D0 Run II algorithm

This solves problem for
2-hard-particle configs.

[But it persists for 3-hard]
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MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold



Jets (p. 44)

Cone

xC-SM
Midpoint IR problem

1 GeV

pt/GeV pt/GeV

30 1 2 3−1 0 1 2−1

100

200

300

400

00

100

200

300

400

yy

Stable cones
with midpoint: {1,2} & {3} {1,2} & {2,3} & {3}

Jets with
midpoint (f = 0.5) {1,2} & {3} {1,2,3}

Midpoint cone alg. misses some stable cones; extra soft
particle → extra starting point → extra stable cone found

MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold



Jets (p. 44)

Cone

xC-SM
Midpoint IR problem

1 GeV

pt/GeV pt/GeV

30 1 2 3−1 0 1 2−1

100

200

300

400

00

100

200

300

400

yy

Stable cones
with midpoint: {1,2} & {3} {1,2} & {2,3} & {3}

Jets with
midpoint (f = 0.5) {1,2} & {3} {1,2,3}

Midpoint cone alg. misses some stable cones; extra soft
particle → extra starting point → extra stable cone found

MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold



Jets (p. 45)

Cone

xC-SM

Does IRC safety really matter?
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Cone

xC-SM
IRC safety & real-life

Real life does not have infinities, but pert. infinity leaves a real-life trace

α2
s + α3

s + α4
s ×∞ → α2

s + α3
s + α4

s × ln pt/Λ → α2
s + α3

s + α3
s

︸ ︷︷ ︸

BOTH WASTED

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS MidPoint CMS it. cone Known at

cone [IC-SM] [ICmp -SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (→ NNLO)
W /Z + 1 jet LO NLO NLO NLO
3 jets none LO LO NLO [nlojet++]
W /Z + 2 jets none LO LO NLO [MCFM]
mjet in 2j + X none none none LO

NB: $30 − 50M investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC will rely on QCD for background double-checks

extraction of cross sections, extraction of parameters
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IRC safety not just for theory

1. Detectors play tricks with soft particles calorimeter thresholds

magnetic fields acting on charged particles

calorimeter noise

2. Detectors split/merge collinear particles
Two particles into single calo-tower

One particles showers into two calo-towers

3. High lumi adds lots of extra soft seeds

IRC safety provides resilience to these effects
1 & 3 shift energy scale, but don’t change overall jet-structure

If jet-algorithm is not IRC safe, fine-details of

detector effects have potentially significant impact
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Can we cure this IR safety
problem?
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Aim to identify all stable cones, in-
dependently of any seeds

Procedure in 1 dimension (y):

◮ find all distinct enclosures of
radius R by repeatedly sliding

a cone sideways until

edge touches a particle

◮ check each for stability

◮ then run usual split–merge

In 2 dimensions (y ,φ) can design
analogous procedure SISCone

GPS & Soyez ’07

This gives an IRC safe cone alg.
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Cone

xC-SM
Is it truly IR safe?

◮ Generate event with
2 < N < 10 hard particles,
find jets

◮ Add 1 < Nsoft < 5 soft
particles, find jets again
[repeatedly]

◮ If the jets are different,
algorithm is IR unsafe.

Unsafety level failure rate

2 hard + 1 soft ∼ 50%
3 hard + 1 soft ∼ 15%

SISCone IR safe !
Be careful with split–merge too
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Fraction of hard events failing IR safety test
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0 (none in 4x109)
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Cone

xC-SM
How much does IR safety really matter?

Compare midpoint and SISCone

Result depends on observable:

◮ inclusive jet spectrum is the least
sensitive (affected at NNLO)

◮ larger differences (5 − 10%) at
hadron level

seedless reduces UE effect
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Cone

xC-SM
IR safety & multi-jet observables

Look at jet masses in multijet events. NB: Jet masses reconstruct boosted
W /Z/H/top in BSM searches
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Select 3-jet events
pt1,2,3 > {120, 60, 20} GeV,

Calculate LO jet-mass spectrum
for jet 2, compare midpoint with
SISCone.

◮ 10% differences by default

◮ 40% differences with extra
cut ∆R2,3 < 1.4

e.g. for jets from common

decay chain

In complex events, IR safety matters
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Cone

xC-SM
Bottom line on IR safety

◮ IR safety often matters less in inclusive quantities

◮ It matters more in multi-jet cases

◮ ATLAS cone, JetClu (IC-SM) are very bad

◮ CMS cone (IC-PR), Midpoint (ICmp-SM) moderately bad

◮ An IRC safe cone algorithm exists (SISCone)

◮ Avoid trouble later: use IR-safe algs from the start
cf. CDF W+jets



Jets (p. 54)

Comparing algorithms

What jet definition should I use?

[jet def. ≡ jet alg., R , (f )]



Jets (p. 55)

Comparing algorithms A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

dij = min(k2p
ti , k2p

tj )∆R2
ij/R

2 diB = k2p
ti

Alg. name Comment time
p = 1 kt Hierarchical in rel. kt

CDOSTW ’91-93; ES ’93 N ln N exp.

p = 0 Cambridge/Aachen Hierarchical in angle
Dok, Leder, Moretti, Webber ’97 Scan multiple R at once N ln N
Wengler, Wobisch ’98 ↔ QCD angular ordering

p = −1 anti-kt Cacciari, GPS, Soyez ’08 Hierarchy meaningless, jets
∼ reverse-kt Delsart like CMS cone (IC-PR) N3/2

SC-SM SISCone Replaces JetClu, ATLAS
GPS Soyez ’07 + Tevatron run II ’00 MidPoint (xC-SM) cones N2 ln N exp.

Compromise between having a limited set of algs.
and a good range of complementary properties



Jets (p. 56)

Comparing algorithms

COMMERCIAL BREAK



Jets (p. 57)

Comparing algorithms Use FastJet — it’s free!

One place to stop for all your jet-finding needs:

FASTJET

http://www.lpthe.jussieu.fr/~salam/fastjet

Cacciari, GPS & Soyez ’05–07

◮ Fast, native, computational-geometry methods for kt , Cam/Aachen
Cacciari & GPS ’05-06

◮ Plugins for SISCone (plus some other, deprecated cones)

◮ Many other features too, e.g. jet areas

http://www.lpthe.jussieu.fr/~salam/fastjet


Jets (p. 58)

Comparing algorithms Jet Folklore

Jet discussions: often polarised, driven by unquantified statements

◮ Rigorous approach is to quantify similarities & differences

◮ Bottom line: grains of truth in the qualitative statements
So want good cone algorithms too [NB: recall, two variants xC-SM & xC-PR]



Jets (p. 59)

Comparing algorithms the reach of jet algorithms

∆R

pt2

pt1 1 jet?

2 jets?

SISCone (xC-SM) reaches further for hard radiation than other algs
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Comparing algorithms Jet contours – visualised



Jets (p. 61)

Comparing algorithms

To first approx:
various algs. moderately different;

but R can matter a lot more



Jets (p. 62)

Comparing algorithms

4-way tension in many measurements:

Prefer small R prefer large R

resolve many jets (e.g. tt̄) minimize QCD radiation loss
limit UE & pileup limit hadronisation



Jets (p. 63)

Comparing algorithms Jets v. R

Parton pt → jet pt

Ill-defined: MC “parton”

PT radiation:

q : ∆pt ≃
αsCF

π
pt lnR

g : ∆pt ≃
αsCA

π
pt lnR

Hadronisation:

q : ∆pt ≃
CF

R
· 0.4 GeV

g : ∆pt ≃
CA

R
· 0.4 GeV

Underlying event:

q, g : ∆pt ≃
R2

2
·2.5−15 GeV

crude analytical estimates

cf. Dasgupta, Magnea & GPS ’07
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Comparing algorithms Relative peak quality (lumi ratios ρL), LHC

PRELIMINARY Cacciari, Rojo, GPS & Soyez ’08



Jets (p. 64)

Comparing algorithms Relative peak quality (lumi ratios ρL), LHC

PRELIMINARY Cacciari, Rojo, GPS & Soyez ’08



Jets (p. 64)

Comparing algorithms Relative peak quality (lumi ratios ρL), LHC

PRELIMINARY Cacciari, Rojo, GPS & Soyez ’08



Jets (p. 65)

Comparing algorithms Robustness: Mtop varies with R?
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Game: measure top mass to 1 GeV
example for Tevatron

mt = 175 GeV

◮ Small R : lose 6 GeV to PT
radiation and hadronisation, UE
and pileup irrelevant

◮ Large R : hadronisation and PT
radiation leave mass at
∼ 175 GeV, UE adds 2 − 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding)
independent of R used to measure jets?

Powerful cross-check of systematic effects

cf. Seymour & Tevlin ’06
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Jets (p. 67)

jet 6= a parton

1 jet ≃ 0 partons

Jets without hard partons:

Most jet algorithms give you ∼ 50 − 100
“jets,” mostly not hard.

provide window on UE and min-bias
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jet 6= a parton

1 jet ≃ 0 partons
Making use of all jets



Jets (p. 69)

jet 6= a parton

1 jet & 2 partons

Pushing jets to their limit:

when a W , Z , H or a top → a single jet

Not unusual at LHC: mW , mt ≪ 14 TeV



Jets (p. 70)

jet 6= a parton

1 jet & 2 partons
EW bosons at @ high pt

Illustrate LHC challenges with a recently widely discussed class of problems:

Can you identify hadronically decaying EW bosons when they’re
produced at high pt?

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1 − z)

Significant discussion over years: heavy new things decay to EW states
◮ Seymour ’94 [Higgs → WW → νℓjets]

◮ Butterworth, Cox & Forshaw ’02 [WW → WW → νℓjets ]

◮ Agashe et al. ’06 [KK excitation of gluon → tt̄]

◮ Butterworth, Ellis & Raklev ’07 [SUSY decay chains → W , H ]

◮ Skiba & Tucker-Smith ’07 [vector quarks]

◮ Lilli, Randall & Wang ’07 [KK excitation of gluon → tt̄]

ETC.
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Brooijmans ’08 ATL-PHYS-CONF-2008-008, based on kt algorithm
+ Thaler & Wang ’08; Almeida et al. ’08 (kt , jet-shapes)

+ Kaplan et al ’08 (C/A decomposition)

Use subjet relative transverse-momentum scale (‘”y-scale”) & correlation
with jet mass to pick out top quarks from background

top quarks pt ∼ 1 TeV normal jets
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Conclusions Conclusions

◮ A jet is not a parton: it’s (sort of) what you choose it to be.

◮ It’s easier to think in terms of partons (LO, NLO pQCD) with
IR/Collinear safe jet algorithms. And gives sense to pQCD predictions

◮ ∃ many cones algs. Not equivalent. Many are IR/Coll unsafe.
xC-SM → SISCone; xC-PR → anti-kt

◮ “The best” jet definition does not exist

◮ To get the most out of jet-algs.,
◮ Understand the interplay of physical scales high pt → larger R
◮ Try out different combinations of algorithm & R
◮ Check Variations of alg. & R don’t change extracted physical quantities

◮ Special cases (e.g. boosted W/t/. . . ) benefit from special techniques
e.g. seq. recomb. ”jet-decomposition” is a powerful tool
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