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QCD lecture 3 (p. 2)
L Introduction

This lecture will be about some of the different ways we
can make QCD predictions.

It'll touch on:

» LO, NLO, NNLO calculations

» Parton-Shower Monte Carlos



QCD lecture 3 (p. 3)
L Introduction

Most of the examples will involve Z (& sometimes W)
production at hadron colliders.

Because Z, W decay to leptons and to neutrinos, both of
which are easily-taggable handles that are characteristic of
many new physics scenarios.
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D introduction SUSY example: gluino pair production
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L Introduction

Example SUSY searches

Atlas selection [all hadronic]

* no lepton
* MET > 100 GeV

» 152" jet > 100 GeV
« 344" jet > 50 GeV

« MET /m_, > 20%
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L Fixed order total X-section e"e~ — Z — hadrons

What scale?

Start simply and look back at cross section for eTe™ — Z —hadrons (at

Vs = Q= My).

In lecture 1 we wrote:

2
Otot =0qg | 1 + 1.045M 4+ 0.94 (@) 4.

u
~ —-——
LO NLO NNLO

Who told us we should we should write the series
in terms of as(Q)? J

Q@ = Mz is the only physical scale in the problem, so not unreasonable.
But hardest possible gluon emission is E = Q/2. Should we have used Q/2?
And virtual gluons can have E > Q. Should we have used 2Q?
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Fixed order

What scale?

Scale dependence

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

1.1
Q= Mz
1.08 -
1.06 ~o
1.04 -

1.02

-
-~
-

e ——

0.98

0.96 -

0.1

MR/ Q

10

Start with the first order that “con-
tains QCD" (NLO).

Introduce arbitrary renormalisa-
tion scale for the coupling, ug

o™ =045 (1 + aas(pr))

Result depends on the choice of ug.
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L Fixed order Scale dependence
What scale?
+ -
11 scale-dep. of o(¢'e" ~ hadrons) Start with the first order that “con-
T lQ=Mm, Lo — tains QCD" (NLO).
1.08 | NLO —-—- ]
g 106 Introduce arbitrary renormalisa-
1 . ™~ T . .
9 TNl tion scale for the coupling, ug
E 1.04 ’,,,,,,,,,:,:7,‘,5,_‘___ 7
§ 102 f f ] oM =045 (1 + cras(ur))
e} ' '
[
=
1 - - .
é conventional range Result depends on the choice of ug.
o 098 r — R
10.5<x,<2; ) .
0.96 | : ‘ 1 Convention: the uncertainty on
0.1 1 10  the result is the range of answers

Hr/Q obtained for Q/2 < ug < 2Q.
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- Fixed orcer Scale dependence (cont.)

What scale?

Let's express results for arbitrary pg in terms of as(Q):

o (uR) = 045 (1 + c1as(pr))
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- Fised order Scale dependence (cont.)

I—What scale?

as(1R) = S —
R T T 2by 05(Q) In 1R/ Q

= a5(Q) — 2bp 02(Q) In ur/Q + O ()
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- Fixed orcer Scale dependence (cont.)

What scale?

Let's express results for arbitrary pg in terms of as(Q):

o (uR) = 045 (1 + c1as(pr))

= 043 (1 + c1as(Q) — 2c1bg In ,u_; 22(Q)+ 0O (a;o’) >

As we vary the renormalisation scale ug, we introduce O (af) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.
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- Fixed orcer Scale dependence (cont.)

What scale?

Let's express results for arbitrary pg in terms of as(Q):

o (uR) = 045 (1 + c1as(pr))

= 043 <1 + c1as(Q) — 2c1bg In ,u_; 22(Q)+ 0O (ag) >

As we vary the renormalisation scale ug, we introduce O (af) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so
as to cancel the O (af) scale variation

O_NNLO(MR) =045 |1 + a as(MR) + (Cz 4+ 2c1bglIn M—(g) af(MR)]

Remaining uncertainty is now O (ag’).
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L Fixed order Scale dependence: NNLO

What scale?

See how at NNLO, scale depen-

scale-dep. of a(e*e” - hadrons)

1.1 dence is much flatter, final uncer-
Q=M Lo tainty much smaller
1.08 ¢ NLO -=-—- 7 '
g
106 [~o_ .
3 o TTse
E 1.04 ’,,,,,,,,,L,TT,‘,>,-__ T
2 : mem——a
s 102 . . E
he] ' '
g ' '
; 1 ‘ :
8 conventional range
o 0.98 — 1
10.5<x,<2;
0.96 ' ' b
0.1 1 10

MR/ Q
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Fixed order

What scale?

Scale dependence: NNLO

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

1.1
Q=M, LO —
1.08 | NLO —-—- ]
1.06 ~ e NNLO ===~
T i ]
1.02 | 1
1 g g
conventional range
0.98 — 1
10.5<x,<2;
0.96 ‘ ‘ 1
0.1 1 10

MR/ Q

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only o2 instead of a2
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Scale dependence: NNLO

Fixed order
What scale?
scale-dep. of a(e*e” - hadrons)
11
Q=M, LO —
L Lo8r NLO —-—- ]
T 106 [ NNLO ===~
3 I
E 104 pogammmr s LR R L
2 [ : LT
s 102 r 1
e}
b
R 1 ‘ ‘
8 conventional range
o 098 r — R
10.5<x,<2;
0.96 ‘ ‘
0.1 1 10
MR/ Q

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only o2 instead of a2

Moral: not knowing exactly how

to set scale — blessing in disguise,

since it gives us handle on uncer-
tainty.

Scale variation = standard procedure

Often a good guide

Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.
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L Fixed order
l—pp — Z+ X

Now switch to looking at the Z
cross section in pp
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I—Fi><ed order LO pp — Z

I—pp~>Z+X

Oppz = Z/dxldXZ for (1, WE) f5, (%2, KE) Go,q:3—2(x1P1, X2P2) »
i

> 00,q,5—2 X Cew, knows nothing
about QCD like Ogte- 7

» But 0¢ g5z depends on PDFs.

» We have to choose a factorisation
scale, uF.

» Natural choice: ur = Mz, but one
should vary it (just like the
renorm. scale, ug, for as).



QCD lecture 3 (p. 11)
Fixed order
I—pp — Z+ X

LO pp — Z

Oppz = Z/dxldXZ for (1, WE) f5, (%2, KE) Go,q:3—2(x1P1, X2P2) »
i

> 00,q,5—2 X Cew, knows nothing
about QCD like Ogte- 7

» But 0¢ g5z depends on PDFs.

» We have to choose a factorisation
scale, uF.

a®o/aM/dY [pb/GeV]

» Natural choice: ur = Mz, but one
should vary it (just like the
renorm. scale, ug, for as).

80

40

pp ~ (Z7y")+X

Lo

Vs = 14 TeV —
M =M, 1
M/2 € p £ 2M

-2 4 2 4

Mz/2 < pp < 2Mz

Plot shows ¢  _ differentially as a function of rapidity (y) of Z. Band is
uncertainty due to variation of uFr.

pp—Z
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L Fixed order pp — Z + X at (N)NLO

I—pp~>Z+X

LY [ i i) s 13) o 2. ) +

+ OZS(HR)J]_ U—>Z(X17 X2, /’I’F)]

» New channels open up (gg — Zq)  © %Z NLO %Z

» Now X-sct depends on renorm
scale ug and fact. scale ug

often vary ugr = ur together z z
not necessarily “right”

A T2
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L Fixed order pp — Z + X at (N)NLO

I—pp~>Z+X

iz =D / dxadbe fi(xa, 1) £ (2, 1) [G0,52 (1, %) +
ioj

+ as(,uR)ﬁL,'jﬁz(Xl, X2, MF)]

pp ~ (Zy")+X

» New channels open up (gg — Zq) o T T o T
» Now X-sct depends on renorm 3wl e 4
g iR
£ R RIIIILILLIKEE
scale ug and fact. scale pf 2 3555 2
often vary ur = ur together § w0 N
. o " =
not necessarily “right” =
“’.Z 20— Vs = 14 TeV —
» But 47 piece cancels large LO We i s o
dependence on uf oL ! Pl
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L Fixed order pp — Z + X at (N)NLO

pp — Z+ X

LY [ i i) s 13) o 2. ) +

+ OZS(HR)J]_ U—>Z(X17 X2, IU’F)]

pp ~ (Zy")+X

» New channels open up (gg — Zq) wf T T
_ i ]
» Now X-sct depends on renorm B el N
g
scale ugr and fact. scale ur 2
often vary ug = pr together % «p . -
.
not necessarily “right” =
“’.Z 20— Vs = 14 TeV {
» But &7 piece cancels large LO We i s o ]
dependence on pf e S
Y
» At NNLO dependence on pg and Anastasiou et al '03; ur = ur

wr is further cancelled
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L Fixed order RUleS Of thumb

I—pp—>Z+X

In hadron-collider QCD calculations:

» Choose a sensible central scale for your process

» Vary ug, pr by a factor of two around that central value

» LO: good only to within factor of two Despite as ~ 0.1
» NLO: good to within 10 — 20%

» NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new
production channels and/or large ratios of scales.
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Fixed order
I—pp — Z+ X

Calculations for more complex processes
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

X X X X X X X 0 loops (tree-level)
0 o} o] 1 loop
g 2 loops

0 1 2 3 4 5 6

ij - Z+npartons



QCD lecture 3 (p. 15)

L Fised order Diagrams / processes / orders
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z@LO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z @ NLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z @ NNLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons



QCD lecture 3 (p. 15)

L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+jet @ LO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+jet @ NLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+jet @ NNLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+2jets @ LO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+2jets @ NLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons
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L Fised order Diagrams / processes / orders

I—pp~>Z+X

Z+2jets @ NLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons

The bottleneck in getting NPLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences
between 2-loops, 1-loop & tree-level.
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L Fixed order The limits of what we know

I—pp—»Z-%—X

» Tree-level / LO:2 — 6 — 8
ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa

» 1-loop / NLO: 2 — 3
MCFM, NLOJet++, PHOX-family + various single-process codes
some 2 — 4 starting to appear (W+3j, ttbb)

» 2-loop / NNLO: 2 — 1 (W,Z,H) FEWZ, FeHiP, HNNLO
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L Fixed order The limits of what we know

I—pp~>Z+X

> Tree-level / LO: 2 — 6 — 8
ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa

» 1-loop / NLO: 2 — 3
MCFM, NLOJet++, PHOX-family + various single-process codes
some 2 — 4 starting to appear (W+3j, ttbb)

» 2-loop / NNLO: 2 — 1 (W,Z,H) FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for gg — N gluons:

Njets 2 3 4 5 6 7 8
# diags 4 25 220 2485 34300 5x10° 107

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams
and use methods that recursively build up amplitudes
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Fixed order
I—pp — Z+ X

In what form are these calculations made available?
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D Fixed order Fully inclusive calculations

I—pp~>Z+X

For a process that starts at order o, the fully inclusive NPLO cross section
for producing some object “A” is

T oaix = Z/dx1dx2 leuF)f;(XZa,UF)X

X Z ag+m(/’LR) a-m,ij—N‘H‘X(XlXZSa MR, /fLF) s
m=0

The 0 ji—a(x1x08, f1R, ftF) are analytical functions that you'll find in a

paper somewhere and you can just implement them in your own program
and do the integral. . ) _
E.g. earliest (N)NLO calculations of tt, W, Z X-scts

They tell you nothing about

» where A is produced in your detector, which direction it decays in

» what else (“X") is produced in associated with A
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L Fixed order Exclusive calculations

I—pp~>Z+X

Matrix-Element Monte Carlos (weighted)

E.g. for LO (tree-level) calculation ijj — Z + n jets with cuts:  Alpgen, etc.
» Generate random phase-space configurations for Z + n partons
» Call a user-written subroutine to decide whether event passes cuts.

» If it does, include the event weight (tree-level squared amplitude, PDFs)
in the evaluation of the cross section.

Additionally for NLO: MCFM, NLOJet, Phox family, etc.

» Generate random phase-space configurations for Z+4n-+1 partons
& if pass user cuts, include tree-level weight in cross section

» Generate random phase-space configurations for Z+n partons
& if pass user cuts, include 1-loop-level weight in cross section
NB: loop-level Z+n and tree-level Z+n-+1 only converge
if taken together and if your cuts are infrared and collinear safe
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Fixed order
I—pp — Z+ X

Example: W + 3 jets

©
o

N
o.
(s

[

do/dE; [pb/GeV]
=
o,

20 30 40 50 60 70 80
T 1 T T T 1 T 1
E - LO =
E NLO 3
L = CDFdata ]
3 S
E BlackHat+Sherpa 1
: | : | : | : | | : |
E 1 T T T T T
--- LO/NLO [ NLOscaedependence 5 LO scale dependence

= CDF/NLO

1E

1

T e n

!

20 30 40 50 e
Third Jet E. [ GeV ]

920

The W+3-jet cross section
at Tevatron. An analysis
involving a jet-algorithm
that cluster the partons
into jets, cuts on the jets,
cuts on the lepton from the
W and cuts on the missing
energy.

State of the art!
Berger et al, '09
also: Ellis, Melnikov
& Zanderighi '09
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Fixed order
l—pp — Z+ X

(N)NLO Matrix-Element Monte Carlos, are a powerful
combination of accuracy and flexibility.

As long as you want to calculate an IR and collinear safe
observable (e.g. jets, W's, Z's — but not 7, K, p, . . .)

And if you don't mind dealing with (wildly) fluctuating
positive and negative event weights.

And you don’t intend to study regions of phase space that
involve multiple scales.
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L Fixed order Scatter plots: weights from NLOJet++

Lop— 74X

dijet events: LO weights dijet events: NLO weights
Pc;sitive V‘Ve@ghts‘
. 10000 | 10000 | - Negatlve Weights
2} 2} - :
> 100 | 1 > 100
g g
g 1 5 1
S, S,
5 oo 5 oot
[ ; [)
= o =
0.0001 ¢ 0.0001
L LR AP TR S w R - -
600 800 1000 1200 1400 600 800 1000 1200 1400
p; (et 1) [GeV] p; (jet 1) [GeV]

Outliers in NLO case: near-divergent real and virtual
configurations
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L Parton showers

Parton showers
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L parton shoviers Real life does not diverge

How can we reinterpret perturbation theory so as to get something more
physical (and finite)?

The “right” question to ask is: what is the probability of not radiating a
gluon above a scale k;?

2 QdE [™/? db
P(no emission above k) =1 — aSCF / / —@(E9 k)

In the soft-collinear limit, it's quite easy to calculate the full probability of
nothing happening: it's just the exponential of the first order:

Q w/2
P(nothing > k) = A(ke, Q) ~ exp [ 2asCF/ dE/ d_@e E6 — kt)]

NB1: A is bounded — 0 < A(k:, Q) < 1
NB2: to do this properly, running coupling should be inside integral
+ replace dE/E with full collinear splitting function
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L Parton showers The pa rton ShOWGI’

A(ke, Q) is known as a Sudakov Form Factor
Probability distribution for first emission (e.g. gg — ggg) is simple

dP d
= Ak
dkyy  dkgy (ke1, Q)

Easy to generate this distribution by Monte Carlo
Take flat random number 0 < r < 1 and solve A(ks, Q) =r

Now we have a ggg system.

We next work out a Sudakov for there being no emission from the qgg
system above scale ko (< ki1): A998 (kio, ke1), and use this to generate k.

Then generate k3 emission from the qggg system (ki3 < ki2). Etc.

Repeat until you reach a non-perturbative cutoff scale Qq, and then stop.
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L Parton showers The pa rton ShOWGI’

A(ke, Q) is known as a Sudakov Form Factor
Probability distribution for first emission (e.g. gg — ggg) is simple

dP d
= Ak
dkyy  dkgy (ke1, Q)

Easy to generate this distribution by Monte Carlo
Take flat random number 0 < r < 1 and solve A(ks, Q) =r

Now we have a ggg system.

We next work out a Sudakov for there being no emission from the qgg
system above scale ko (< ki1): A998 (kio, ke1), and use this to generate k.

Then generate k3 emission from the qggg system (ki3 < ki2). Etc.

Repeat until you reach a non-perturbative cutoff scale Qq, and then stop.

This gives you one “parton-shower” event |
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L Parton showers S hOW€ r va I’i a ntS

That was a description that roughly encompasses:

» The New Pythia shower Pythia 8.1, and the p; ordered option of Pythia 6.4

» The Ariadne shower

Other showers:

» Old Pythia (& Sherpa): order in virtuality instead of k; and each parton
branches independently (+ angular veto) works fine on most data
but misses some theoretically relevant contributions
by far the most widely used shower

» Herwig (6.5 & ++): order in angle, and each parton branches
independently Herwig++ fills more of phase space than 6.5

That was all for a "final-state” shower

» Initial-state showers also need to deal carefully with PDF evolution
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L Parton showers A n exam p | (S

1. You select the beams and their energy
-—-INITIAL STATE-—

THEP I IDPDG IST WOL MOZ2 DAl D2 P-X P P-Z  EMERGY HASS
1F 2121w 0 0 000 0,00 0,00 7000,0 70000 0,94
2F 22z 0 o0 0 o0 0,00 0,00-7000,0 700,10 0,34

3 CHF of03 1 2 0 0 0,00 0,00 0,0 14000,0 14080,0
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L Parton showers A n exam p | (S

2. You select the hard process (here Z + jet production)

Herwig generates kinematics for the hard process
~——HART SUBPROCESS---

IHEP I [DPDG IST MO MOZ2 DAL DR2  P-X P=Y P-Z EMERGY  MASS
4 UORK 2120 6 &8 9 &5 000 000 590,38 530.8 0 032
5 GLUON 21122 6 4 17 8 000 0,00 -232.1 232,10 075
& HARD 0120 4 % 7 8 040 -3940 358.7 823.0 740,63
7 Z0/GAMA* 23123 6 7 22 7 -261,59 217,31 3239.3 481.6 88,56
& LIORK 2124 B 5 23 4 261,93 217,31 29,4 341,30 0,32
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Parton showers An eXample
3. Herwig “dresses” it with initial and final-state showers
——PARTON SHOWERS-—-
IHEP 1D IIPDG 15T MOL MOZ DAL D&2  P-¥  P-Y P-Z EMERGY  MASS
3 UIRK 94141 4 6 11 16 2,64 -9,83 592,27 5307 -49,07
10 COME ol 4 5 0 0 -0.2F 0% 0,1 1.0 0,00
11 GLUON 21 2 9 12 32 33 1,02 3,5 5B 67 075
12 GLUON 22 9 13 34 3|/ 025 146 L6 40 075 INITIAL
13 GLUON 20 2 9 14 F T 087 LE2 47 61 07 8 cTATE
14 GLUON 21 2 9 15 3% 39 -0,8 4,17 3611,7 3117 0,75
15 GLUON 2l 2 9 16 40 41 -0,19 -l,00 17277 1727.7 075
15 LD 200 2 9 25 42 41 0,00 0,00 1054,6 10848  0,32- SHOWER
17 GLUOM 94142 5 6 19 21 2,93 0,44 -P33,5 232,85 -18,36
18 COME ol 5 85 0 0 077 o6 0,2 1.0 0,00
19 GLUON 21 2 17 20 43 44 1,60 058 -2,1 2,8 0,75
20 UD 2100 2 17 21 45 44 0,00 0,00 -2687.6 2667.6 0,32
21 UORK 2 2 17 32 48 45 0,63 -1,02 -4076,9 4076,.9 0,32
20 70/GAHA* 23195 7 22 251 252 -257,66 -219,68 3248 4775 99,56
23 ULRK 94 144 8 6 25 31 250.06 210,29 33,9 3455 96,10
24 COME o100 8 5 0 0 02 o017 -1,0 1.0 000
25 LIORK 202 23 2% 47 42 26.82 2433 237 433 0.3 FINAL
25 GLUOM 22 23 27 48 49 850 818 6,0 13,3 0,75
27 GLUON 21 2 23 28 50 51 7R.2F OGL2 12,0 9.2 0,75 STATE
25 GLUON 21 2 23 29 52 B3 7A.BE Ga.5d 6.2 4.3 075
29 GLUON 2 2 23 30 54 55 G758 G52,13 7,3 65,7 0,75 SHOWER
30 GLUON 21 2 2% 3 %6 57 6,9 4,60 2,3 87 0,75
31 GLUON 21 2 23 43 53 59 1,24 1,26 36 41 0,75
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L parton shoviers Hadronisation Models
<
String Fragmentation Cluster Fragmentation
(Pythia and friends) (Herwig)

Pictures from ESW book
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Parton showers

MC comparisons to

LEP data
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L Parton showers Compal’lng tOOIS

I—PS v. fixed order

Parton-shower Monte Carlos do a good job of describing
most of the features of common events.

Including the fine detail needed for detector simulation
And all events have equal weight — just like data

But they rely on soft and collinear approximations, so do
not necessarily generate correct hard, large-angle radiation

And if you're simulating backgrounds to BSM physics
it's the rare, hard multi-jet configurations that are often of interest

Let's check how well they do: compare LO/NLO
fixed-order calculations with parton showers.
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Parton showers

I—PS v. fixed order

Multijet events

jetl

jet2

0.008

p; of 3rd hardest jet

0.006 |

0.004

0.002

/N dN/dp,g [GeV'™]

NLOjet++
Herwig 6.5 —— |

pp, 14 TeV A
py > 500 GeV

Pu/2 < MR = He < 2Py

‘Cambriqge/Aachen jets, B:O.?

-0.002
0

100 200 300 400 500 600

Pyjet 3 [GeV]

Generate hard dijet events, shower
and hadronise them with Herwig.

Select events in which hardest jet
has p; > 500 GeV. Look at p; dis-
tribution of 3rd hardest jet

» Herwig doesn't do too bad a job
of reproducing high-p; 3rd-jet
rate But no uncertainty band

Hard to know how trustworthy
unless you also have NLO

» NLO does poor job at low p; —
large ratios of scales,
pr3/pr1 < 1, are dangerous in
fixed-order calculations.
Pt1

higher-orders ~ agln — ~'1
Pt3
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Parton showers Z + N _]etS
I—PS v. fixed order
1935""|""|""""""e
: 3 W Job LEC, pTod) Ge¥ 1 Herwig: select Z+
=g Integrated pT rate of N—th jet | .
S 1 jet hard process
102 = solid: Alpgen - J ’
;_ HL“‘-».\ dashes: Herwig ; Look at pe distri-
. L:_‘: H‘“‘a e 1 bution of jets with
L B . = = — .
1ol ¢ ) aqﬁ R‘H-‘.E:ﬁ“ﬁi i highest p;, 2nd
L — -y Ry N=2— o 1 highest p;, etc.
0 - .—I W LLH{'\‘;“_ \‘\;‘x‘:‘-:""_‘_\-._‘__“
100 W, \H‘L e —== Compare to tree-
: N P level calculation
L= = 3 .
i T ™ T e Mangano '08
10_1 1 ]_ LLH H-\"'\-H ~ s "H-.__H_‘\
] N=4 \._\ LI ~
T I.l l L LLJ ‘j\.._ el ) I i T W T 1
0 50 100 150 200 250
Er (GeV)

Parton shower (Herwig) does very badly even just for 2nd jet.
Why is this so much worse than in the pure jet case?
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L Parton showers Why parton shower so poor for Z+jets?

I—PS v. fixed order

Z + 1 jet Z + 2 jets
é Z
EERRREI]
’ ‘ (=iet)
q (Fiet) 958 g ey

Qs EW Produced by parton shower
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L Parton showers Why parton shower so poor for Z+jets?

I—PS v. fixed order

Z + 1 jet
é Z
TETEE 0
g ‘
q (Sjet)
Qs EW

Z + 2 jets

g (Sjet)

Not produced by parton shower

2 p.

enhanced at high p;: agaEW In M
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L Parton showers Why parton shower so poor for Z+jets?

I—PS v. fixed order

Z + 1 jet
é Z
TETEE 0
g ‘
q (Sjet)
Qs EW

Z + 2 jets

g (Sjet)

Not produced by parton shower

2 p.

enhanced at high p;: agaEW In M
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L Parton showers Why parton shower so poor for Z+jets?

I—PS v. fixed order

Z + 1 jet Z + 2 jets
é z
RERERERI]
g ‘
q (Sjet) g (Sjet)
LW Not produced by parton shower

2 p.

enhanced at high p;: agaEW In M

Parton showers generate starting from hard process you asked for.

Z /W + multijet production involves two classes of hard process
A. Z + recoil jet; B. dijets + emission of Z (missing from MC)
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I—Summary Summary

We've seen a number of things:

» Idea of scale variation to estimate uncertainties in theory predictions
» How fixed-order predictions work
» How parton-shower Monte Carlo predictions work

» And how they compare

Some issues:

» Fixed order doesn’t work with big scale ratios
» Monte Carlos don't always work for multijet structure

Tomorrow we'll look some more at these issues and at
the question of hadron-collider observables
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