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QCD lecture 3 (p. 2)

L PDF introduction Factorization & parton distributions

Cross section for some hard
process in hadron-hadron
collisions

UZ/dxlf/p(Xl, )/dXZf/p(X27 1) 6 (xap1,xop2. %), 8= xxes

» Total X-section is factorized into a ‘hard part' &(xip1, xop2, 11?) and
‘normalization’ from parton distribution functions (PDF).

» Measure total cross section <> need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

» Picture seems intuitive, but
» how can we determine the PDFs? NB: non-perturbative
» does picture really stand up to QCD corrections?
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L PDF introduction Deep Inelastic Scattering: kinematics

DIS kinematics

Hadron-hadron is complex because of two incoming partons — so start
with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:
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L PDF introduction Deep Inelastic Scattering: kinematics

DIS kinematics

Hadron-hadron is complex because of two incoming partons — so start
with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:

"Lk @ _p

_ _ P9 52 _
e+ X = 2pq1 _y pkr Q Xys
K q (Q%=-f) V/s = c.o.m. energy

» Q? = photon virtuality <+ transverse
resolution at which it probes proton

Xp

structure
P » x = longitudinal momentum fraction of
\proton struck parton in proton

» y = momentum fraction lost by electron
(in proton rest frame)



QCD lecture 3 (p. 4)

L pE inrouction Deep Inelastic scattering (DIS): example
DIS kinematics
@!9 (P = 25030 GeV?% y =056 x=0.50 |

e+

~ H1  Run 122145 Event 69506

i
ot proton Date 19/09/1995



L PDF introduction
I—DIS X-sections

ecture 3 (p. 5) 1 i i I
[, E.g.: extracting u & d distributions

Write DIS X-section to zeroth order in as (‘quark parton model’):

d?c®™  4ra? [1+(1—y)?

~ ™+ O

dxd@?  xQ* ( 2 2 (QS))
x F5™ [structure function]

Fr = x(e2u(x) + e3d(x)) = x (gu(x) + éd(x))
[u(x), d(x): parton distribution functions (PDF)]

NB:

> use perturbative language for interactions of up and down quarks

> but distributions themselves have a non-perturbative origin.



L PDF introduction
I—DIS X-sections

ecture 3 (p. 5) 1 i i I
[, E.g.: extracting u & d distributions

Write DIS X-section to zeroth order in as (‘quark parton model’):

d?c®™  4ra? [1+(1—y)?

~ F5™ + O (as

dxd@?  xQ* ( 2 2"+ 0la )>
x F5™ [structure function]

Fa = x(e2u(x) + €3d(x)) = x (gu(x) " éd(x))
[u(x), d(x): parton distribution functions (PDF)]

NB:

> use perturbative language for interactions of up and down quarks

> but distributions themselves have a non-perturbative origin.

F> gives us combination of u and d.
How can we extract them separately?
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L Quark distributions Extracting full flavour structure?

I—u&d

» Using neutrons and isospin

n 4 1
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QCD lecture 3 (p. 6)

L Quark distrbutions Extracting full flavour structure?

I—u&d

» Using neutrons and isospin

4 1 4
an = §Un(x) + §dn(X) = §dp(X) + _UP(X)

» Using charged-current (W®) scattering
[neutrinos instead of electrons in initial or final-state]

> v interacts only with d, u
» angular structure of interaction differs between d and u
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I—Quark distributions Al | q U a rkS
Lugd .
quarks: xq(x)
0.6 - T - These & other methods — whole set
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Q% =10 GeV?
CTEQSD fit

of quarks & antiquarks
NB: also strange and charm quarks
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QCD lecture 3 (p. 7)

I—Quark distributions Al | q U a rkS

I—u&d

quarkS' xq(x)

0.6 - These & other methods — whole set
/\ =10 GeV? of quarks & antiquarks
0.5 / CTEQ6D fit NB: also strange and charm quarks

» valence quarks (uy = u — @) are
hard
x = 1:xqy(x) ~ (1 - x)3
quark counting rules
x = 0: xqy(x) ~ x%°
Regge theory

| » sea quarks (us = 2z, ...) fairly
soft (low-momentum)

x = 1:xqs5(x) ~ (1 —x)’

1 x — 0: xqs(x) ~ x702




QCD lecture 3 (p. 8)
I—Quark distributions Momentum Sum rUle

I—Ll&d

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

qi momentum
dy 0.111
uy 0.267
ds 0.066
us 0.053
Ss 0.033

Cs 0.016
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QCD lecture 3 (p. 8)
I—Quark distributions Momentum Sum rUle

I—u&d

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

qgi momentum Where is missing momentum?

dy 0.111 Only parton type we've neglected so far is the
uy 0.267

ds 0.066 gluon

Us 0.053 Not directly probed by photon or W¥.

s 0.033 NB: need to know it for gg — H
Cs 0.016
total 0.546 To discuss gluons we must go beyond ‘naive’

leading order picture, and bring in QCD split-
ting. ..



QCD lecture 3 (p. 9)

L initialstate spiiting Recall final-state splitting

1st order analysis

Tuesday's lecture: calculated g — qg (0 < 1, E < p) for final state of
arbitrary hard process (op,):

asCr dE d6? N o P
T SO g ()=
| w=(1-z)p
Rewrite with different kinematic variables
e O_hasCF dz dki E=(1-2)p
& T 1—z k? ke = Esinf ~ EO

If we avoid distinguishing g + g final state from g (infrared-collinear safety),

then divergent real and virtual corrections cancel

N /
N /

- aSCF dz dkt2 / p p
e e ) N

1




QCD lecture 3 (p. 10)

L Initial-state splitting Initial-state Spl itti ng

1st order analysis

For initial state splitting, hard process occurs after splitting, and
momentum entering hard process is modified: p — zp.

aSCF dz d_kt2
T 1—z k,_h2

og+h(p) =~ on(zp)

For virtual terms, momentum entering hard process is unchanged

ovin(p) =~ —on(p) asCp _dz_dii P P e
N T 1—z k? '. J <

Total cross section gets contribution with two different hard X-sections
aSCF dkl? dz

k} 11—z

NB: We assume oy, involves momentum transfers ~ @ > k;, so ignore extra

Ogth T Ovih ™~ [oh(zP) — an(p)]

transverse momentum in op



QCD lecture 3 (p. 11)

L initialstate splitting Initial-state collinear divergence

1st order analysis

asC dk2 dz
T ih+ovin = F / e COR )

> In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.



QCD lecture 3 (p. 11)

L initialstate splitting Initial-state collinear divergence

1st order analysis

asC dk2 dz
o ih+ovin= LF / e COR )

finite

> In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
» For 1 —z #0, ox(zp) — on(p) # 0, so z integral is non-zero but finite.
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L initialstate splitting Initial-state collinear divergence

1st order analysis

asC dk2 dz
Ogtht0Ovip ™ sﬂ i / / [Uh zp) — on(p)]
H,_z

infinite finite

> In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
» For 1 —z #0, ox(zp) — on(p) # 0, so z integral is non-zero but finite.

BUT: k; integral is just a factor, and is infinite
This is a collinear (k; — 0) divergence.
Cross section with incoming parton is not collinear safe!
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L initialstate splitting Initial-state collinear divergence

1st order analysis

asC dk2 dz
Ogtht0Ovip ™ sﬂ i / / [Uh zp) — on(p)]
H,_z

infinite finite

> In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
» For 1 —z #0, ox(zp) — on(p) # 0, so z integral is non-zero but finite.

BUT: k; integral is just a factor, and is infinite
This is a collinear (k; — 0) divergence.
Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles
So how do we do QCD calculations in such cases?



QCD lecture 3 (p. 12)

I—Initial-str::te splitting Col | | nea I' CUtOfF

1st order analysis

\ - By what right did we go to k; = 07
We assumed pert. QCD to be valid for
all scales, but below 1 GeV it becomes
non-perturbative.

Cut out this divergent region, & instead
put non-perturbative quark distribution
in proton.

o9 = /dx on(xp) q(x,1 GeV?)

1GeVv?
N XP (1-2)xp

[on(2xP) — an(xp)] (x, 1 GeV?)

N%Q/“ dk? [ dxdz
1

™ GeV? kt2 1-2z

finite (large) finite



QCD lecture 3 (p. 12)

I—Initial-str::te splitting Col | | nea I' CUtOfF

1st order analysis

\ - By what right did we go to k; = 07
We assumed pert. QCD to be valid for
all scales, but below 1 GeV it becomes
non-perturbative.

Cut out this divergent region, & instead
put non-perturbative quark distribution
in proton.

oo = /dx an(xp) q(x, 11?)

2

[o4(2xp) — on(xp)] a(x, 11°)

o1 =~

%&/Wﬁé dx dz
12 kf 11—~z
———
finite (large)

s

finite

In general: replace 1 GeV? cutoff with arbitrary factorization scale ;2.



QCD lecture 3 (p. 13)

L Initial-state splitting S umm a ry SO fa r

1st order analysis

v

Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have different longitudinal momenta

» Situation analogous to renormalization: need to regularize (but in IR
instead of UV). . o . o
Technically, often done with dimensional regularization
» Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.
Choice of factorization scale, u2, is arbitrary between 1 GeV? and Q2

» In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.
Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)



QCD lecture 3 (p. 13)

L Initial-state splitting S umm a ry SO fa r

1st order analysis

v

Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have different longitudinal momenta

» Situation analogous to renormalization: need to regularize (but in IR
instead of UV). . o . o
Technically, often done with dimensional regularization
» Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.
Choice of factorization scale, u2, is arbitrary between 1 GeV? and Q2

» In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.
Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

Q? Q

increase o % increase
o ?



QCD lecture 3 (p. 14)

I—Initial-str::te splitting DGLAP equatlon (q F q)

L pGLAP

Change convention: (a) now fix outgoing longitudinal momentum x; (b)
take derivative wrt factorization scale y?

(1+3)p°

dg(x, ) as [ q(x/z,4?)  as [* 2
“dinZ g/x dz pqq(2) =——— %/0 dz peq(z) q(x, 1%)

1422
1—~z

Pqq is real g < g splitting kernel: p,,(z) = C¢

2CF

Until now we approximated it in soft (z — 1) limit, pgq ~ 772



QCD lecture 3 (p. 15)

I—Initial-state splitting DG LAP reertten

L pGLAP

Awkward to write real and virtual parts separately. Use more compact
notation:

dg(x, 1) _ a5 [* q(x/z, 11?) 142°
LA _ X PIZE) - p=C
dlnp? 27T/X 9z Paq(2) z ’ 4 Fl1-2 n

Pqq®q

This involves the plus prescription:

1 1 1
/O dz [g(2)) F(2) = /O dz g(2) F(2) - /0 dz g(2) (1)

z = 1 divergences of g(z) cancelled if f(z) sufficiently smooth at z =1



QCD lecture 3 (p. 16)
L nitial-state splitting DGLAP flavour structure

L pGLAP

Proton contains both quarks and gluons — so DGLAP is a matrix in flavour

space:
 ame(d) (A e (2
din@? \ g Psegq Pgeg g

[In general, matrix spanning all flavors, anti-flavors, Pgq = 0 (LO), Pgg = Pggl

Splitting functions are:

1+ (1-2)?
Pag(2) = Tr [22 +(1- 2)2} ) Peq(z) = Cr [%} )
o z 1-=z (11CA-4H{TR)
Pgg(z) =2Ca {(1—z)+ +— +z(1 z)} +4(1—2) 5 :
Have various symmetries / significant properties, e.g.
» Pyg, Pgg: symmetricz <+ 1 —z (except virtuals)
> Pqq, Pgg: diverge for z — 1 soft gluon emission

> Py, Pgq: diverge for z — 0 Implies PDFs grow for x — 0



QCD lecture 3 (p. 17)

- itia-state spliting Effect of DGLAP (initial quarks)

Example evolution

xq(x,Q%), xg(x,Q%)

xg(x,Q%) ——
25 | Xq + xgbar ]

Take example evolution starting with

02=12.0 GeV? | just quarks:

OIanq: 'quq@q
8In Q8 = 'Dgeq ®q

» quark is depleted at large x

0.5 1 » gluon grows at small x
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- itia-state spliting Effect of DGLAP (initial quarks)

Example evolution

xq(x,Q%), xg(x,Q%)

xg(x,Q%) ——
25 | Xq + xgbar
Take example evolution starting with
2 | 02 = 46.0 GeV? just quarks:

OIanq: 'quq@q
8In Q8 = 'Dgeq ®q

» quark is depleted at large x

\
0.5 \T » gluon grows at small x




QCD lecture 3 (p. 17)

- itia-state spliting Effect of DGLAP (initial quarks)

Example evolution

xq(x,Q%), xg(x,Q%)

xg(x,Q%) ——
25 | Xq + xgbar ]
Take example evolution starting with
2 b 02 =60.0 GeV? | just quarks:
15 | On @29 = Pgeq® q
Oin Q28 = 'Dgeq ®q
1 - .
» quark is depleted at large x
\
05 L 1 » gluon grows at small x
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- itia-state spliting Effect of DGLAP (initial quarks)

Example evolution

xq(x,Q%), xg(x,Q%)

3 T >
xg(x,Q%) ——
25 | Xq + xgbar ]
Take example evolution starting with
2 02 =90.0 GeV? | just quarks:

OIanq: 'quq@q
8In Q8 = 'Dgeq ®q

» quark is depleted at large x

1 » gluon grows at small x




QCD lecture 3 (p. 17)

- itia-state spliting Effect of DGLAP (initial quarks)

Example evolution

xq(x,Q%), xg(x,Q%)

xg(x,Q%) ——
25 | Xq + xgbar ]

Take example evolution starting with

02 = 150.0 GeV? just quarks:

OIanq: 'quq@q
8In Q8 = 'Dgeq ®q

» quark is depleted at large x

1 » gluon grows at small x




QCD lecture 3 (p. 18)

- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xgx,Q?Y) ——
St xg + xgbar i
2nd example: start with just gluons.
ol 02=120GeV? | f :

' ()InQQq:Pq%g%g
3r g 0InQ2g:Pgeg§§g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
0 Il
0.01 0.1 1
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- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

| xgx,QY) ——

St xg + xgbar i

2nd example: start with just gluons.
ol 0%2=150GeV? | f :

' ()InQQq:Pq%g%g

3r 1 On @28 = Pgeg®8g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
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- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xgx,QY) ——
> xg + xgbar i
2nd example: start with just gluons.
ol 0%2=27.0GeV? | f :

' ()InQQq:Pq%g%g
3r g 0InQ2g:Pgeg§§g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
0
0.01 0.1 1



QCD lecture 3 (p. 18)

- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xgx,QY) ——
St xg + xgbar i
2nd example: start with just gluons.
ol 0%2=350GeV? | f :

' ()InQQq:Pq%g%g
3r 1 On @28 = Pgeg®8g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
0 \?\v\
0.01 0.1 1
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- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xgx,QY) ——
St xg + xgbar i
2nd example: start with just gluons.
ol 0%=46.0GeV? | f :

' ()InQQq:Pq%g%g
3r 1 On @28 = Pgeg®8g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
0 \'\v\
0.01 0.1 1
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- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xgx,QY) ——
St xg + xgbar i
2nd example: start with just gluons.
ol 0%=60.0GeV? | f :

' ()InQQq:Pq%g%g
3r 1 On @28 = Pgeg®8g
2t 1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1r 1 small x gluon & quark.
0 \'\v\
0.01 0.1 1



QCD lecture 3 (p. 18)

- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xg(x,Q%) ——
Xq + xgbar i

2nd example: start with just gluons.

2 _ 2 . B
Q”=90.0 GeV On02q = Poeg @ g

. Onq28 = Pgeg®g

1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1 small x gluon & quark.




QCD lecture 3 (p. 18)

- itia-state spliting Effect of DGLAP (initial gluons)

Example evolution

xq(x,Q?), xg(x,Q?)

xg(x,Q%) ——
Xq + xgbar i

2nd example: start with just gluons.

2 _ 2 . B
Q” =150.0 GeV On02q = Poeg @ g

. Onq28 = Pgeg®g

1 » gluon is depleted at large x.

> high-x gluon feeds growth of
1 small x gluon & quark.




QCD lecture 3 (p. 19)

I—Initial-str::te splitting DG LAP eVOl Utlon

Example evolution

» As Q? increases, partons lose longitudinal momentum; distributions all
shift to lower x.

» gluons can be seen because they help drive the quark evolution.

Now consider data



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
NMC —=— at initial scale Qg =12 GeV2.
NB: Qo often chosen lower
12 ¢ 02=12.0 GeV? | ’

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1
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L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
NMC —=— at initial scale Qg =12 GeV2.
NB: Qo often chosen lower
12 ¢ 02 =15.0 GeV? | ’

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1
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L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
NMC —=— at initial scale Qg =12 GeV2.
NB: Qo often chosen lower
12 | Q2=27.0 GeV? | ’

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
NMC —=— at initial scale Qg =12 GeV2.
z NB: Qo often chosen lower
S Q%2=35.0GeV? ] ’

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
. NMC —=— at initial scale Qg =12 GeV2.
NB: Qo often chosen lower
121, Q% =46.0 GeV? ] 0

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
2
F5 (x.Q%)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),
: NMC —=— at initial scale Qg =12 GeV2.
NB: Qo often chosen lower
12 ¢ 02 =60.0 GeV? | ’

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
F§ (x,.Q9)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),

at initial scale Q3 = 12 GeV?.

Q2 90.0 Gev2 1 NB: Qo often chosen lower
= . e

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

0.001 0.01 0.1 1



QCD lecture 3 (p. 20)

L Determining gluon DGLAP with initial gluon =0
Evolution versus data
F§ (x,.Q9)
DGLAP: g(x,Q2) =0 ——
16 ¢ ZEUS | Fit quark distributions to F(x, Qg),

at initial scale Q3 = 12 GeV?.

Q2 150.0 GeV2] NB: Qo often chosen lower
= . e

Assume there is no gluon at Q3:
g(x, Qg) =0

Use DGLAP equations to evolve to
higher Q2 compare with data.

Complete failure!

0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F5 Q)
DGLAP (CTEQ6D) ———
16 1 ZEUS |
NMC If gluon # 0, splitting g — qg gen-
1ol ) , | erates extra quarks at large Q2.
' Q" =12.0GeV O faster rise of F»

Find a gluon distribution that leads
to correct evolution in Q2.

Done for us by CTEQ, MRST, ...

PDF fitting collaborations.

0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F5 Q)
DGLAP (CTEQ6D) ———
16 1 ZEUS |
NMC If gluon # 0, splitting g — qg gen-
1ol ) , | erates extra quarks at large Q2.
' Q" =15.0GeV O faster rise of F»

Find a gluon distribution that leads
to correct evolution in Q2.

Done for us by CTEQ, MRST, ...

PDF fitting collaborations.

0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F5 Q)
DGLAP (CTEQ6D) ———
16 ZEUS + + |
NMC If gluon # 0, splitting g — qg gen-
1o ) , | erates extra quarks at large Q2.
' Q" =27.0GeV O faster rise of F»
Find a gluon distribution that leads
0.8 to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
0.4
0
0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
F5 (x.Q7)
DGLAP (CTEQ6D) ———
161 ZEUS |
NMC If gluon # 0, splitting g — qg gen-

erates extra quarks at large Q2.

1.2 O faster rise of F»

Q% =35.0 GeV? |

Find a gluon distribution that leads

1 to correct evolution in Q2.

Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

0.8

0.4

0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F§ (x.Q9)
DGLAP (CTEQ6D) ——
16y ZEUS |

NMC If gluon # 0, splitting g — qg gen-
erates extra quarks at large Q2.
00 faster rise of F»

1.2 Q?=46.0GeV?

Find a gluon distribution that leads

1 to correct evolution in Q2.

Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

0.8

0.001 0.01 0.1 1




QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0

- Evolution versus data

Fb (x.Q?)

DGLAP (CTEQ6D) ———
161 ZEUS |
NMC If gluon # 0, splitting g — qg gen-
erates extra quarks at large Q2.

00 faster rise of F»

12 Q% =60.0 GeV? |

Find a gluon distribution that leads

0.8 1 to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
04 + 8
0
0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F5 (x.Q%)
DGLAP (CTEQ6D) ———
1.6 ZEUS + + |
If gluon #£ 0, splitting g — gg gen-
1o ) , | erates extra quarks at large Q2.
' Q" =190.0 GeV O faster rise of F»
Find a gluon distribution that leads
0.8 1 to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
04 E
0
0.001 0.01 0.1 1



QCD lecture 3 (p. 21)

L Determining gluon DGLAP with initial gluon # 0
Evolution versus data
2
F§ (x.Q9)
DGLAP (CTEQ6D) ———
16y ZEUS |

If gluon # 0, splitting g — qg gen-
1ol ) ,| erates extra quarks at large Q2.
' Q" =150.0 GeV O faster rise of F»

Find a gluon distribution that leads

0.8 | S 1 to correct evolution in Q2.

Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

Success!

0.001 0.01 0.1 1



QCD lecture 3 (p. 22)

L Determining full PDFs Gluon distribution

L Global fits

xq(x), xg(x)

Q°=10GeV? |

CTEQSD fit

Gluon distribution is HUGE!

gluon 1 Can we really trust it?

4 » Consistency: momentum sum-rule
is now satisfied.
] NB: gluon mostly at small x

» Agrees with vast range of data




QCD lecture 3 (p. 23)

L Determining full PDFs DIS data and global fits

L Global fits

HERA F,
=
‘>'<6 X=6.32E-5 | _() 000102
S x=0.000161 =) ZEUSNLO QCD fit
N g 0000258 —— H1PDF 2000fit
N TP T T T £ X000 !
E 3 o~ X=0.
& [ HERADa ] L s, 00002 o H18400
L ] L X=0.
.\S I 3 HL 1994- 2000 1 i 4 H1(prel.) 99/00
4 x=0.0013 .
107 ZEUS 1994-1997 E K ZEUS96/97
E 3 3
=3 zEus BPT 1997 ] . X=0.0021 4 BCDMS
[ SY ZEUS SVX 1995 1 are
103E 4 " * x=0.0032 NMC
E £ HL SVX 1995, 2000 3 ., d
3 ] B X=0.005
[ = H QeDc 1997 £l .
b ] N
102k Fixed Target Experiments: | . R d %=0.008
3 W i F e »
[ == soows 1 [ x=0.013
10 L D Es6s i o E X=0,021
E 3 et x
£ SLAC ] o b5t =
P = El ol e e M X=0.032
[ 1 P
L B oo AP g.—)""‘"""":"—"l_j' x=0.05
1 e 4 -
£ E| | bt e wae- 34408554 X=008
E | 0
i 1 ° — 5 2 ¢ x=013
[ i
E El B =025
WA vl e i il il Mw’“""“—“\—}l
- 5 4 - E 1 x=04
10 10 10 10 10 10 1
X . x=065
L L L L L
4

1 10 10 10 10 10°
Q*(Gev?)



QCD lecture 3 (p. 23)

L Determining full PDFs DIS data and global fits

L Global fits
HERAF,
=
X X=6.32E-5 0 00010
S x=0.000161 =) ZEUSNLO QCD fit
s x=0.000253
< e 00004 —— H1PDF 2000fit
=0.0005
% 105, =" (A xx:ocgoggg © H19400
e P ozeus Ai' e 4 H1(prel) 99/00
NO. [ @I COFDO Inclusvejetsn<0.7 K x=0.0013 = ZEUS96/97
10%L == 00 indusiejetsn<s ‘. omz | BCDMS
F 3 Fixed Target Experiments: 4r s
[ CCFR, NMC, BCDMS, * xo0s2 e
, NMC, z
10 3? A‘ ‘ x=0.005
E 665, SLAC . !
5 N
I N - x=0.008
102 3. g
E - x=0.013
5 Lo
L oo E x=0.021
10 e 0
E 0! " : —(
£ ol e e M x=0032
L ™ A
[ o B
1F -
£ . QM‘Q%WMX:Q&
E 0
i ° — . 2 ¢ x=013
r LR ] E
10 * 1+ i #4—44E (018
E ‘ w ~0.25
% 5 4 3 2 1 Tt -
10 10 10 10 10 10 1 x=0.4
X . =065
0 L L L L L
4

1 10 10 10 10 10°
Q*(Gev?)



QCD lecture 3 (p. 24)
L Determining full PDFs
Back to factorization

Crucial check: other processes

Factorization of QCD cross-sections into convolution of:

» hard (perturbative) process-dependent partonic subprocess

> non-perturbative, process-independent parton distribution functions

etq —>e" + jet

qg —> 2 jets

X1

X2

X

qx, Q2) /

proton

q4(Xy, Q?)

i g2(x2 Q?)

proton 1

proton 2

Oep = 0eq®q

Opp—2jets = Ogg—2jets O q1 & 82 + - -+




QCD lecture 3 (p. 24)
L Determining full PDFs
Back to factorization

Crucial check: other processes

Factorization of QCD cross-sections into convolution of:

» hard (perturbative) process-dependent partonic subprocess

> non-perturbative, process-independent parton distribution functions

etq —>e" + jet

qx, Q2) /{W

proton

qg —> 2 jets
X1 X2
ad
a1, Q) /4 ﬁgz(XZ’QZ)

proton 1

proton 2

Oep = 0eq®q

Opp—2jets = Ogg—2jets O q1 & 82 + - -+




QCD lecture 3 (p. 25)
L Determining full PDFs
Jet production

Jet production in pp

% r D@ Run Il preliminary
e E D@ data, Cone R=0.7
3 102;7 o ly<05
E‘ E = 15<|y|<20
10k L 20<ly|<24
S F —— NLO (JETRAD) CTEQ6M
§ 17 Rugp=1:3, He=Hg = 0.5 p7™
'L
\5=1.96TeV
10°F Ly = 143 pb™
10 E
El v b b v b b

100 200 300 400 500 600
p; [GeVic]

Jet production in proton-antiproton
collisions is good test of large gluon
distribution, since there are large di-
rect contributions from

88 — 88, 48 — 98

NB: more complicated to interpret
than DIS, since many channels, and
x1, X dependence.

PT ~ \/X1X2S jet transverse mom.
~Q

1 0
y = logtan 3

log L
~ — |0g —
y 2 & X2

jet angle wrt pp beams



QCD lecture 3 (p. 25)
L Determining full PDFs
Jet production

Jet production in pp

Ratio to CTEQ6.1M

CDF Run Il

25

L
LI e o o o
FT T T \ T

K, D=0.7 0.4<ly""|<0.7

—a— Dala

Systematic uncertainties
- —.- - PDF uncertainties
R p=2}(pa=ma\(pf_
MRST2004

100 200 300 400

500 600 700

pr [GeVic]

Jet production in proton-antiproton
collisions is good test of large gluon
distribution, since there are large di-
rect contributions from

88 — 88, 48 — 98

NB: more complicated to interpret
than DIS, since many channels, and
x1, X dependence.

PT ~ \/X1X2S jet transverse mom.
~Q
1 X:
yfv—log—1 y:logtang
2 X2

jet angle wrt pp beams



QCD lecture 3 (p. 25)
L Determining full PDFs
Jet production

Jet production in pp

L]
o>

o
o

do / dp, [pb/GeV]

L I B
& ki = < 3
- anti-k, jets, R=0.6, \yie1|_2.8 ]
; ) [ Idenb‘\s:ﬂeV) ]
; D Systematic Uncertainties ;
. -
E . NLO-pQCD (CTEQ 6.6+ Non pert. corr. o
r == ]
r ——

ATLAS Preliminary

cle e b by L P

Jet production in proton-antiproton
collisions is good test of large gluon
distribution, since there are large di-
rect contributions from

88 — 88, 48 — 98

NB: more complicated to interpret
than DIS, since many channels, and
x1, X dependence.

PT ~ \/X1X2S jet transverse mom.
~Q
1 X:
yrv—log—1 y:Iogtang
2 X2

jet angle wrt pp beams

Good agreement confirms factorization



QCD lecture 3 (p. 25)
I—Det:ermining full PDFs
I—Jet production

Jet production in pp

CMS preliminary, 60 nb"
10T T T T T T T T

»  lyl<0.5 (x1024)
0.5<lyl<1.0 (x256
1.0s<lyl<1.5 (x64)
1.5<lyl<2.0 (x16)
2.0slyl<2.5 (x4)
2.5<lyl<3.0 (x1)

B

cPofdydp_(pb/GeV)
S

—— NLO pQCD+NP
[ JExp. uncertainty
nti-k; R=0.5 ‘PF

2030 100 200

10

Qep-10-011
| Ll

1000
P, (GeV)

Jet production in proton-antiproton
collisions is good test of large gluon
distribution, since there are large di-
rect contributions from

88 — 88, 48 — 98

NB: more complicated to interpret
than DIS, since many channels, and
x1, X dependence.

PT ~ \/X1X2S jet transverse mom.
~Q

_ 0
y = logtan 3

1| X1
~ — |0g —
Y 2 ng

jet angle wrt pp beams

Good agreement confirms factorization



QCD lecture 3 (p. 26)
I—Det:ermining full PDFs

Jet production

Which PDF channels contribute?

Fractional contributions

Inclusive jet cross sections with MSTW 2008 NLO PDFs

Tevatron,\'s = 1.96 TeV
T

0.1

O'.

1
09F
0.8
0.7
06F
05F
0.4k
0.3F
02f

01<y<0.7:

qq - jets :

T

gq — jets

g9 - jets

7100
P (Gev)

Fractional contributions

09F

0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

LHC,\/s = 14 TeV
_ 0.0<y<08:
qaq - jets_§

T

L gq - jets
-9g - jets

b fastNLO with M =H =P

k. algorithm with D = 0.7

100 71000
P, (Gev)

A large fraction of jets are gluon-induced



QCD lecture 3 (p. 27)
L Determining full PDFs
Jet production

Uncertainties on predictions

a+doppe in units of o(CTEQ6.6M)
Tevatron Run-2, NLO

w= —— = CTEQ6.6
z —— * CTEQS.1
tA71) . B
Wh' (120) e
Zh' (120) .,y
gg—h'(120) — e

085 09 095 1 105 11 115 1.2

(a)
o+dcoppe in units of «(CTEQ6.6M)

1.25

LHC,NLO
Knnio §
WH g emae | = CTEQES
W™ e =8 | % CTEQG.1
' 4 |C-Sea
W+Hh'(120) e
W-h"(120) g
tt (171) .y
gg-h'(120) e
h*(200) e
0.9 1 1.1 12 1.3

Gluon at Q% = M2 = (120 GeVy’
T T H

MSTW 2008 NNLO (68% C.L.)
44444 Fix agat +68% C.L. limit
1025 QAN Fix g at - 68% C.L. limit

T
AN S

Ratio to MSTW 2008 NNLO
g

y =0
at LHC at Tevatron

10+ 10° 10? 10*

General message

Data-related errors on PDFs are
such that uncertainties are just a
few % for many key Tevatron and
LHC observables



QCD lecture 3 (p. 28)

L Closing remarks ConCIUSions on PDFS

» Experiments tell us that proton really is what we expected (vud)

» Plus lots more: large number of ‘sea quarks’ (gg), gluons (50% of
momentum)

» Factorization is key to usefulness of PDFs
» Non-trivial beyond lowest order
» PDFs depend on factorization scale, evolve with DGLAP equation
» Pattern of evolution gives us info on gluon (otherwise hard to measure)

» PDFs really are universal!

» Precision of data & QCD calculations is striking.

» Crucial for understanding future signals of new particles, e.g. Higgs
Boson production at LHC.



QCD lecture 3 (p. 29)
Extras

EXTRAS



QCD lecture 3 (p. 30)

Extras

Sea and valence

NMC proton & deuteron data

xf(x)

1

08 r

0.6

04t

0.2t

% 3F) — gFg — "xu(x)"
—3F) + 2F¢ —xd(x)"

Q%=27GeV?
% k NMC data

Combine F§ & F§ data,

deduce u(x), d(x):

» Definitely more up than
down (0)
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Extras

Sea and valence

NMC proton & deuteron data

1

08 r

0.6

xf(x)

04t

0.2t

T
—%—t

Q%=27GeV?
NMC data
CTEQSD fit

Combine F§ & F§ data,

deduce u(x), d(x):

» Definitely more up than
down (0)



QCD lecture 3 (p. 30)
Extras
Sea and valence

NMC proton & deuteron data

1

08 r

T
—%—t

06t - Q?=27 GeV?
X
g % NMC data
X \\%
04 % CTEQSD fit
X
N
N\
0.2 \
0 :
0 02 04 06 08

Combine F§ & F§ data,

deduce u(x), d(x):

» Definitely more up than
down (0)

How much v and d7?
» Total U = [ dx u(x)




QCD lecture 3 (p. 30)
Extras

NMC proton & deuteron data

Sea and valence

1 T T T T
3Fp _ §F2d —)“XU(X)” ——i Combine sz & F2d data,
Py 25_4,:2d xd(x) e deduce u(x), d(x):
0.8 f| » Definitely more up than
down (0)
06 U Q? = 27 Ge\? How much u and d?
S \ _
\“';: \ NMC data » Total U4— fdlx u(x)
,;\‘: » = = —|——d
04t L CTEQ6D fit 2=x(gut5d)
X
¥
\
02} \
0 ‘
0.2 0.4 0.6 0.8



QCD lecture 3 (p. 30)

Cestras NMC proton & deuteron data
Sea and valence
10 ‘ \d T T . p d
F2p’ /X _)“U(X)” —%— Comblne F2 & F2 data,
| sz’d/x ed(x) deduce u(x), d(x):
81 | 1 » Definitely more up than
q down ([J)
6 Q2 =97 GeV2 { How much u and d?
S % NMC data » Total U = [ dx u(x)
) b CTEQGD fit > F2=x(5u+59)
L : |
| > u(x) ~ d(x) ~ x"12°
non-integrable
2+ .
divergence
0
0 1




QCD lecture 3 (p. 30)

Extras

Sea and valence

NMC proton & deuteron data

10

F2p’d/x — "u(x)"
| FP9/x = d(x)"

L
—%—

\ Q% =27 GeV?
NMC data
CTEQSD fit

0.2 04 0.6 0.8

Combine F§ & F§ data,
deduce u(x), d(x):

» Definitely more up than
down (0)

How much v and d?

» Total U = [ dx u(x)

> F = x(gu+ id)

> u(x) ~ d(x) ~ x1:2

non-integrable
divergence

So why do we say
proton = uud?



QCD lecture 3 (p. 31)

L eras Anti-quarks in proton

Sea & valence

How can there be infinite number of
quarks in proton?

Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:
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L eras Anti-quarks in proton

Sea & valence

How can there be infinite number of
quarks in proton?

Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:

Antiquarks also have distributions, 7(x), d(x)

Fa = S(xu(x) + x0(x) + 5 (xl(x) + x7(x))

NB: photon interaction ~ square of charge — +ve



QCD lecture 3 (p. 31)

L eras Anti-quarks in proton

Sea & valence

How can there be infinite number of
quarks in proton?

Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:

Antiquarks also have distributions, 7(x), d(x)

Fa = S(xu(x) + x0(x) + 5 (xl(x) + x7(x))

NB: photon interaction ~ square of charge — +ve

» Previous transparency: we were actually looking at ~ u+ 1T, d +d
» Number of extra quark-antiquark pairs can be infinite, so

/dx (u(x) + (x)) = o

as long as they carry little momentum (mostly at low x)



QCD lecture 3 (p. 32)

CEaras “Valence” quarks

Sea & valence

When we say proton has 2 up quarks & 1 down quark we mean

/dx(u(x) —u(x)) =2, /dx (d(x) —d(x)) =1

u— u = uy is known as a valence distribution.



QCD lecture 3 (p. 32)

CEaras “Valence” quarks

Sea & valence

When we say proton has 2 up quarks & 1 down quark we mean

/dx(u(x)—D(x)) =2, /dx(d(x)—c_!(x)) =1
u— u = uy is known as a valence distribution.

How do we measure difference between u and u? Photon interacts
identically with both — no good. ..

Question: what interacts differently with particle & antiparticle?



QCD lecture 3 (p. 32)

CEaras “Valence” quarks

Sea & valence

When we say proton has 2 up quarks & 1 down quark we mean

/dx(u(x)—D(x)) =2, /dx(d(x)—c_!(x)) =1
u— u = uy is known as a valence distribution.

How do we measure difference between u and u? Photon interacts
identically with both — no good. ..

Question: what interacts differently with particle & antiparticle?

Answer: W™T or W~



QCD lecture 3 (p. 33)

L earas Taking PDFs from HERA to LHC

- PDF evolution matters

LHC parton kinematics

E x,, = (M/14 TeV) exp(ty)

10°r Q=M M=10TeV
10 E
10° 3 M=1TeV 3
—~ 10F El
> E
> 1
3 [ ]
~ 10 3 M =100 GeV £
o ]

Suppose we produce a system of

mass M at LHC from partons with
momentum fractions xi, x:

» M= \/X1X2S
. 1 x
> rapidity y = = In -
2 X2

pseudorapidity = n = Intan g

= rapidity for massless objects

<5 at LHC

Are PDFs being used in region where
measured?



QCD lecture 3 (p. 33)
Extras
I—PDF evolution matters

Taking PDFs from HERA to LHC

LHC parton kinematics

' x,, = (M/14 TeV) exp(ty)

1.2 4
10°r Q=M M=10TeV -3

10° M=1TeV

Q (GeV)

10°

Suppose we produce a system of

mass M at LHC from partons with
momentum fractions xi, x:

» M= \/X1X2S
. 1 x
> rapidity y = = In -
2 X2

pseudorapidity = n = Intan g

= rapidity for massless objects

<5 at LHC

Are PDFs being used in region where
measured?

Only partial kinematic overlap

» DGLAP evolution is essential for
the prediction of PDFs in the
LHC domain.



QCD lecture 3 (p. 34)

D estras By how much do PDFs evolve?

- PDF evolution matters

[llustrate for the gluon distribution

Gluon evolution from 2 to 100 GeV . .
Here using fixed @ scales

100 : ‘
%\ LO evolution I But for HERA — LHC
2 relevant @ range is x-dependent
il 10 F J
o
2 » See factors ~ 0.1 — 10
[=2]
= 1 » Remember: LHC involves product
[0 .
o of two parton densities
]
o 01} 1
o It's crucial to get this right!
N3 Input: CTEQ61 at Q = 2 GeV
> Evolution: HOPPET 1.1.1
® 001 L2220 : Without DGLAP evolution, you
0.0001 0001 001 01 1

« couldn't predict anything at LHC



QCD lecture 3 (p. 35)
Extras
- Higher orders

It's not enough for data-related errors to be small.
DGLAP evolution must also be well constrained.

So evolution must be done with more than just
leading-order DGLAP splitting functions
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D extras Higher-order calculations

L Higher orders

Earlier, we saw leading order (LO) DGLAP splitting functions, P, = ?—;Pﬁ):

0 [ 1 +X2 3

’DC(ICI)(X) =Cr =N + 55(1 - X)} ;

P (x) = Tr [+ (1 -x)?]
0 (1 +(1—x 2

A = s [LH0]
0 X 1—x

PO (x) =2Cx [(1 A +x(1 —x)}

+6(1—
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D extras Higher-order calculations

L Higher orders

) 201 8 56
Pps(x) = 4Cerye 7——2+6x—4H0+x Hg—f + (1+x)[5Hg — 2Hp o

201
PG = 4Cuy (52 — 24 250 = Zpag(-RH 10 — 2p0g Lot 47 [ Sho - 27

+4(1 — x) [HD o0 — 2Hp + le] — 4Cax — 6Ho o + QHQ) +4Cen (qug(x} [Hl,o +Hi1+Ho

29 15 1
—(g]+4x [H0+H00+ ]+2(17x)[H0+H00—2xH1+71| —?7H0A07£H0)

o) 1 11 (8 44
Pgq () = 4CaCe( < +2pga(x) |Hio + Hin + Hy — =Hi| —x* | 2Ho — | +46 =2

37 2
—T7Hg + 2Hg g — 2Hyx + (1 + x) [21-10,0 — 5Hp + E] - ngq(—x)H,llo) — 4 Ceny (gx

10 77
*qu(x)[ Hp — ;D +4Ce (qu(x)[3H1 - 2H1,1] +(1+x) [Ho,o -5t EHO} — 3Ho,0

+1— EHQ + 2H1x)

1 1 1 2 2
PP = 4ch,(1 —x— gopgg(x) - 3(7 —x2) - 7(1+X)H0 - 55(1-x)) +4cA2(z7
x

9
67 /1 |,
+(1+><){ Ho+8Hgg—7}+2p‘_’g(—x)[Hgo—2H 10742}7;(77)0712%
x
7§x H0+2pgg(x)[——C2+H00+2H10+2H2}+5(1—x)[ +3c3])+4qn,(21-10
21 10
33 —12+(1+x)[475H0—2H0A0} 756(17@) .

NLO:

Pab — %P(O)—I—
27
e

1672

Curci, Furmanski
& Petronzio '80
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Cestras NNLO splitting functions

L Higher orders

NNLO, Pﬁ): Moch, Vermaseren & Vogt '04
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Extras
I—Higher orders

Evolution uncertainty

Uncert. on gluon ev. from 2 to 100 GeV

I O evolution

100 GeV)

o
N

uncertainty on g(x, Q
I}
=

Input: CTEQ61 at Q = 2 GeV
Evolution: HOPPET 1.1.1
h N

-0

X

4
0.0001 0.001 0.01 0.1 1

Estimate uncertainties on evolution

by changing the scale used for as in-
side the splitting functions

Talk more about such

tricks in next lecture

» with LO evolution, uncertainty is
~ 30%
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Extras
I—Higher orders

Evolution uncertainty

Uncert. on gluon ev. from 2 to 100 GeV

I O evolution
[ NLO evolution

100 GeV)

o
N

uncertainty on g(x, Q
I}
=

Input: CTEQ61 at Q = 2 GeV
Evolution: HOPPET 1.1.1
h N

-0

X

4
0.0001 0.001 0.01 0.1 1

Estimate uncertainties on evolution

by changing the scale used for as in-
side the splitting functions

Talk more about such

tricks in next lecture

» with LO evolution, uncertainty is
~ 30%

» NLO brings it down to ~ 5%
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L Earas Evolution uncertainty

L Higher orders

Uncert. on gluon ev. from 2 to 100 GeV . L. )
05 Estimate uncertainties on evolution

N LO evolution by changing the scale used for as in-
IS NLO evolution side the splitting functions

NNLO evoluti
_— evolution Talk more about such

100 GeV)

o
N

tricks in next lecture

» with LO evolution, uncertainty is
~ 30%

» NLO brings it down to ~ 5%

» NNLO — 2% Commensurate with
data uncertainties

uncertainty on g(x, Q
I}
=

Input: CTEQ61 at Q = 2 GeV
Evolution: HOPPET 1.1.1
h N

4 ‘
0.0001 0.001 0.01 0.1 1
X

-0
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