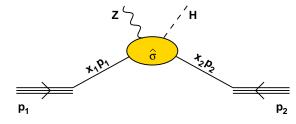
QCD at hadron colliders Lecture 3: Parton Distribution Functions

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Maria Laach Herbtschule für Hochenenergiephysik September 2010, Germany

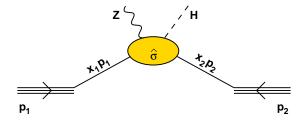
Cross section for some hard process in hadron-hadron collisions



$$\sigma = \int dx_1 f_{q/p}(x_1, \mu^2) \int dx_2 f_{\bar{q}/\bar{p}}(x_2, \mu^2) \, \hat{\sigma}(x_1 p_1, x_2 p_2, \mu^2) \,, \quad \hat{s} = x_1 x_2 s$$

- ▶ Total X-section is *factorized* into a 'hard part' $\hat{\sigma}(x_1p_1, x_2p_2, \mu^2)$ and 'normalization' from parton distribution functions (PDF).
- ▶ Measure total cross section ↔ *need to know PDFs* to be able to test hard part (e.g. Higgs electroweak couplings).
- ▶ Picture seems intuitive. but
 - how can we determine the PDFs?
 - does picture really stand up to QCD corrections?

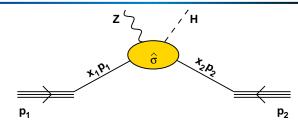
Cross section for some hard process in hadron-hadron collisions



$$\sigma = \int dx_1 f_{q/p}(x_1, \mu^2) \int dx_2 f_{\bar{q}/\bar{p}}(x_2, \mu^2) \, \hat{\sigma}(x_1 p_1, x_2 p_2, \mu^2) \,, \quad \hat{s} = x_1 x_2 s$$

- ▶ Total X-section is *factorized* into a 'hard part' $\hat{\sigma}(x_1p_1, x_2p_2, \mu^2)$ and 'normalization' from parton distribution functions (PDF).
- Measure total cross section ↔ need to know PDFs to be able to test hard part (e.g. Higgs electroweak couplings).
- Picture seems intuitive, but
 - how can we determine the PDFs?
 - does picture really stand up to QCD corrections?

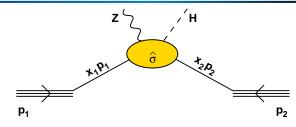
Cross section for some hard process in hadron-hadron collisions



$$\sigma = \int dx_1 f_{q/p}(x_1, \mu^2) \int dx_2 f_{\bar{q}/\bar{p}}(x_2, \mu^2) \, \hat{\sigma}(x_1 p_1, x_2 p_2, \mu^2) \,, \quad \hat{\mathfrak{s}} = x_1 x_2 s$$

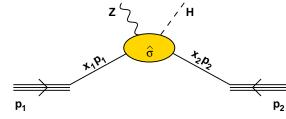
- ▶ Total X-section is *factorized* into a 'hard part' $\hat{\sigma}(x_1p_1, x_2p_2, \mu^2)$ and 'normalization' from parton distribution functions (PDF).
- Measure total cross section ↔ need to know PDFs to be able to test hard part (e.g. Higgs electroweak couplings).
- ▶ Picture seems intuitive, but
 - ▶ how can we determine the PDFs?
 - does picture really stand up to QCD corrections?

Cross section for some hard process in hadron-hadron collisions



- ► Total X-section is *factorized* into a 'hard part' $\hat{\sigma}(x_1p_1, x_2p_2, \mu^2)$ and 'normalization' from parton distribution functions (PDF).
- Measure total cross section ↔ need to know PDFs to be able to test hard part (e.g. Higgs electroweak couplings).
- ▶ Picture seems intuitive, but
 - ▶ how can we determine the PDFs?
 - does picture really stand up to QCD corrections?

Cross section for some hard process in hadron-hadron collisions

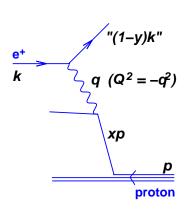


$$\sigma = \int dx_1 f_{q/p}(x_1, \mu^2) \int dx_2 f_{\bar{q}/\bar{p}}(x_2, \mu^2) \, \hat{\sigma}(x_1 p_1, x_2 p_2, \mu^2) \,, \quad \hat{\mathfrak{s}} = x_1 x_2 s$$

- ► Total X-section is *factorized* into a 'hard part' $\hat{\sigma}(x_1p_1, x_2p_2, \mu^2)$ and 'normalization' from parton distribution functions (PDF).
- ► Measure total cross section \leftrightarrow *need to know PDFs* to be able to test hard part (e.g. Higgs electroweak couplings).
- ▶ Picture seems intuitive. but
- how can we determine the PDFs?
 - does picture really stand up to QCD corrections?

Deep Inelastic Scattering: kinematics

Hadron-hadron is complex because of two incoming partons — so start with simpler Deep Inelastic Scattering (DIS).



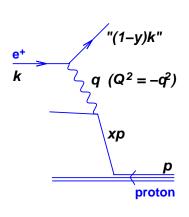
Kinematic relations:

$$x=rac{Q^2}{2p.q}; \quad y=rac{p.q}{p.k}; \quad Q^2=xys$$
 $\sqrt{s}= ext{c.o.m. energy}$

- ▶ Q^2 = photon virtuality \leftrightarrow *transverse resolution* at which it probes proton structure
- ► *x* = *longitudinal momentum fraction* of struck parton in proton
- ▶ y = momentum fraction lost by electron (in proton rest frame)

Deep Inelastic Scattering: kinematics

Hadron-hadron is complex because of two incoming partons — so start with simpler Deep Inelastic Scattering (DIS).

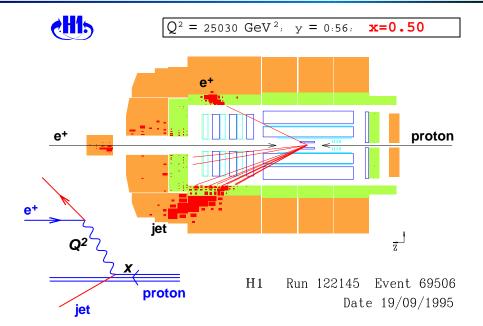


Kinematic relations:

$$x=rac{Q^2}{2p.q}; \quad y=rac{p.q}{p.k}; \quad Q^2=xys$$
 $\sqrt{s}= ext{c.o.m. energy}$

- ► Q² = photon virtuality ↔ transverse resolution at which it probes proton structure
- ► *x* = *longitudinal momentum fraction* of struck parton in proton
- y = momentum fraction lost by electron (in proton rest frame)

Deep Inelastic scattering (DIS): example



E.g.: extracting u & d distributions

Write DIS X-section to zeroth order in α_s ('quark parton model'):

$$\frac{d^2\sigma^{em}}{dxdQ^2} \simeq \frac{4\pi\alpha^2}{xQ^4} \left(\frac{1 + (1 - y)^2}{2} F_2^{em} + \mathcal{O}\left(\alpha_{\rm s}\right) \right)$$

$$\propto F_2^{em} \qquad [structure function]$$

$$F_2 = x(e_u^2 u(x) + e_d^2 d(x)) = x\left(\frac{4}{9}u(x) + \frac{1}{9}d(x)\right)$$

[u(x), d(x): parton distribution functions (PDF)]

<u>NB:</u>

- use perturbative language for interactions of up and down quarks
- but distributions themselves have a non-perturbative origin.

E.g.: extracting u & d distributions

Write DIS X-section to zeroth order in α_s ('quark parton model'):

$$\frac{d^2\sigma^{em}}{dxdQ^2} \simeq \frac{4\pi\alpha^2}{xQ^4} \left(\frac{1 + (1 - y)^2}{2} F_2^{em} + \mathcal{O}\left(\alpha_{\rm s}\right) \right)$$

$$\propto F_2^{em} \qquad [\text{structure function}]$$

$$F_2 = x(e_u^2 u(x) + e_d^2 d(x)) = x\left(\frac{4}{9}u(x) + \frac{1}{9}d(x)\right)$$

 $[u(x),\ d(x)$: parton distribution functions (PDF)]

<u>NB:</u>

- use perturbative language for interactions of up and down quarks
- but distributions themselves have a *non-perturbative* origin.

 F_2 gives us *combination* of u and d. How can we extract them separately?

Extracting full flavour structure?

Using neutrons and isospin

$$F_2^n = \frac{4}{9}u_n(x) + \frac{1}{9}d_n(x)$$

- Using charged-current (W^\pm) scattering [neutrinos instead of electrons in initial or final-state]
 - $\triangleright \nu$ interacts only with d, \bar{u}
 - \blacktriangleright angular structure of interaction differs between d and $\bar{\iota}$

Extracting full flavour structure?

Using neutrons and isospin

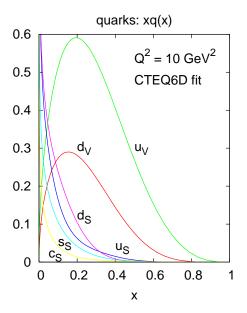
$$F_2^n = \frac{4}{9}u_n(x) + \frac{1}{9}d_n(x) \simeq \frac{4}{9}d_p(x) + \frac{1}{9}u_p(x)$$

- ▶ Using charged-current (W^{\pm}) scattering [neutrinos instead of electrons in initial or final-state
 - $\triangleright \nu$ interacts only with d, \bar{u}
 - \triangleright angular structure of interaction differs between d and \bar{t}

Using neutrons and isospin

$$F_2^n = \frac{4}{9}u_n(x) + \frac{1}{9}d_n(x) \simeq \frac{4}{9}d_p(x) + \frac{1}{9}u_p(x)$$

- ullet Using charged-current (W^\pm) scattering [neutrinos instead of electrons in initial or final-state]
 - $\blacktriangleright \nu$ interacts only with d, \bar{u}
 - ightharpoonup angular structure of interaction differs between d and \bar{u}



These & other methods \rightarrow whole set of quarks & antiquarks

NB: also strange and charm quarks

▶ valence quarks $(u_V = u - \bar{u})$ are hard

$$x o 1: xq_V(x) \sim (1-x)^3$$
 quark counting r

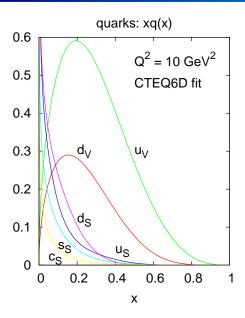
$$x \to 0$$
: $xq_V(x) \sim x^{0.3}$

Regge theory

▶ sea quarks $(u_S = 2\bar{u}, ...)$ fairly soft (low-momentum)

$$x \to 1 : xq_S(x) \sim (1-x)^7$$

$$x \to 0 : xq_S(x) \sim x^{-0.2}$$



These & other methods \rightarrow whole set of quarks & antiquarks

NB: also strange and charm quarks

▶ valence quarks $(u_V = u - \bar{u})$ are hard

$$x o 1: xq_V(x) \sim (1-x)^3$$
 quark counting rules

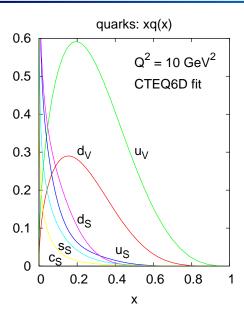
$$x \rightarrow 0: xq_V(x) \sim x^{0.5}$$

Regge theory

sea quarks $(u_5 = 2\bar{u}, ...)$ fairly soft (low-momentum)

$$x \rightarrow 1 : xq_S(x) \sim (1-x)^t$$

 $x \rightarrow 0 : xq_S(x) \sim x^{-0.2}$



These & other methods \rightarrow whole set of quarks & antiquarks

NB: also strange and charm quarks

▶ valence quarks $(u_V = u - \bar{u})$ are hard

$$x \rightarrow 1: xq_V(x) \sim (1-x)^3$$
 quark counting rules $x \rightarrow 0: xq_V(x) \sim x^{0.5}$

Regge theory

▶ sea quarks $(u_S = 2\bar{u}, ...)$ fairly soft (low-momentum) $x \to 1 : xq_S(x) \sim (1-x)^7$

$$x \rightarrow 1 : xq_S(x) \sim (1-x)^{-1}$$

 $x \rightarrow 0 : xq_S(x) \sim x^{-0.2}$

$$\sum_{i} \int dx \, x q_i(x) = 1$$

q_i	momentum
d_V	0.111
u_V	0.267
d_S	0.066
us	0.053
SS	0.033
CS	0.016
total	0.546

Where is missing momentum? Only parton type we've neglected so far is the

gluon

Not directly probed by photon or $W^\pm.$ NB: need to know it for gg -

$$\sum_{i} \int dx \, x q_i(x) = 1$$

q_i	momentum
d_V	0.111
u_V	0.267
d_S	0.066
us	0.053
s _s	0.033
CS	0.016
total	0.546

Where is missing momentum?

gluon

Not directly probed by photon or W^{\pm} .

NB: need to know it for $gg \rightarrow H$

$$\sum_{i} \int dx \, x q_i(x) = 1$$

q_i	momentum
d_V	0.111
u_V	0.267
d_S	0.066
us	0.053
s _S	0.033
CS	0.016
total	0.546

Where is missing momentum?

Only parton type we've neglected so far is the

gluon

Not directly probed by photon or W^{\pm} .

NB: need to know it for $gg \rightarrow H$

$$\sum_{i} \int dx \, x q_i(x) = 1$$

q_i	momentum
d_V	0.111
u_V	0.267
d_S	0.066
us	0.053
s _S	0.033
CS	0.016
total	0.546

Where is missing momentum?

Only parton type we've neglected so far is the

gluon

Not directly probed by photon or W^{\pm} .

NB: need to know it for $gg \rightarrow H$

$$\sum_{i} \int dx \, x q_i(x) = 1$$

q_i	momentum
d_V	0.111
u_V	0.267
d_S	0.066
us	0.053
s _S	0.033
CS	0.016
total	0.546

Where is missing momentum?

Only parton type we've neglected so far is the

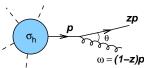
gluon

Not directly probed by photon or W^{\pm} .

NB: need to know it for $gg \rightarrow H$

Tuesday's lecture: calculated $q \to qg$ ($\theta \ll 1$, $E \ll p$) for final state of arbitrary hard process (σ_h):

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta^2}{\theta^2}$$



Rewrite with different kinematic variables

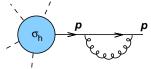
$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

$$E = (1 - z)p$$

$$k_t = E \sin \theta \simeq E\theta$$

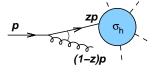
If we avoid distinguishing q+g final state from q (infrared-collinear safety), then divergent real and virtual corrections $\it cancel$

$$\sigma_{h+V} \simeq -\sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$



For initial state splitting, hard process occurs *after splitting*, and momentum entering hard process is modified: $p \rightarrow zp$.

$$\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$



For virtual terms, momentum entering hard process is unchanged

$$\sigma_{V+h}(\mathbf{p}) \simeq -\sigma_h(\mathbf{p}) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

$$\frac{\mathbf{p}}{\mathbf{q}} = \frac{\mathbf{p}}{\mathbf{q}} \mathbf{p}$$

Total cross section gets contribution with two different hard X-sections

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{\rm s} C_F}{\pi} \int \frac{dk_t^2}{k_t^2} \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]$$

NB: We assume σ_h involves momentum transfers $\sim Q \gg k_t$, so ignore extra transverse momentum in σ_h

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s}C_{F}}{\pi} \int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}} \int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]$$

- ▶ In soft limit $(z \to 1)$, $\sigma_h(zp) \sigma_h(p) \to 0$: soft divergence cancels.
- ▶ For $1 z \neq 0$, $\sigma_h(zp) \sigma_h(p) \neq 0$, so z integral is non-zero but finite.

BUT: k_t integral is just a factor, and is *infinite*

This is a collinear $(k_t \to 0)$ divergence. Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles So how do we do QCD calculations in such cases?

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}} \underbrace{\int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]}_{\text{finite}}$$

- ▶ In soft limit $(z \to 1)$, $\sigma_h(zp) \sigma_h(p) \to 0$: soft divergence cancels.
- ▶ For $1 z \neq 0$, $\sigma_h(zp) \sigma_h(p) \neq 0$, so z integral is non-zero but finite.

BUT: k_t integral is just a factor, and is *infinite*

This is a collinear $(k_t \to 0)$ divergence. Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles So how do we do QCD calculations in such cases?

Initial-state collinear divergence

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}}}_{\text{infinite}} \underbrace{\int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]}_{\text{finite}}$$

- ▶ In soft limit $(z \to 1)$, $\sigma_h(zp) \sigma_h(p) \to 0$: soft divergence cancels.
- ▶ For $1 z \neq 0$, $\sigma_h(zp) \sigma_h(p) \neq 0$, so z integral is non-zero but finite.

BUT: k_t integral is just a factor, and is *infinite*

This is a collinear $(k_t o 0)$ divergence.

Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles So how do we do QCD calculations in such cases?

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}}}_{\text{infinite}} \underbrace{\int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]}_{\text{finite}}$$

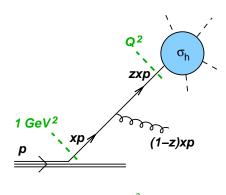
- ▶ In soft limit $(z \to 1)$, $\sigma_h(zp) \sigma_h(p) \to 0$: soft divergence cancels.
- ▶ For $1 z \neq 0$, $\sigma_h(zp) \sigma_h(p) \neq 0$, so z integral is non-zero but finite.

BUT: k_t integral is just a factor, and is *infinite*

This is a collinear $(k_t o 0)$ divergence.

Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles
So how do we do QCD calculations in such cases?



By what right did we go to $k_t = 0$?

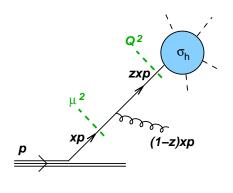
We assumed pert. QCD to be valid for all scales, but *below* 1 GeV *it becomes* non-perturbative.

Cut out this divergent region, & instead put non-perturbative quark distribution in proton.

$$\sigma_0 = \int dx \; \sigma_h(\mathbf{x}p) \; q(\mathbf{x}, 1 \; \text{GeV}^2)$$

$$\sigma_1 \simeq \frac{\alpha_{\rm s} C_F}{\pi} \underbrace{\int_{1~{\rm GeV}^2}^{Q^2} \frac{dk_t^2}{k_t^2}}_{\rm finite~(large)} \underbrace{\int \frac{dx~dz}{1-z} \left[\sigma_h({\sf z}{\sf x}{\sf p}) - \sigma_h({\sf x}{\sf p})\right] q({\sf x}, 1~{\rm GeV}^2)}_{\rm finite}$$

In general: replace $1~{\sf GeV}^2$ cutoff with arbitrary $\emph{factorization scale}~\mu^2$.



By what right did we go to $k_t = 0$?

We assumed pert. QCD to be valid for all scales, but *below* 1 GeV *it becomes* non-perturbative.

Cut out this divergent region, & instead put non-perturbative quark distribution in proton.

$$\sigma_0 = \int dx \; \sigma_h(\mathbf{x}p) \; q(\mathbf{x}, \mu^2)$$

$$\sigma_1 \simeq \frac{\alpha_{\rm s} C_F}{\pi} \underbrace{\int_{\mu^2}^{Q^2} \frac{dk_t^2}{k_t^2}}_{\text{finite (large)}} \underbrace{\int \frac{dx \, dz}{1-z} \left[\sigma_h(\mathbf{z} \mathbf{x} \mathbf{p}) - \sigma_h(\mathbf{x} \mathbf{p}) \right] \mathbf{q}(\mathbf{x}, \mu^2)}_{\text{finite}}$$

In general: replace 1 GeV² cutoff with arbitrary factorization scale μ^2 .

- Collinear divergence for incoming partons not cancelled by virtuals.
 Real and virtual have different longitudinal momenta
- Situation analogous to renormalization: need to regularize (but in IR instead of UV).
 Technically, often done with dimensional regularization
- Physical sense of regularization is to separate (factorize) proton non-perturbative dynamics from perturbative hard cross section.
 - Choice of factorization scale, μ^2 , is arbitrary between 1 ${\rm GeV}^2$ and ${\it Q}^2$
- In analogy with running coupling, we can *vary factorization scale* and get a *renormalization group equation* for parton distribution functions.

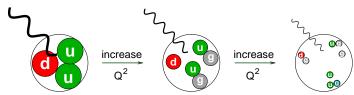
Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

- ► Collinear divergence for incoming partons *not cancelled* by virtuals.

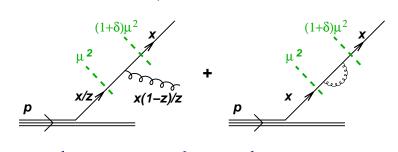
 Real and virtual have different longitudinal momenta
- ► Situation analogous to renormalization: need to *regularize* (but in IR
- instead of UV).

 Technically, often done with dimensional regularization
- Physical sense of regularization is to separate (factorize) proton non-perturbative dynamics from perturbative hard cross section.
 Choice of factorization scale, μ², is arbitrary between 1 GeV² and Q²
- ▶ In analogy with running coupling, we can *vary factorization scale* and get a *renormalization group equation* for parton distribution functions.

Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)



Change convention: (a) now *fix outgoing* longitudinal momentum x; (b) *take derivative* wrt factorization scale μ^2



$$\frac{dq(x,\mu^2)}{d \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \, p_{qq}(z) \, \frac{q(x/z,\mu^2)}{z} - \frac{\alpha_s}{2\pi} \int_0^1 dz \, p_{qq}(z) \, q(x,\mu^2)$$

$$p_{qq}$$
 is real $q \leftarrow q$ splitting kernel: $p_{qq}(z) = C_F \frac{1+z^2}{1-z}$

Until now we approximated it in soft (z o 1) limit, $p_{qq} \simeq rac{2\mathcal{C}_F}{1-z}$

Awkward to write real and virtual parts separately. Use more compact notation:

$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \underbrace{\int_x^1 dz \, P_{qq}(z) \, \frac{q(x/z,\mu^2)}{z}}_{P_{qq}\otimes q}, \qquad P_{qq} = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

This involves the plus prescription:

$$\int_0^1 dz \, [g(z)]_+ \, f(z) = \int_0^1 dz \, g(z) \, f(z) - \int_0^1 dz \, g(z) \, f(1)$$

z=1 divergences of g(z) cancelled if f(z) sufficiently smooth at z=1

Proton contains both quarks and gluons — so DGLAP is a *matrix in flavour*

space:

$$\frac{d}{d \ln Q^2} \left(\begin{array}{c} q \\ g \end{array} \right) = \left(\begin{array}{cc} P_{q \leftarrow q} & P_{q \leftarrow g} \\ P_{g \leftarrow q} & P_{g \leftarrow g} \end{array} \right) \otimes \left(\begin{array}{c} q \\ g \end{array} \right)$$

[In general, matrix spanning all flavors, anti-flavors, $P_{qq'}=0$ (LO), $P_{\bar{q}g}=P_{qg}$]

Splitting functions are:

$$P_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right], \qquad P_{gq}(z) = C_F \left[\frac{1 + (1-z)^2}{z} \right],$$

$$P_{gg}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \delta(1-z) \frac{(11C_A - 4n_f T_R)}{6}.$$

Have various symmetries / significant properties, e.g.

$$ightharpoonup P_{qg}, P_{gg}$$
: symmetric $z \leftrightarrow 1-z$

(except virtuals)

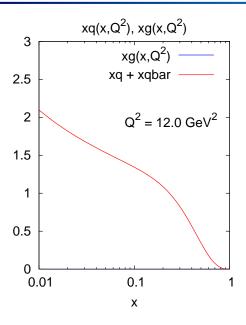
▶
$$P_{qq}$$
, P_{gg} : diverge for $z \rightarrow 1$

soft gluon emission

▶
$$P_{gg}$$
, P_{gq} : diverge for $z \to 0$

Implies PDFs grow for $x \to 0$

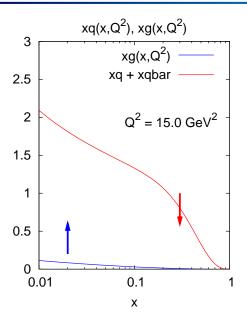
Effect of DGLAP (initial quarks)



Take example evolution starting with just quarks:

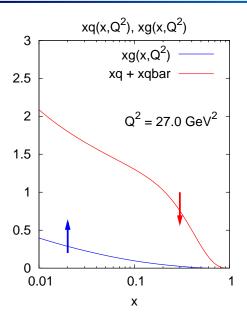
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



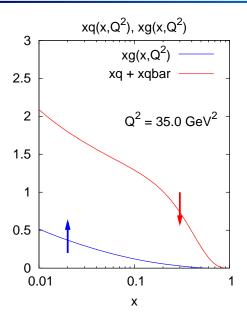
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



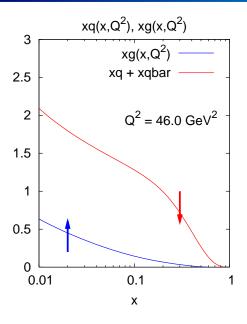
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



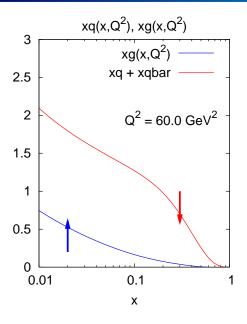
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



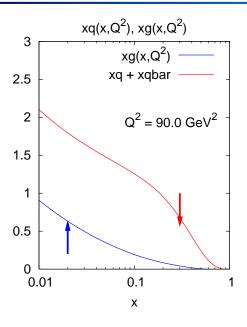
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



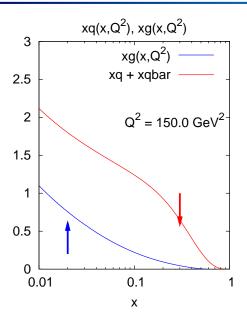
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



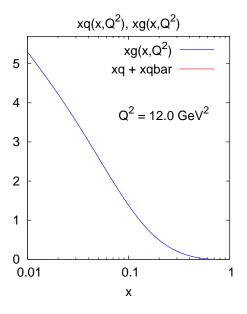
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



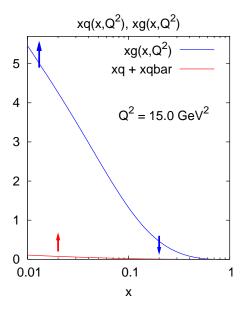
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$$

- quark is depleted at large x
- gluon grows at small x



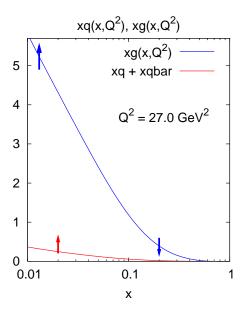
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



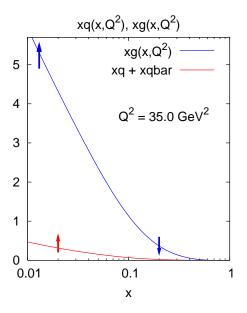
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



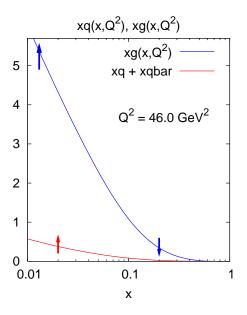
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



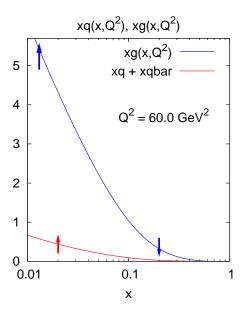
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



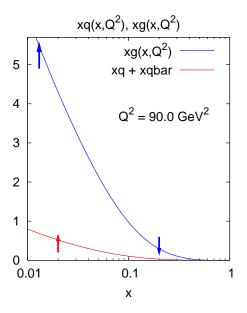
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



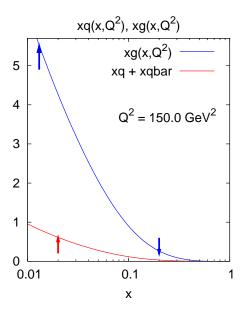
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

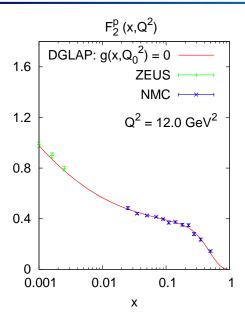


$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
$$\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

- As Q^2 increases, partons lose longitudinal momentum; distributions all shift to lower x.
- ▶ gluons can be seen because they help drive the quark evolution.

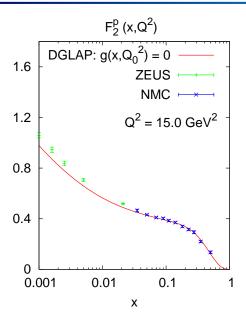
Now consider data



NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

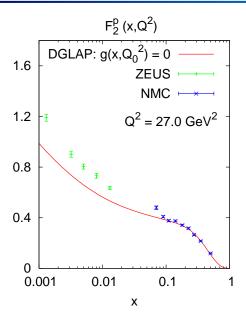
$$g(x,Q_0^2)=0$$



NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

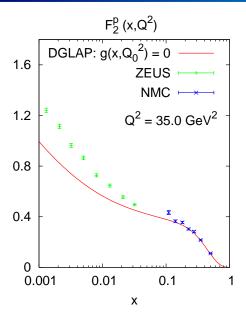
$$g(x,Q_0^2)=0$$



NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

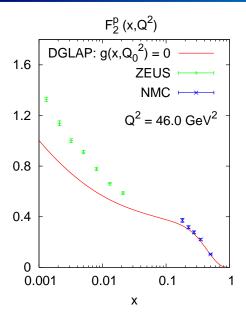
$$g(x,Q_0^2)=0$$



NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

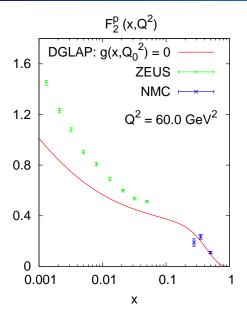


NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.



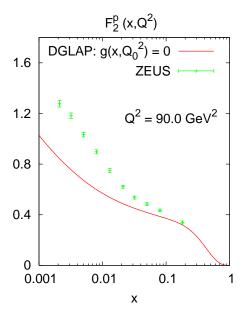
Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x, Q_0^2) = 0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.

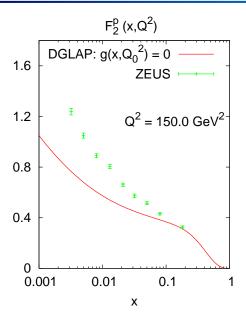


NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.

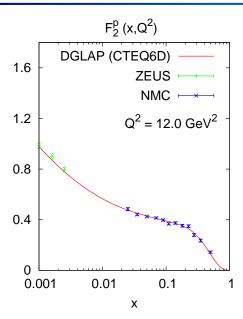


NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

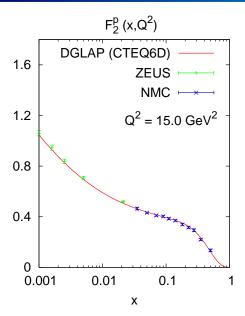
$$g(x,Q_0^2)=0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.



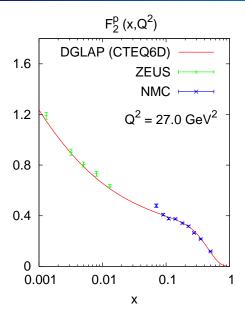
→ faster rise of F₂

Find a gluon distribution that leads to correct evolution in Q^2 .



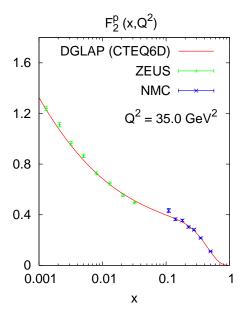
 \rightarrow faster rise of F_2

Find a gluon distribution that leads to correct evolution in Q^2 .



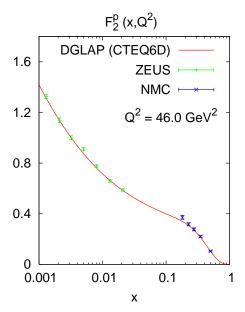
→ faster rise of F₂

Find a gluon distribution that leads to correct evolution in Q^2 .



 \rightarrow faster rise of F_2

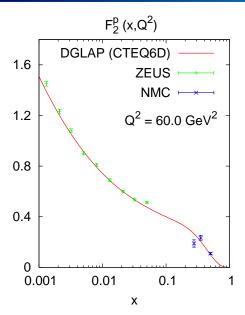
Find a gluon distribution that leads to correct evolution in Q^2 .



 \rightarrow faster rise of F_2

Find a gluon distribution that leads to correct evolution in Q^2 .

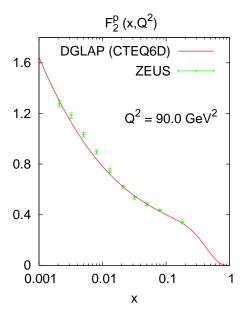
Done for us by CTEQ, MRST, ... PDF fitting collaborations.



 \rightarrow faster rise of F_2

Find a gluon distribution that leads to correct evolution in Q^2 .

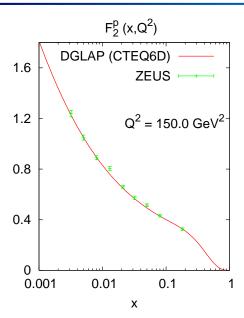
Done for us by CTEQ, MRST, ... PDF fitting collaborations.



→ faster rise of F₂

Find a gluon distribution that leads to correct evolution in Q^2 .

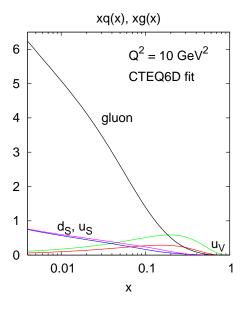
Done for us by CTEQ, MRST, ... PDF fitting collaborations.



 \rightarrow faster rise of F_2

Find a gluon distribution that leads to correct evolution in Q^2 .

Done for us by CTEQ, MRST, ... PDF fitting collaborations.



Gluon distribution is **HUGE!**

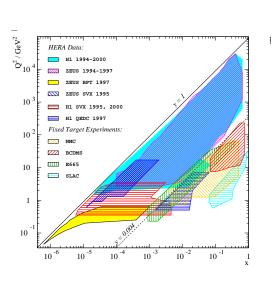
Can we really trust it?

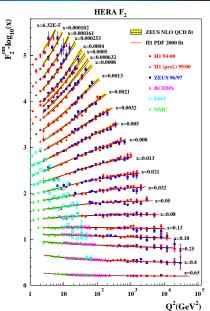
 Consistency: momentum sum-rule is now satisfied.

NB: gluon mostly at small x

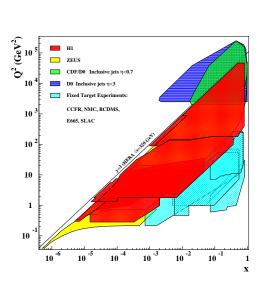
Agrees with vast range of data

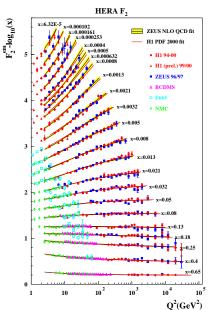
DIS data and global fits





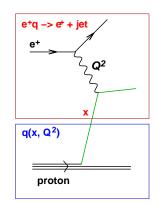
DIS data and global fits

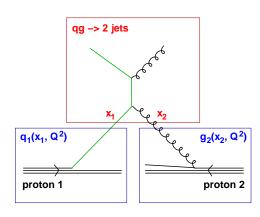




Factorization of QCD cross-sections into convolution of:

- hard (perturbative) process-dependent partonic subprocess
- non-perturbative, process-independent parton distribution functions



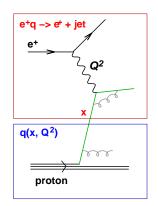


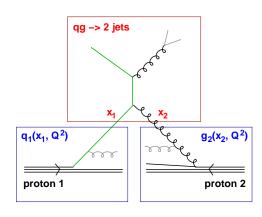
$$\sigma_{ep} = \sigma_{eq} \otimes q$$

$$\sigma_{pp o 2 \, \text{jets}} = \sigma_{qg o 2 \, \text{jets}} \otimes q_1 \otimes g_2 + \cdots$$

Factorization of QCD cross-sections into convolution of:

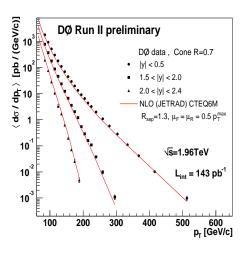
- hard (perturbative) process-dependent partonic subprocess
- non-perturbative, process-independent parton distribution functions





$$\sigma_{ep} = \sigma_{eq} \otimes q$$

$$\sigma_{pp o 2 \, jets} = \sigma_{qg o 2 \, jets} \otimes q_1 \otimes g_2 + \cdots$$



$$gg o gg$$
 , $qg o qg$

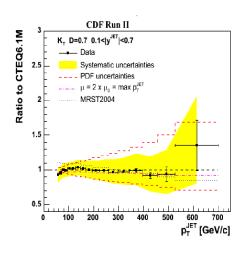
NB: more complicated to interpret than DIS, since many channels, and x_1 , x_2 dependence.

$$p_T \sim \sqrt{x_1 x_2 s}$$
 jet transverse mom.

$$y \sim \frac{1}{2} \log \frac{x_1}{x_2}$$

$$y = \log \tan \frac{\theta}{2}$$

jet angle wrt $par{p}$ beams



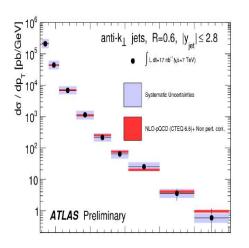
$$gg \rightarrow gg$$
, $qg \rightarrow qg$

NB: more complicated to interpret than DIS, since many channels, and x_1 , x_2 dependence.

$$p_T \sim \sqrt{x_1 x_2 s}$$
 jet transverse mom.

$$y \sim \frac{1}{2} \log \frac{x_1}{x_2} \qquad \qquad y = \log \tan \frac{\theta}{2}$$

jet angle wrt $par{p}$ beams



$$gg \rightarrow gg$$
, $qg \rightarrow qg$

NB: more complicated to interpret than DIS, since many channels, and x_1 , x_2 dependence.

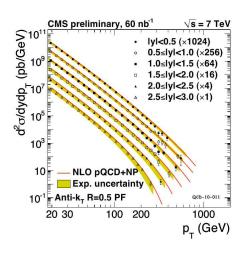
$$p_T \sim \sqrt{x_1 x_2 s}$$
 jet transverse mom.

$$y \sim \frac{1}{2} \log \frac{x_1}{x_2}$$

jet angle wrt $p\bar{p}$ beams

 $y = \log \tan \frac{\theta}{2}$

Good agreement confirms factorization



$$gg \rightarrow gg$$
, $qg \rightarrow qg$

NB: more complicated to interpret than DIS, since many channels, and x_1 , x_2 dependence.

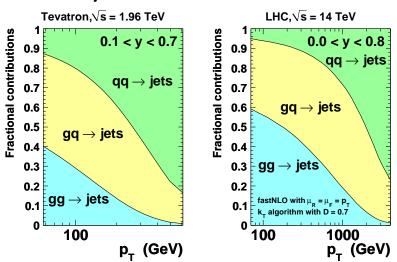
$$p_T \sim \sqrt{x_1 x_2 s}$$
 jet transverse mom.

$$y \sim \frac{1}{2} \log \frac{x_1}{x_2} \qquad \qquad y = \log \tan \frac{\theta}{2}$$

jet angle wrt $par{p}$ beams

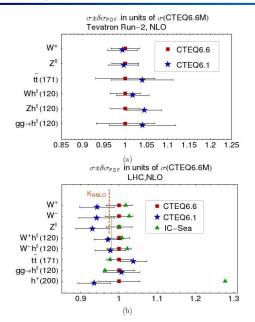
Good agreement confirms factorization

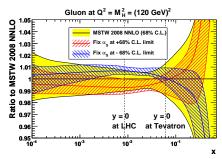
Inclusive jet cross sections with MSTW 2008 NLO PDFs



A large fraction of jets are gluon-induced

Uncertainties on predictions



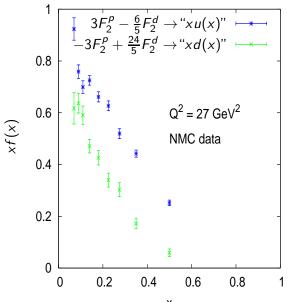


General message

Data-related errors on PDFs are such that uncertainties are just a few % for many key Tevatron and LHC observables

- Experiments tell us that proton really is what we expected (uud)
- ▶ Plus lots more: large number of 'sea quarks' $(q\bar{q})$, gluons (50% of momentum)
- ► *Factorization* is key to usefulness of PDFs
 - Non-trivial beyond lowest order
 - ► PDFs depend on factorization scale, evolve with *DGLAP equation*
 - ▶ Pattern of *evolution gives us info on gluon* (otherwise hard to measure)
 - PDFs really are universal!
- Precision of data & QCD calculations is striking.
- Crucial for understanding future signals of new particles, e.g. Higgs Boson production at LHC.

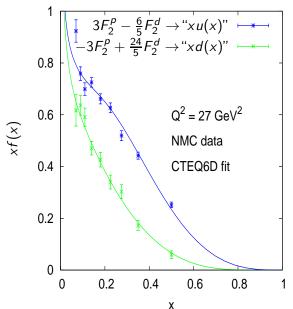
EXTRAS



▶ Definitely more up than down (✓)

How much u and d?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- $\triangleright u(x) \sim d(x) \sim x^{-1}$

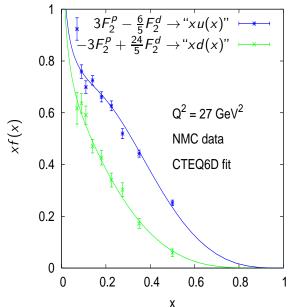


▶ Definitely more up than down (✓)

How much *u* and *d*?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- ▶ $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

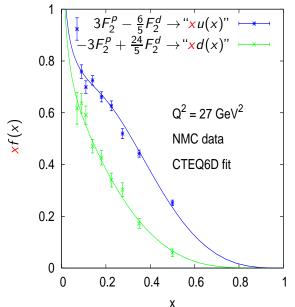


▶ Definitely more up than down (✓)

How much *u* and *d*?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

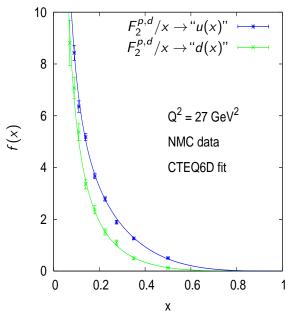


▶ Definitely more up than down (✓)

How much u and d?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\frac{4}{9}u + \frac{1}{9}d)$
- ▶ $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

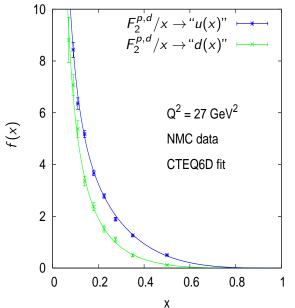


▶ Definitely more up than down (✓)

How much u and d?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\tfrac{4}{9}u + \tfrac{1}{9}d)$
- ▶ $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence



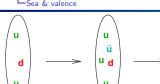
▶ Definitely more up than down (✓)

How much *u* and *d*?

- ▶ Total $U = \int dx \ u(x)$
- $F_2 = x(\tfrac{4}{9}u + \tfrac{1}{9}d)$
- ▶ $u(x) \sim d(x) \sim x^{-1.25}$

non-integrable divergence

Anti-quarks in proton



How can there be infinite number of quarks in proton?

Proton wavefunction *fluctuates* — extra $u\bar{u}$, $d\bar{d}$ pairs (*sea quarks*) can appear:

Antiquarks also have distributions, $\bar{u}(x)$, $\bar{d}(x)$

$$F_2 = \frac{4}{9}(xu(x) + x\overline{u}(x)) + \frac{1}{9}(xd(x) + x\overline{d}(x))$$

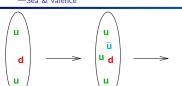
NB: photon interaction \sim square of charge ightarrow +ve

- lacktriangle Previous transparency: we were actually looking at $\sim u + ar{u},\ d + ar{d}$
- ▶ Number of extra quark-antiquark pairs can be infinite, so

$$\int dx \left(u(x) + \bar{u}(x)\right) = \infty$$

as long as they carry little momentum (mostly at low x

Anti-quarks in proton



How can there be infinite number of quarks in proton?

Proton wavefunction *fluctuates* — extra $u\bar{u}$, $d\bar{d}$ pairs (*sea quarks*) can appear:

Antiquarks also have distributions, $\bar{u}(x)$, $\bar{d}(x)$

$$F_2 = \frac{4}{9}(xu(x) + x\overline{u}(x)) + \frac{1}{9}(xd(x) + x\overline{d}(x))$$

NB: photon interaction \sim square of charge \rightarrow +ve

- ightharpoonup Previous transparency: we were actually looking at $\sim u + \bar{u}, \ d + \bar{d}$
- ▶ Number of extra quark-antiquark pairs can be *infinite*, so

$$\int dx \left(u(x) + \bar{u}(x)\right) = \infty$$

as long as they carry little momentum (mostly at low x

Anti-quarks in proton

How can there be infinite number of quarks in proton?

Proton wavefunction *fluctuates* — extra $u\bar{u}$, $d\bar{d}$ pairs (*sea quarks*) can appear:

Antiquarks also have distributions, $\bar{u}(x)$, $\bar{d}(x)$

$$F_2 = \frac{4}{9}(xu(x) + x\bar{u}(x)) + \frac{1}{9}(xd(x) + x\bar{d}(x))$$

NB: photon interaction \sim square of charge \rightarrow +ve

$$ightharpoonup$$
 Previous transparency: we were actually looking at $\sim u + \bar{u}, \ d + \bar{d}$

$$\int dx \left(u(x) + \bar{u}(x)\right) = \infty$$

as long as they carry little momentum (mostly at low x)

When we say proton has 2 up quarks & 1 down quark we mean

$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

 $u - \bar{u} = u_V$ is known as a *valence* distribution.

How do we measure difference between u and \bar{u} ? Photon interacts identically with both \rightarrow no good...

Question: what interacts differently with particle & antiparticle?

Answer: W^+ or W^-

$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

 $u - \bar{u} = u_V$ is known as a *valence* distribution.

How do we measure difference between u and \bar{u} ? Photon interacts identically with both \rightarrow no good...

Question: what interacts differently with particle & antiparticle?

When we say proton has 2 up quarks & 1 down quark we mean

$$\int dx \left(u(x) - \bar{u}(x)\right) = 2, \qquad \int dx \left(d(x) - \bar{d}(x)\right) = 1$$

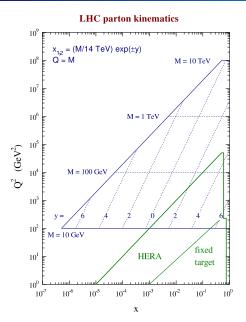
 $u - \bar{u} = u_V$ is known as a *valence* distribution.

How do we measure difference between u and \bar{u} ? Photon interacts identically with both \rightarrow no good...

Question: what interacts differently with particle & antiparticle?

Answer: W^+ or W^-

Taking PDFs from HERA to LHC



Suppose we produce a system of mass M at LHC from partons with momentum fractions x_1 , x_2 :

$$M = \sqrt{x_1 x_2 s}$$

► rapidity
$$y = \frac{1}{2} \ln \frac{x_1}{x_2}$$

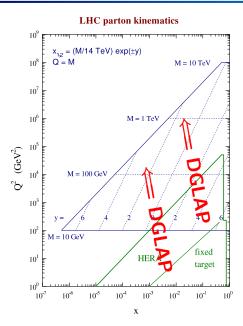
pseudorapidity $\equiv \eta \equiv \ln \tan \frac{\theta}{2}$
= rapidity for massless objects
 $\lesssim 5$ at LHC

Are PDFs being used in region where measured?

Only partial kinematic overlap

DGLAP evolution is essential for the prediction of PDFs in the LHC domain.

Taking PDFs from HERA to LHC



Suppose we produce a system of mass M at LHC from partons with momentum fractions x_1 , x_2 :

$$M = \sqrt{x_1 x_2 s}$$

► rapidity
$$y = \frac{1}{2} \ln \frac{x_1}{x_2}$$

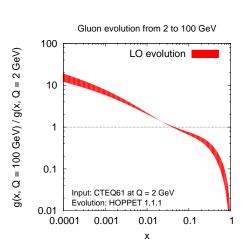
pseudorapidity $\equiv \eta \equiv \ln \tan \frac{\theta}{2}$
= rapidity for massless objects
 $\lesssim 5$ at LHC

Are PDFs being used in region where measured?

Only partial kinematic overlap

 DGLAP evolution is essential for the prediction of PDFs in the LHC domain.

By how much do PDFs evolve?



Illustrate for the gluon distribution Here using fixed Q scales But for HERA \rightarrow LHC relevant Q range is x-dependent

- ▶ See factors $\sim 0.1 10$
- Remember: LHC involves product of two parton densities

It's crucial to get this right!

Without DGLAP evolution, you couldn't predict anything at LHC

It's not enough for data-related errors to be small.

DGLAP evolution must also be well constrained.

So evolution must be done with more than just leading-order DGLAP splitting functions

Higher-order calculations

Earlier, we saw leading order (LO) DGLAP splitting functions, $P_{ab} = \frac{\alpha_s}{2\pi} P_{ab}^{(0)}$:

$$P_{qq}^{(0)}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right] ,$$

$$P_{qg}^{(0)}(x) = T_R \left[x^2 + (1-x)^2 \right] ,$$

$$P_{gq}^{(0)}(x) = C_F \left[\frac{1+(1-x)^2}{x} \right] ,$$

$$P_{gg}^{(0)}(x) = 2C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] + \delta(1-x) \frac{(11C_A - 4n_f T_R)}{6} .$$

Higher-order calculations

$$\begin{split} & \rho_{\rm qg}^{(1)}(x) \ = \ 4 \, C_{AP} \left(\frac{20}{9} \frac{1}{x} - 2 + 25x - 2\rho_{\rm qg}(-x) \mathbf{H}_{-1,0} - 2\rho_{\rm qg}(x) \mathbf{H}_{1,1} + x^2 \left[\frac{44}{3} \, \mathbf{H}_0 - \frac{218}{9} \right] \right. \\ & + 4(1-x) \left[\mathbf{H}_{0,0} - 2\mathbf{H}_0 + x\mathbf{H}_1 \right] - 4\zeta_2 x - 6\mathbf{H}_{0,0} + 9\mathbf{H}_0 \right) + 4 \, C_{FP} \left(2\rho_{\rm qg}(x) \left[\mathbf{H}_{1,0} + \mathbf{H}_{1,1} + \mathbf{H}_2 - \zeta_2 \right] \right. \\ & + \left. \left(2\rho_{\rm qg}(x) \left[\mathbf{H}_{1,0} + \mathbf{H}_{1,1} + \mathbf{H}_2 - 2x \mathbf{H}_1 + \frac{29}{4} \right] - \frac{15}{2} - \mathbf{H}_{0,0} - \frac{1}{2} \mathbf{H}_0 \right) \right] \\ & \left. \left(2\rho_{\rm qg}(x) \left[\mathbf{H}_{1,0} + \mathbf{H}_{1,1} + \mathbf{H}_2 - \frac{11}{6} \mathbf{H}_1 \right] - x^2 \left[\frac{8}{3} \, \mathbf{H}_0 - \frac{44}{9} \right] + 4\zeta_2 - 2 \right. \\ & \left. \left(-7\mathbf{H}_0 + 2\mathbf{H}_{0,0} - 2\mathbf{H}_1 + (1 + x) \left[2\mathbf{H}_{0,0} - 5\mathbf{H}_0 + \frac{37}{9} \right] - 2\rho_{\rm gq}(-x) \mathbf{H}_{-1,0} \right) - 4 \, C_{FP} \left(\frac{2}{3} x \right) \right. \\ & \left. \left(-\rho_{\rm gq}(x) \left[\frac{2}{3} \mathbf{H}_1 - \frac{10}{9} \right] \right) + 4 \, C_F \left(\rho_{\rm gq}(x) \left[3\mathbf{H}_1 - 2\mathbf{H}_{1,1} \right] + (1 + x) \left[\mathbf{H}_{0,0} - \frac{7}{2} + \frac{7}{2} \mathbf{H}_0 \right] - 3\mathbf{H}_{0,0} \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) - \frac{13}{9} \left(\frac{1}{x} - x^2 \right) - \frac{2}{3} (1 + x) \mathbf{H}_0 - \frac{2}{3} \delta(1 - x) \right) + 4 \, C_F \left(2\rho_{\rm gq}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1 - x - \frac{10}{9} \rho_{\rm gg}(x) \right) \right. \\ & \left. \left(1$$

 $+\frac{2}{3}\frac{1}{x}+\frac{10}{3}x^2-12+(1+x)\left[4-5H_0-2H_{0,0}\right]-\frac{1}{3}\delta(1-x)$.

 $P_{ps}^{(1)}(x) = 4C_{F}\eta_{r}\left(\frac{20}{3}\frac{1}{r} - 2 + 6x - 4H_{0} + x^{2}\left[\frac{8}{3}H_{0} - \frac{56}{3}\right] + (1+x)\left[5H_{0} - 2H_{0,0}\right]\right)$

NLO:

$$P_{ab} = \frac{\alpha_{s}}{2\pi} P^{(0)} + \frac{\alpha_{s}^{2}}{16\pi^{2}} P^{(1)}$$

Curci, Furmanski & Petronzio '80

NNLO splitting functions

Drognos in Commissed informació distributos

The second seco

A HOUSE AND BUILDING MAN AND AND AND AND

HE HE HE WAS BUT DO DO DOWN DOWN

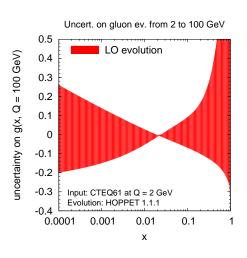
 \$\frac{1}{2}\$\tilde{\text{\$\texit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texit{\$\text{\$\texit{\$\text{\$\texit{\$\texit{\$\texititt{\$\text{\$\texit{\$\texit{\$\texit{\$\tex{

 $\begin{aligned} & \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$

$$\begin{split} & \rho_{ab}^{(1)} = -\frac{1}{2} \log \rho_{ab} \rho_{ab}^{(2)} + \frac{1}{2} Q_{a} - \frac{1}{2}$$

man per tipo de la mante della mante della

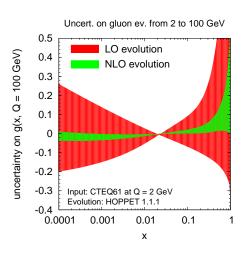
go a behaviour of the gloves gloves quinting function P_{ij}^{A} , is given by $P_{ij-1}^{A} = \frac{d_{ij}^{A}}{2} - 2q 2 + 1 + \dots + q 2 +$



Estimate uncertainties on evolution by changing the scale used for α_s inside the splitting functions

Talk more about such tricks in next lecture

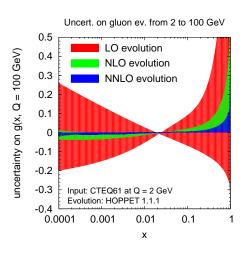
- ▶ with LO evolution, uncertainty is ~ 30%
- ▶ NLO brings it down to $\sim 5\%$
 - NNLO ightarrow Commensurate with data uncertainties



Estimate uncertainties on evolution by changing the scale used for α_s inside the splitting functions

Talk more about such tricks in next lecture

- with LO evolution, uncertainty is $\sim 30\%$
- ▶ NLO brings it down to $\sim 5\%$
 - NNLO ightarrow 2% Commensurate with data uncertainties



Estimate uncertainties on evolution by changing the scale used for α_s inside the splitting functions

Talk more about such tricks in next lecture

- with LO evolution, uncertainty is $\sim 30\%$
- ▶ NLO brings it down to $\sim 5\%$
- ► NNLO \rightarrow 2% Commensurate with data uncertainties