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L Introduction

If you work directly on LHC/Tevatron physics, what QCD
tools will you run into?

1. Monte Carlo shower programs
2. Fixed order codes
3. Procedures to “merge” their predictions

4. Jet algorithms
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L ntroduction SUSY example: gluino pair production

An example process
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Introduction

An example process

Example SUSY searches

Atlas selection [all hadronic]

* no lepton
* MET > 100 GeV

» 152" jet > 100 GeV
« 344" jet > 50 GeV

« MET /m_, > 20%
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I—Jet finding

Start with jet finding, because it's
simple(st)
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L et fincing Jets as projections
\/ v W p
LO partons NLO partons parton shower hadron level
Jet | Def " Jet | Def " Jet | Def " Jet | Def "
jetl jet2 jetl jet2 jetl jet2 jetl jet2

VAR VAR VAR V4

Projection to jets provides “common” view of different event levels

But projection is not unique: we must define what we mean by a jet
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dj = AR? = (yi — ;)2 + (6i — ¢
Y max(pg, pg;) R? [ARG = (vi — y;)* + (&7 — ¢})]

Define a single-particle distance
1

dig = —

Pti
1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a
single particle

3. Ifit'sa dig call i a jet and
remove it from list

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dyj = ARZ = (yi — yj)* + (¢i — ¢})
ij maX(Pf,-,Pfj) R2 [ ij j ) ]
Define a single-particle distance p/GeVv |
1 60 +
diB = 5
Py 50 1
40 4

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 -
single particle

- . . 20 A

3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1




QCD lecture 4 (p. 8)
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dj = ARZ = (v — v 4 (s — 2
Y max(pfl., pfj) R2 [ ij (vi yj) (¢ ¢J )]
Define a single—particle distance p/GeV ] dminis dij = 6.79154e-05
1 60 -
diB =
Pti 50 A
40 A

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 4
single particle
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remove it from list 10 J

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

di; = AR2 = (vi — vi)2 + (¢; — 2
Y max(pfi,p?j) R2 [ ij (vi yj) (¢ ¢J )]
Define a single-particle distance p/GeV ] dmin s dij = 0.000351077

0

1 6

dip = )

Py 50 A

40

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 4
single particle

- . . 20 A

3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

di; = AR2 = (vi — vi)2 + (¢; — 2
Y max(pfl., pfj) R2 [ ij (vi yj) (¢ ¢J )]
Define a single-particle distance p/GeV ] dmin s dij = 0.00022778
1 60 -
diB =
Py 50 A
40

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 4
single particle

- . . 20 A

3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

di; = AR2 = (vi — vi)2 + (¢; — 2
Y max(pfi,p?j) R2 [ ij (vi yj) (¢ ¢J )]
Define a single-particle distance p/GeV | dminis dij = 0.000380854

0

1 6

dip = )

Py 50 A

40

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 4
single particle

- . . 20 A

3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]
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1 ARU

dij = AR2 = (v — v:)2 + (b — &2
Y max(pfl., pfj) R2 [ ij (vi yj) (o ¢J )]
Define a single-particle distance p/GeV |
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diB =
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3. Ifit'sa dig call i a jet and
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4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

di; = AR2 = (vi — vi)2 + (¢; — 2
Y max(pfi,p?j) R2 [ ij (vi yj) (¢ ¢J )]
Define a single-particle distance p/GeV | dmin s dij = 0.000237041

0

1 6

dip = )

Py 50 A

40

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a 30 4
single particle

- . . 20 A

3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

d..: ARg: . .2+ PR 2
Y max(pZ, p) R? ARy = (i = )" + (90 = 9])]
Define a single-particle distance p/GeV |
1 60 +
dig = —

Pt 50 -
i 40 4

1. Find the smallest of dj; and dig
2. If it's a djj, merge / and j into a 30 -

single particle
- . . 20 A
3. Ifit'sa dig call i a jet and

remove it from list 10 J

4. Update all distances, go to step 1
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L Jet finding

The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

J 1 AR,?
Y max(pZ, p) R?
Define a single-particle distance
1
dig = —
Pti

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a
single particle

3. Ifit'sa djg call i a jet and
remove it from list

4. Update all distances, go to step 1

(AR = (vi — ;) + (6 — 7))

p/GeV
60 A

50 4

40 4

30 -+

20 -+

10 4

dmin is diB = 0.000249058
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dyj = ARZ = (yi — yj)* + (¢i — ¢})
) maX(P?;,P?j) R2 [ ] J J ]
Define a single-particle distance p/GeV |
1 60 +
dig = —
Pt 50 -
i 40 4
1. Find the smallest of dj; and dig
. Ifit's a djj, merge i and j into a 30 -

single particle
- . . 20 A
. Ifit's a dig call i a jet and

remove it from list

10 4

R

. Update all distances, go to step 1
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L Jet finding

The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

J 1 AR,?
Y max(pZ, p) R?
Define a single-particle distance
1
dig = —
Pti

1. Find the smallest of dj; and dig

2. If it's a djj, merge / and j into a
single particle

3. Ifit'sa djg call i a jet and
remove it from list

4. Update all distances, go to step 1

(AR = (vi — ;) + (6 — 7))

p/GeV
60 A

50 4

40 4

30 -+

20 -+

10 4

dmin is diB = 0.000443361
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dyj = ARZ = (yi — yj)* + (¢i — ¢})
) maX(P?;,P?j) R2 [ ] J J ]
Define a single-particle distance p/GeV |
1 60 +
dig = —
Pt 50 -
i 40 4
1. Find the smallest of dj; and dig
. Ifit's a djj, merge i and j into a 30 -

single particle
- . . 20 A
. Ifit's a dig call i a jet and

remove it from list 10 J

. Update all distances, go to step 1




QCD lecture 4 (p. 8)

L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dyj = ARZ = (yi — yj)* + (¢i — ¢})
) maX(P?;,P?j) R2 [ ] J J ]
Define a single—particle distance p/GeV J dminis diB = 0.0143453
1 60 1
dig = —
Pt 50 -
) 40
1. Find the smallest of dj; and dig

. Ifit's a djj, merge i and j into a 30 -

single particle
- . . 20 A
. Ifit'sa dig call i a jet and

remove it from list

10 4

R

. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

Define “distance” between every pair of particles: [Cacciari, GPS & Soyez '08]

2
1 ARU

dyj = ARZ = (yi — yj)* + (¢i — ¢})
) maX(P?;,P?j) R2 [ ] J J ]
Define a single-particle distance p/GeV |
1 60 +
dig = —
Pt 50 -
i 40 4
1. Find the smallest of dj; and dig
. Ifit's a djj, merge i and j into a 30 -

single particle
- . . 20 A
. Ifit's a dig call i a jet and

remove it from list 10 J

. Update all distances, go to step 1
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L et finding The anti-k; jet algorithm

The algorithm involves two parameters:

1. R, the angular reach for the jets

2. A p; threshold for the final jets to be considered relevant
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L et finding The anti-k; jet algorithm

The algorithm involves two parameters:

1. R, the angular reach for the jets

2. A p; threshold for the final jets to be considered relevant

[It’s the default algorithm for ATLAS & CMS]
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I—Accuracy of QCD

What accuracy are our predictions?

It matters if we're say a signal is just an excess
over expected backgrounds. ..
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L Accuracy of QCD total X-section e"e~ — Z — hadrons

Scale dependence

Start simply and look back at cross section for eTe™ — Z —hadrons (at

Vs = Q= My).

In lecture 1 we wrote:

2
Otot =0qg | 1 + 1.045M 4+ 0.94 (@) 4.

u
~ —-——
LO NLO NNLO

Who told us we should we should write the series
in terms of as(Q)? J

Q@ = Mz is the only physical scale in the problem, so not unreasonable.
But hardest possible gluon emission is E = Q/2. Should we have used Q/2?
And virtual gluons can have E > Q. Should we have used 2Q?
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I—Accuracy of QCD

Scale dependence

Scale dependence

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

1.1
Q= Mz
1.08 -
1.06 ~o
1.04 -

1.02

-
-~
-

e ——

0.98

0.96 -

0.1

MR/ Q

10

Start with the first order that “con-
tains QCD" (NLO).

Introduce arbitrary renormalisa-
tion scale for the coupling, ug

o™ =045 (1 + aas(pr))

Result depends on the choice of ug.
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I—Accuracyof(’,}CD Scale dependence

Scale dependence

+ -
11 scale-dep. of o(¢'e" ~ hadrons) Start with the first order that “con-
T lQ=Mm, Lo — tains QCD" (NLO).
1.08 | NLO —-—- ] )
g 106 Introduce arbitrary renormalisa-
1 . ™~ T . .
9 TNl tion scale for the coupling, ug
E 1.04 ’,,,,,,,,,:,:7,‘,5,_‘___ 7
o ‘ ‘ T NLO
5 102} : : ] o =045 (1 + cas(pr))
e} ' '
g . .
1 1 : : .
9 conventional range Result depends on the choice of ug.
o 098 r — R
10.5<x,<2; ) .
0.96 | : ‘ 1 Convention: the uncertainty on
0.1 1 10  the result is the range of answers

Hr/Q obtained for Q/2 < ug < 2Q.
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L pceuracy of QCD Scale dependence (cont.)

Scale dependence

Let's express results for arbitrary pg in terms of as(Q):

NLO(

o(ur) = 0qg (1 + cras(pr))
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L Accuraey of QCD Scale dependence (cont.)

Scale dependence

as(uR) = S —
R T T 2by as(Q) In 1R/ Q

= a5(Q) — 2bp &2(Q) Inur/Q + O (a?)
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L pceuracy of QCD Scale dependence (cont.)

Scale dependence

Let's express results for arbitrary pg in terms of as(Q):

NLO(

o(ur) = 0qg (1 + cras(pr))

R
= 045 <1 + c1as(Q) — 2c1bg In % a2(Q) + O (a?) >
As we vary the renormalisation scale pg, we introduce O (ag) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.
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L pceuracy of QCD Scale dependence (cont.)

Scale dependence

Let's express results for arbitrary pg in terms of as(Q):

o™ (uR) = 045 (1 + c1as(pr))

= 045 <1 + c1as(Q) — 2c1bg In 'u—; a2(Q) + O (a?) >

As we vary the renormalisation scale pg, we introduce O (ag) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so
as to cancel the O (af) scale variation

N p) = 045 [1 + ¢ as(pur) + C2(MR)Oé§(NR)]
coliir) = (@) + 2cibyIn ¥

Remaining uncertainty is now O (ag).
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L Accuracy of QCD

Scale dependence

Scale dependence: NNLO

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

10

11
Q=M, LO —
1.08 NLO —=-—-
1.06 ~o_ ]
104 F Tl
1.02 .
1 ‘ ‘
conventional range
0.98 — .
10.5<x,<2;
0.96 ‘ ‘ .
0.1 1

MR/ Q

See how at NNLO, scale depen-
dence is much flatter, final uncer-
tainty much smaller.
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I—Accuracy of QCD

Scale dependence

Scale dependence: NNLO

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

1.1
Q=M, LO —
1.08 | NLO —-—- ]
1.06 ~ e NNLO ===~
S T ]
1.02 | 1
1 g g
conventional range
0.98 — 1
10.5<x,<2;
0.96 ‘ ‘ 1
0.1 1 10

MR/ Q

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only o2 instead of a?
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I—Accuracy of QCD

Scale dependence

Scale dependence: NNLO

Oge - hadrons / Oce qaq

scale-dep. of a(e*e” - hadrons)

1.1
Q=M, LO —
1.08 | NLO —-—- ]
1.06 ~ NNLO ===~
S T ]
1.02 | 1
1 g g
conventional range
0.98 — 1
10.5<x,<2;
0.96 ‘ ‘
0.1 1 10
MR/ Q

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only o2 instead of a?

Moral: not knowing exactly how

to set scale — blessing in disguise,

since it gives us handle on uncer-
tainty.

Scale variation = standard procedure

Often a good guide

Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.
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I—Accuracy of QCD
pp— Z+ X

Now switch to looking at the Z
cross section in pp
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I—Accuracy of QCD LO pp _> Z

pp— Z+ X

U/I;S—)Z - Z / XmdX2 fQI (X17 ,U‘%) fa: (X27 H%—) 6'0,q,-fy,-—>Z(X1P17 X2P2) )
i

> 00,q;g—2Z X ew, knows nothing
about QCD like Ogte- 7

» But 09 4,5,z depends on PDFs.

» We have to choose a factorisation
scale, uF.

» Natural choice: ur = Mg, but one
should vary it (just like the
renorm. scale, ug, for as).
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I—Accuracy of QCD LO pp _> Z

I—pp—>Z+X

U/I;S—>Z - Z / XmdX2 fQI (X17 ,U‘%) fa: (X27 H%—) 6'0,q,-E],-—>Z(X1P17X2P2) )
i

. pp ~ (Z7y")+X
> 00,q,5—2 X Cgw, knows nothing I I e

80— —

about QCD like Ogte 7
=
° 60— _
» But 0g, 4,57 depends on PDFs. <
~
. . 7 wh 10 1
» We have to choose a factorisation 3
scale, uF. < ]
s 20— Vs = 14 TeV —
M= M, 1
» Natural choice: ur = Mg, but one RARE R
. . . | | | | |
should vary it (just like the R -2 o E .

renorm. scale, ug, for as). Mz/2 < jg < 2Ms

Plot shows agg_i differentially as a function of rapidity (y) of Z. Band is
uncertainty due to variation of uFr.
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LAlx_ccuracyonCD pp — 4 + X at (N)NLO

pp— Z+ X

NLO

Opp—z = Z/XmdX2 i(x1, 1E) (2, 1E) [60,ij— 2 (31, %) +

+ as(1Rr)81,jj— z(x1, X2, 1o )]

» Now X-sct depends on renorm
scale ug and fact. scale ug

often vary ugr = ur together z z
not necessarily “right”

» New channels open up (gg — Zq) LO %Z NLO %Z

AT
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L Accuracy of QCD pp — 4 + X at (N)NLO

pp— Z+ X

Oppsz = Z / dx1dxo fi(x1, 1) £ (%2, L) [60,i— 2 (x1, x2) +
iJ

+ as(1Rr)01,ij—z(x1, X2, iF )]

pp ~ (Zy")+X

» New channels open up (gg — Zq) o T T o T
» Now X-sct depends on renorm 5wl RS s .
00‘0.0.0.0.0.0.0‘0’0’0‘0'0.0.0.0 X KR
| f | 3 s
scale g and fact. scale ur 4 3 S
often vary ur = ur together § w0 N
. o " =
not necessarily “right” =
“’.Z 20— Vs = 14 TeV —
n . M =M
» But &1 piece cancels large LO /2 < s 2
dependence on uf YA R L L
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L Accuracy of QCD pp — 4 + X at (N)NLO

pp— Z+ X

Tppsz —Z/dxldxz i(x1, 17) 502, 1) [60, 2 (x1, x2) +

+ as(1Rr)81,jj— z(x1, X2, 1o )]

pp ~ (Zy")+X

» New channels open up (gg — Zq) wf T T
_ i ]
» Now X-sct depends on renorm B el b
g
scale pugr and fact. scale ur 2
often vary ug = pr together % «p . -
G e w3
not necessarily “right” =
“’.Z 20— Vs = 14 TeV {
» But &1 piece cancels large LO We £ = o ]
dependence on pf e S
Y
» At NNLO dependence on pg and Anastasiou et al '03; ur = ur

wr is further cancelled
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L Accuracy of QCD RUIeS Of thumb

pp— Z+ X

In hadron-collider QCD calculations:

» Choose a sensible central scale for your process

» Vary urg, pg by a factor of two around that central value

» LO: good only to within factor of two Despite as ~ 0.1
» NLO: good to within 10 — 20%

» NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new
production channels and/or large ratios of scales.
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L Accuraey of QCD Diagrams / processes / orders

pp— Z+ X

Z+2jets @ NLO

0 loops (tree-level)
1 loop

2 loops

ij - Z+npartons

The bottleneck in getting NPLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences
between 2-loops, 1-loop & tree-level.
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L Accuracy of QCD The limits of what we know

pp— Z+ X

> Tree-level / LO:2 — 6 — 8
ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa, Whizard
» 1-loop / NLO: 2 — 3
MCFM, NLOJet++, PHOX-family + various single-process codes
Several 2 — 4 (and first 2 — 5) have appeared in past 18 months:
Denner et al (ttbb), HELAC-NLO(ttjj, ttbb)
Blackhat (W/Z + 3/, W + 4j), Rocket(W + 3j)

» 2-loop / NNLO: 2 — 1 (W,Z,H) FEWZ, FeHiP, HNNLO
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L Accuracy of QCD The limits of what we know

pp— Z+ X

> Tree-level / LO: 2 — 6 — 8
ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa, Whizard
» 1-loop / NLO: 2 — 3
MCFM, NLOJet++, PHOX-family + various single-process codes
Several 2 — 4 (and first 2 — 5) have appeared in past 18 months:
Denner et al (ttbb), HELAC-NLO(ttjj, ttbb)
Blackhat (W /Z + 3j, W + 4j), Rocket(W + 3j)

» 2-loop / NNLO: 2 — 1 (W,Z,H) FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for gg — N gluons:

Njets 2 3 4 5 6 7 8
# diags 4 25 220 2485 34300 5x10° 107

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams
and use methods that recursively build up amplitudes
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LPS v. fixed order

Fixed-order programs give controlled accuracy, but
(partonic) final states and (at NLO, NNLO) divergent
weights.

Monte Carlo Parton Shower programs give a “sensible”
(hadronic) final state, with unit event weights, but
ill-controlled accuracy.

How well do parton showers reproduce the LO/NLO
results?
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LPS v. fixed order

Multijet events

jetl

jet3 jet2

0.008

p; of 3rd hardest jet

0.006 |

0.004

0.002

/N dN/dp,g [GeV'™]

NLOjet++
Herwig 6.5 —— |

pp, 14 TeV A
py > 500 GeV

Pu/2 < MR = He < 2Py

‘Cambriqge/Aachen jets, B:O.?

-0.002
0

100 200 300 400 500 600

Pyjet 3 [GeV]

Generate hard dijet events, shower
and hadronise them with Herwig.

Select events in which hardest jet
has p; > 500 GeV. Look at p; dis-
tribution of 3rd hardest jet

» Herwig doesn't do too bad a job
of reproducing high-p; 3rd-jet
rate But no uncertainty band

Hard to know how trustworthy
unless you also have NLO

» NLO does poor job at low p; —
large ratios of scales,
pr3/pr1 < 1, are dangerous in
fixed-order calculations.
Pt1 1

higher-orders ~ agln — ~
Pt3
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LPS v. fixed order / —+ N jets
1935""|""|""""""e
g 3 W Job LEC, pTod) Ge¥ 1 Herwig: select Z+
=i k—q Integrated pT rate of N—th jet | 1 iet hard

02 b G Mg i jet hard process.

;_ HL“‘-».\ dashes: Herwig ; Look at pe distri-
. L:_‘: HL“'& %‘%ﬁ 1 bution of jets with
10t v > T, =1 - :
AR A e e i highest p;, 2nd
e N=2— o 1 highest p;, etc.
_. .—I W LLH{'\‘;“_ \‘\;‘x‘:‘-:""_‘_\-._‘__“

100 =, Rﬂk T —== Compare to tree-
i N P level calculation
FEE, T -3~ ,

y “L N e R . Mangano '08
10~ e ?_‘mx E PR
E il AL . I.ll | — J.LJ - ‘jha.l_l L i |ﬂ1:Ll L
0 50 100 150 200 250
Er (GeV)

Parton shower (Herwig) does very badly even just for 2nd jet.
Why is this so much worse than in the pure jet case?
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L-ps v. fixed order
L Tree-level + PS

» Tree-level (LO) gives decent description of multi-jet structure
» NLO gives good normalisation

» Parton-shower gives good behaviour in soft-collinear regions and
fully exclusive final state.

Can we combine the advantages of all three?
[Here we'll look at just Tree 4+ Parton shower|
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LPS v. fixed order Add Z+1jet, Z—|—2_]et + shower

L Tree-level + PS

DOUBLE
COUNTING
TI T IRRRRERE TEITE Y
shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon

Double counting + associated issues with virtual corrections
are the main problems when merging PS + ME
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LpS v, fixed order “MLM" matching in a nutshell

L Tree-level + PS

ACCEPT ACCEPT REJECT

shower Z+parton shower Z+2partons shower of Z+parton
generates hard gluon

» Hard jets above scale Qmerge have distributions given by tree-level ME
» Rejection procedure eliminates “double-counted” jets from parton shower

» Rejection generates Sudakov form factors between individual jet scales
How well? Depends on details of PS. One of the weaker points of MLM
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L-ps v. fixed order
L Tree-level + PS

L + 2 jets

s
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L-ps v. fixed order
L Tree-level + PS

L + 2 jets

» ME + PS merging helps get
correct p; dependence

> It works much better than plain
parton showers

» Normalisation is still quite

uncertain )
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L Conclusions COﬂClUSIOnS

Over the course of these lectures we've seen some of the basic elements of
QCD for hadron colliders.

We've slowly been approaching the frontiers of the subject:

» Can you do accurate matrix-element (loop) calculations for the multi-jet
discovery signatures at LHC?
Blackhat/Rocket/HELAC-NLO teams are making big advances on NLO
NNLO is still very tough, basically only for pp — H/W /Z

» How do you put together the soft/collinear approximation (parton
showers) and exact exact matrix-element calculations?
We've looked at tree-level + parton showers (need for cutoff is ugly)
Also NLO + parton shower [MC@NLO, POWHEG, MENLOPS]

» How do you organise the information in an event to make signals emrge
most clearly? Novel ways of using jets
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Extras

EXTRAS
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CEaras Why parton shower so poor for Z+jets?
Z + 1 jet Z + 2 jets
é z
RERERERI]
’ ‘ (=ieY
q (Sjet) 95 g (=jery

Qs EW Produced by parton shower
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L extras Why parton shower so poor for Z+jets?
Z + 1 jet Z + 2 jets
é z
ERRAR]
g ‘
q (Sjet) g (Sjet)
LW Not produced by parton shower

2 p.

enhanced at high p;: agaEW In M

Parton showers generate starting from hard process you asked for.

Z /W + multijet production involves two classes of hard process
A. Z + recoil jet; B. dijets + emission of Z (missing from MC)
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