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Using our understanding to help discover a
dijet resonance, gqg — X — qq.
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ST What R is best for an isolated jet?
E.g. to reconstruct mx ~ (Psg + Prg)
PT radiation:
asC
q: (Ap) ~—= FptInR q
™

Hadronisation:

¥
q: (Ap:) ~ —% -0.4 GeV LY | M

Underlying event:

R2
q,8: (Ape) ~ 7'2.5—15 GeV q

Minimise fluctuations in p;

Use crude approximation:
(Ap7) =~ (Ape)?
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[DUMMY]

L [Dije resonaneed] What R is best for an isolated jet?

50 GeV quark jet

PT radiation: 30
_ _osCr _ LHC
q: (Apy) ~ T peIn R S 25| quarkjets g
_(3 P, = 50 GeV
Hadronisation: ‘T:E:?: 20 1 1
CF S|
q: (Ap:) ~ - 0.4 GeV S 15t 1
o
T 10
. ) . i |
Underlying event: . _ Bpdd
R? =i
q,8: (Ap:) ~ 7-2.5—15 GeV g 5| BpHe 1
o Bptfﬁen
Minimise fluctuations in p; 04 05 06 07 08 09 1 11
R
Use crude approximation: in small-R limit (1)
(Ap2) ~ (Ap:)? NB: full calc, correct fluct: Soyez '10
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[DUMMY]

L [Diet resonances] What R is best for an isolated jet?

1 TeV quark jet

PT radiation: 50
QSCF
q: Ap;) >~ p:InR &
Be) T g 40
Hadronisation: ‘ﬁ’uj
CF 5— 30
q: (Apy)~——-04GeV +
R tF
e 20
Underlying event: *
R? o
q,8: (Apt) ~ 7-2.5—15 GeV 2 10
0
Minimise fluctuations in p; 04 05 06 07 08 09 1 11
R
Use crude approximation: in small-R limit (1)
<AP?> = <APt>2 NB: full calc, correct fluct: Soyez '10
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[DUMMY]

[Dijt resonances What R is best for an isolated jet?

At low p;, small R limits relative impact of UE

At high p,, perturbative effects dominate over
non-perturbative — Rpes ~ 1.




[DUMMY]

L [Dijet resonances] Dijet mass: scan over R [Pythia 6.4]

R=0.3
qq, M =100 GeV

Resonance X — dijets

0.08 ———————1—,

SISCone, R=0.3, f=0.75 |% q

w _ &
E | IS
o
S 004 - q =
_c K
z p q p
< 0.02 b

O PR T S P e e - q

60 80 100 120 140
dijet mass [GeV]

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011



S Dijet mass: scan over R [Pythia 6.4]
R=0.3 Resonance X — dijets
qq, M =100 GeV '
0.08 —————T——1—, jet
SISCone, R=0.3, f=0.75 |%
w _ &
z 8
o]
T 004 | .
o
©
£
= 002 -
O PR S I e v
60 80 100 120 140 j‘e’t

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=0.4 Resonance X — dijets
qq, M =100 GeV '
0.08 —————T——1—, jet
SISCone, R=0.4, f=0.75 |2
w _ &
E Q
Q0
D 004 | i
C
©
£
= 0.02
O PEREPEREI S [ ——r n
60 80 100 120 140 jet

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=0.5 Resonance X — dijets
qq, M =100 GeV '
0.08 —————T——1—, jet
SISCone, R=0.5, f=0.75 |2
w _ &
z g
Q0
T 004 | .
c
©
£
= 0.02
O PEREPEREI LS P— P — -
60 80 100 120 140 jet

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=0.6 Resonance X — dijets
qq, M =100 GeV '
0.08 —————T——T—, jet
SISCone, R=0.6, f=0.75 |2
w _ &
z g
Q0
T 004 | .
c
©
£
= 0.02 .
O PRREPRRI BT S T ST T I w— -
60 80 100 120 140 jet

dijet mass [GeV]

Jets lecture 3 (Gavin Salam CERN Academic Training

/April 2011



[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=0.7 Resonance X — dijets
qq, M =100 GeV '
0.08 —————T——1—, jet
SISCone, R=0.7, f=0.75 |2
w _ &
z g
Q0
T 004 | .
c
©
£
= 0.02 .
O PRREPRRE B ST ST N E—r -
60 80 100 120 140 jet

dijet mass [GeV]
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it resonces Dijet mass: scan over R [Pythia 6.4]
R=0.8 Resonance X — dijets
qq, M =100 GeV '
0.08 T, jet
SISCone, R=0.8, f=0.75 |2 o
w _ 8
E Q
o]
B 0.04 | i
c
©
<
= 002} .
O PEEEPEEEE BRSO S I \_//
60 80 100 120 140 et

dijet mass [GeV]
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it resonces Dijet mass: scan over R [Pythia 6.4]
R=0.9 Resonance X — dijets
qq, M =100 GeV '
0.08 jet
SISCone, R=0.9, f=0.75 |2 o
w _ 8
E Q
o]
B 0.04 | i
c
©
<
= 002}
O FEEEPEEEE BEEPE rE EE \_//
60 80 100 120 140 et

dijet mass [GeV]
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it resonces Dijet mass: scan over R [Pythia 6.4]
R=1.0 Resonance X — dijets
qq, M =100 GeV '
0.08 jet

SISCone, R=1.0, f=0.75 |3 0
~ 0.06 L Qfto.24 = 31.9 GeV E
z 8
o]
T 004 | §
c
©
£
= 0.02 :,'_'_'JJ_LL‘-L._‘_‘_‘;

O relEE B T R
60 80 100 120 140 \j_eT/

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=1.1 Resonance X — dijets
qq, M =100 GeV '
0.08 T, jet
sISCone, R=1.1,f=0.75 |2
~ 0.06 L Qfto.24 = 34.7 GeV E
E Q
Q0
T 004 .
C
©
£
= 002 b .
60 80 100 120 140 jet

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=1.2 Resonance X — dijets
qq, M =100 GeV '
0.08 e, jet
SISCone, R=1.2, =0.75 |3
~ 0.06 L Qfto.24 = 37.9 GeV E
z g
Q0
S 004 .
C
©
£
= 002 | .
60 80 100 120 140 ot

dijet mass [GeV]
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[DUMMY]

L [Dijt esonanees] Dijet mass: scan over R [Pythia 6.4]
R=1.3 Resonance X — dijets
qq, M =100 GeV '
0.08 . jet
SISCone, R=1.3, f=0.75 |2
w _ &
E Q
Q0
T 004 .
C
©
£
= 002 - .
0 n PRI R S
60 80 100 120 140 jet

dijet mass [GeV]
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ST Dijet mass: scan over R [Pythia 6.4]
R=1.3
qq, M =100 GeV qq, M =100 GeV
008 LA LA L B o [T T I T T T T I T T T e
SISCone, R=1.3, f=0.75 |% 3 [ SISCone, f=0.75 1z
W 8 e B
P I# .5 25¢F 4%
o] O r
3 0.04 . E
c
S <
< o
= 0.02 . Q
O n PRI R S
60 80 100 120 140
dijet mass [GeV] R

After scanning, summarise “quality” v. R. Minimum = BEST
picture not so different from crude analytical estimate
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

mgyq = 100 GeV
qq, M =100 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE
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Best R is at minimum of curve
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http://quality.fastjet.fr

[DUMMY]
L [Dijet resonances]

Scan through gg mass values

mgyq = 150 GeV
qq, M = 150 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

mgyq = 200 GeV
qq, M = 200 GeV

I M B PN
4 [ SISCone, f=0.75 1%
s b ‘ 2
i 25 1%
4 i
£ 2F .
S C
a 15F
l :‘ ””” :
1 MR R
05 1 1.5
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

Mgq = 300 GeV
qq, M = 300 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

mgyq = 500 GeV
qq, M =500 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE

Jets lecture 3 (Gavin Salam CERN Academic Training

Best R is at minimum of curve
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

mgyq = 700 GeV
qq, M =700 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

Mgq = 1000 GeV
qg, M = 1000 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE
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Best R is at minimum of curve
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[DUMMY]
L [Dijet resonances]

Scan through gg mass values

Mgq = 2000 GeV
qg, M = 2000 GeV

| _SISCone, {=0.75

YOET 0TBO:AIXIE

Jets lecture 3 (Gavin Salam CERN Academic Training

Best R is at minimum of curve
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[DUMMY]

L [Dijet resonances] Scan through qa mass ValueS

Mgq = 4000 GeV Best R is at minimum of curve

qq, M = 4000 GeV » Best R depends strongly on

1 T e mass of system
[ SISCone, f=0.75 1z ) . .
B\ g » Increases with mass, just like
N 13 crude analytical prediction
o iN
EOJ‘l ] NB: current analytics too crude
IS
°
o
Q
[
0.5 1 1.5
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[DUMMY]

L [Dijet resonances] Scan through qa mass ValueS

Mgq = 4000 GeV Best R is at minimum of curve

qq, M = 4000 GeV » Best R depends strongly on

1 T e mass of system
[ \SISCone, f=0.75 13 . . .
B\ g » Increases with mass, just like
N 13 crude analytical prediction
o I
EOJ} ] NB: current analytics too crude
5
= BUT: so far, LHC’s plans
Q

involve running with fixed
smallish R values

0.5 1 15 ATLAS: R=10.4& 0.6
R CMS: R=05&0.7
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[DUMMY]

L [Dijet resonances] Scan through qa mass ValueS

Mgq = 4000 GeV Best R is at minimum of curve

qq, M = 4000 GeV » Best R depends strongly on

T R mass of system
[ \SISCone, f=0.75 1z . . .
B\ g > Increases with mass, just like
N i g crude analytical prediction
EOJ'OL 1 NB: current analytics too crude
§ o
= f BUT: so far, LHC’s plans
< al involve running with fixed
smallish R values
o 1 1s ATLAS: R = 0.4 & 0.6
R CMS: R=0.5& 0.7
NB: 100,000 plots for various jet algorithms, narrow gq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez '08
Other related work: Krohn, Thaler & Wang '09; Soyez '10
Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011
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[DUMMY]

L [Dije resonances] quality: 5 algorithms, 3 processes

anti-k;

SISCone  C/A-filt

A®D 001} bb

05 10 15 05 10 15 05 10 15 05 1.0

15 05 10 15
R R R

R R
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[DUMMY]

[Dijet resonances] quality 5 algorithms, 3 processes

anti-k,  SISCone  C/A-filt

RS Ans I RARRAREE ) RS BN RARRARRELE-aN oY

: 0

. o

a o

0

(1)

<

«Q

«©Q

| N

< —

0]

<

05 10 15 05 10 15 05 10 15 05 10 15 05 10 15
R R R R R
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[DUMMY]

[Dijet resonances] q ua I ity 5 a Igorith mS, 3 processes

C/A anti-k;  SISCone  C/Afilt

_I.I__I" __I I___Q

e}

o

& o
@

)

<

«Q

Q@

& o
_(

®

<

o

& o
35

=

05 10 15 05 10 15 05 10 15 05 10 15 05 10 15
R R R R R

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011 6 /29



[DUMMY]

[Diet resonances http://quality.fastjet.fr/

Fle Edit Wiew History Bookmarks Tools Help [

E=) v z i ik Hﬁ': http:wwwlpthe jussieu fri~salamyjet-quality/ ‘V‘

| £ Testing jet definitions: qq & ggc.., | & -

Testing jet definitions: qq & gg cases

bv M. Cacciari, J. Rojo, G.P. Salam and G. Sovez, arxXiv.0810.1304

qq, M = 2000 GeY qq, M = 2000 GeY This page is intended to help
0.08 T T T u 0.08 T u visualize how the choice of jet
SISCone, R=08,1=075 |Z k, R=03 5 definition impacts a dijet invariant
W B e B
=213 GeV 2. =61 8 GeVY = mass reconstruction at LHC.
o 008 Qip42 i 1z o 008 F Qlpiz i E
= B 2 £ The controls fallinto 4 groups.
o o
2 004 - B 2 004 - il o the jet definition
= = ® the binning and guality
< < measures
002 | 7 — 002 il ® the jer-type (quark, gluon) and
mass scale
S T o T, I L ® pileup and subtraction
1900 2000 2100 1900 2000 2100 The events were simulated with
dijet mass [GeV] dijet mass [GeV] Pythia 6.4 (DWT tune) and
reconstructed with Fastet 2.3.
Okt ©cla Oanti-ky ®sISCone O C/AAilE @k Ocia Oanti-ke O SISCone © C/AlE
— ey — e For more information, view and listen
|- JR=08[+ | [ =alR | [-Jr=03[+] [ -alr| to the flash demo, or click on
= = - = = individual terms.
® Q¥ OQitiwm Ox2 ©Q¥: OQilwm Ox2
] o = <5 This page has been tested with Firefox
[ [rebin=2] + | [ - Jrebin=2] + | v2 and V3, IE7, Safari v3, Opera v8.5,
®gg COgg @gg Ogg Chrorme 0.2.
| - |mass=2000| + | | - |mass=2000| + | —
— — — — | Reset |
0005 ©0.25mbYev none ©0.05 C0.25 mb ey B
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23t jets

boosted massive hadronically decaying objects

E.g. when a known particle, W, Z or a top — a single jet
or a new particle, Higgs, gluino, neutralino — a single jet

This will be common for electroweak-scale objects at LHC:

my, my < 14 TeV

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011 (]



[1 jet > 2 partons]

E.g. X — tt resonances of varying difficulty

102 E T T { T T T T { T T T T { T T T T { T T T T { T T T T
F do(pp - (G ~) tt)/dmy; [pb/20 GeV]
r LO, CTEQ6L1, LHC
10!
E m1:600 GeV
F —eeme k/M,=0.07
c++ s /¥ ,=0.04
100 — - -~ &/¥M,=0.02
; x/ﬁplzo.m
1071 E
1077 =
1073 Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il
500 1000 1500 2000 2500 3000

tt invariant mass [GeV]

RS KK resonances — tt, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ~ 103 times tt

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 10 / 29



[1 jet > 2 partons]

Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high p; # two jets

-
- \
-
-

1 Vo
boosted X _— ,single o om 1
/’ Jet ~ Pt \/Z(].—Z)

—_— (_Z\\ Sl - //

Rules of thumb: m = 100 GeV, p; = 500 GeV
2m .

» R < —: always resolve two jets R <04
bt
3m . . 0 1 7

» R 2 —: resolve one jet in ~75% of cases (5 < z < g) R > 0.6
bt
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[1 jet > 2 partons]

Boosted ID strategies

Select on the jet mass with one large (cone)
jet Can be subject to large bkgds
[high-p; jets have significant masses]

Choose a small jet size (R) so as to resolve

two jets Easier to reject background
if you actually see substructure

[NB: must manually put in “right” radius]

Take a large jet and split it in two
Let jet algorithm establish correct division

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011



[1 jet > 2 partons]

Jet masses

0.016
0.014 qq - qg events | _ o
Look at jet mass distribu-
el ] tion for two leading jets in
0.01 Pejets > 700 GeV

e A R=07 > qq — qq events

0.006 J

LN dN/dmg, [GeV™]

0.004 J
0.002 J

0 50 100 150 200
Migt [GeV]
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[1 jet > 2 partons]

Jet masses

1N dN/dme, [GeV™]

0.035
Wi
0.03 | j events
0.025 1
0.02 - Pyjets > 700 GeV
anti-k, R=0.7
0.015 ]
0.01 1
0.005 1
0 L L L
0 50 100 150 200
Mie; [GeV]

Look at jet mass distribu-
tion for two leading jets in

> gq — qq events
> pp — W + jet events

Jet mass gives clear sign of massive particles inside

the jet;

Jets lecture 3 (Gavin Salam
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[1 jet > 2 partons]
nerr Jet masses
0.016
0.014 | qq - gq + Wj mixture | . . .
Look at jet mass distribu-
> 0012 1 ] tion for two leading jets in
© 001r Pejets > 700 GeV |
i i- = 4
£ 0.008 anti-k, R=0.7 > gg — gq events
P4 L B .
S 0.006 > pp — W + jet events
S 0004 | | _
- » a mixture of the two
0.002 |- 1 | .
n roughly sensible
0 L L L .
0 50 100 150 200 proportions

Mie; [GeV]

Jet mass gives clear sign of massive particles inside
the jet; but QCD jets are massive too — must learn
to reject them
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[1 jet > 2 partons]

QCD principle: soft divergence

Signal Background
1
boosted X quark
— (-Z\ —_—
2) (13
Splitting probability for Higgs: Splitting probability for quark:
P(z) x 1 1+ 22
P
(2) o< T

1/(1 — z) divergence enhances background
Remove divergence in bkdg with cut on z
Can choose cut analytically so as to maximise S/v/B

Originally: cut on (related) k;-distance
Butterworth, Cox & Forshaw '02

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011 14 / 29



[1 jet > 2 partons]

Inside the jet mass

0.9 oo P QCD jet mass distribution has the
et Mass distribution
08| 1 :
Pythia 6.4, qq -qq, no UE a p prOXI mate
0.7 antik, R=0.7 |
[ C,
Eu—) 06 L LHC, 7 TeVv 1 dN | ptR S d k
5 o5l | —— ~ agIn —— x Sudakov
g Pjets > 700 GeV dinm m
z o3} | Work from '80s and '90s
02} 1 + Almeida et al '08
01} ]
0 ‘
10 100
Mier [GeV]
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[1 jet > 2 partons]

Inside the jet mass

1/N dN/dlog(m;g,)

0.9 ;
08 | QCD Jet Mass distribution
Pythia 6.4, qq -qq, no UE
0.7 anti-k, R=0.7
06 LHC, 7 TeV
0.5 r
Ptjets > 700 GeV
04 r
03 r
02 r
0.1 r
0 L
10 100
Mie; [GeV]
1 T
0.1 ¢
2-body
001 - phasespace |
: i
10 100
Mie; [GeV]

QCD jet mass distribution has the
approximate
dN p:R

—— ~ agIn —— x Sudakov
dinm m

Work from '80s and '90s
+ Almeida et al '08

The logarithm comes from integral
over soft divergence of QCD:

1
2 dz
m2 V4

pZR?

Jets lecture 3
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[1 jet > 2 partons]

Inside the jet mass

0.9 ; — QCD jet mass distribution has the
08 | QCD Jet Mass distribution | .
Pythia 6.4, qq -qq, no UE apprOXImate
0.7 + anti-k, R=0.7 |
,E%—’ 06 | LHC, 7 Tev ] dN ptR
5 o5l | —— ~ agIn —— x Sudakov
s Pjets > 700 GeV dinm m
z o3} | Work from '80s and '90s
02| 1 + Almeida et al '08
01k after cut on z > 0.25 ]
0 @laBERS) N\ The logarithm comes from integral
10 100 over soft divergence of QCD:
Mie; [GeV]
1 T
1
2 dz
cutonz m?_ z
~ 0.1 L reject 4 png
2-body
oo | phasespace | A hard cut on z reduces QCD back-
10 100 ground & simplifies its shape

Miet [GeV]
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[1 jet > 2 partons]

Inside the jet mass

1/N dN/dlog(m;g,)

e 0 0 9o 0o 0o o o o
ok N W M U O N ® O

0.01

Jets lecture 3 (Gavin Salam

L QCD Jet Mass distribution |
Pythia 6.4, qq -qq, no UE
r anti-k, R=0.7 7
LHC, 7 Tev
I Pyjes > 700 GeV |
L after cut on z > 0.25 ]
(ala BERS) -
10 100
Mie; [GeV]
T
: cutonz
L reject 4
2-body
L phasespace |
L
10 100
Miet [GeV]

35

25

15

1/N dN/dlog(m;g,)

0.01

CERN Academic Training

W-+jet Jet Mass distribution
[ Pythia 6.4, pp - Wj, no UE T
anti-k, R=0.7
I LHC, 7 Tev 7
Ptjets > 700 GeV
10 100
Mie; [GeV]
T
2-body
L phasespace |
L
10 100
Miet [GeV]
March/April 2011 15 / 29



[1 jet > 2 partons]

Inside the jet mass

1/N dN/dlog(m;g,)

e 0 0 9o 0o 0o o o o
ok N W M U O N ® O

0.01

Jets lecture 3 (Gavin Salam

L QCD Jet Mass distribution |
Pythia 6.4, qq -qq, no UE
r anti-k, R=0.7 7
LHC, 7 Tev
I Pyjes > 700 GeV |
L after cut on z > 0.25 ]
(ala BERS) -
10 100
Mie; [GeV]
T
: cutonz
L reject 4
2-body
L phasespace |
L
10 100

Miet [GeV]

1/N dN/dlog(m;g,)

35

25

15

0.5

0.01

W-+jet Jet Mass distribution
[ Pythia 6.4, pp - Wj, no UE T
anti-k, R=0.7
I LHC, 7 Tev 7
Ptjets > 700 GeV
after cutonz>0.25
10 100
Mie; [GeV]
T
keep
. cutonz
L reject 4
2-body
L phasespace |
L
10 100
mjet [GeV]

CERN Academic Training
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[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/Gev come from different partons?

anti-k; algorithm

50 - This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

30 -
20 -

10 +

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 3.57137e-05 i
p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
0. the jet (e.g. z).
30 4 M
20 4
10 -
0 42 ] | . _l | _| 1
0 1 2 3 4 y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



e |dentifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
0. the jet (e.g. z).
30 4 M
20 4

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is dij = 0.000496508 the “blobs” of energy inside a jet that
p/Gev come from different partons?

50 - This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40 -

30: M

20 |

10 |

S
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



e |dentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/Gev come from different partons?

anti-k; algorithm

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

50 -

30 - [

20 -

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.000688842 :
p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
0. the jet (e.g. z).
30 {
20 4
10 -
0 '] - 'I | '| ']
0 1 2 3 4 y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



e |dentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/Gev come from different partons?

anti-k; algorithm

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

50 -

30: ]

20 -

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.000805103

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] 4—‘ Anti-k; gradually makes its way
30 -

through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] Anti-k; gradually makes its way
30 - “

through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.000773759

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] Anti-k; gradually makes its way
30 - “

through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] EfE Anti-k; gradually makes its way
30 4 jH through the secondary blob — no
1 clear identification of substructure

20 - associated with 2nd parton.

10 +

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.0014577

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] EfE Anti-k; gradually makes its way
30 4 jH y

through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.

10 +

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] f’:‘ Anti-k; gradually makes its way
30 4 [ ] through the secondary blob — no
1 clear identification of substructure

20 - associated with 2nd parton.

10 +

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is diB = 0.00147749

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] f’:‘ Anti-k; gradually makes its way
30 - j

through the secondary blob — no
clear identification of substructure
20 - associated with 2nd parton.

10 +

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] f’:‘ Anti-k; gradually makes its way
30 - j

through the secondary blob — no
clear identification of substructure

20 - associated with 2nd parton.
10 -
0 v L

0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

dmin is diB = 1.96

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] f’:‘ Anti-k; gradually makes its way
30 - j

through the secondary blob — no
clear identification of substructure

20 - associated with 2nd parton.
10 -
0 v .

0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



[1 jet > 2 partons]

Identifying jet substructure: try out anti-k;

How well can an algorithm identify

anti-k; algorithm o )
the “blobs” of energy inside a jet that

p/Gev come from different partons?
50 - This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).

] f’:‘ Anti-k; gradually makes its way
30 - j

through the secondary blob — no
clear identification of substructure

20 - associated with 2nd parton.
10 -
0 v 1

0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 16 / 29



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
0 the jet (e.g. z).
30 4
20 A
10 +
0 4

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.318802 .
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

0 the jet (e.g. z).
30 4 M
20 A
10 +

0 4

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . This is crucial for identifying the
kinematic variables of the partons in

0 the jet (e.g. z).

30 4 M

20 A

10 +

o ' ] | — | | 1

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 0.977453 .
p/GeV come from different partons?

50 . This is crucial for identifying the
kinematic variables of the partons in

20 the jet (e.g. z).

30 4 noom

20 A

10 +

o ' ] | — | | 1

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 . This is crucial for identifying the
kinematic variables of the partons in

0 the jet (e.g. z).

30 4 oo

20 A

10 +

o ' ] — | | 1

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 1.48276 .
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
0 the jet (e.g. z).
] k: clusters soft “junk” early on in the
30 1 i N clustering
20 A
10 +
0 4= ] — | _| 1
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).
] k: clusters soft “junk” early on in the
30 1 i N clustering
20 A
10 +
04— — | | :
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 2.34277 .
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
0 the jet (e.g. z).
] F—‘ k: clusters soft “junk” early on in the
30 1 i N clustering
20 A
10 +
04— — | | :
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
0 the jet (e.g. z).
] ’—.T F—‘ k: clusters soft “junk” early on in the
30 1 i N clustering
20 A
10 +
ol 1 | : |
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 13.5981 .
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

0 the jet (e.g. z).

] ’_ﬁ F—‘ k; clusters soft “junk” early on in the
30 1 I ™ clustering
20 A
10 +

ol 1 | : |
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 17 / 29



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).
] ’_ﬁ F—‘ k; clusters soft “junk” early on in the
30 1 jH ™ clustering
20 A
10 + |
0 e |
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 17 / 29



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

dmin is dij = 30.8068 .
p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in

0 the jet (e.g. z).

] ’_l?fH ﬁ—‘ k; clusters soft “junk” early on in the
30 1 clustering
20 A
10 + |

0 e |
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 17 / 29



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify

k: algorithm o )
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 . This is crucial for identifying the
kinematic variables of the partons in
20 the jet (e.g. z).
] ’_l?fH ﬁ—‘ k; clusters soft “junk” early on in the
30 1 clustering
20 A
10 +
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 17 / 29



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

k. algorithm How well can an algorithm identify
dmin is dij = 717.825 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 . This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

] ’_J??TP—‘ k; clusters soft “junk” early on in the
30 1 clustering

Its last step is to merge two hard

20 A . . . .
pieces. Easily undone to identify un-
derlying kinematics

10 +

0 v
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

k: algorithm

50 . This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

] ’_JT—‘ETT?—‘ k; clusters soft “junk” early on in the
30 1 clustering

Its last step is to merge two hard

20 A . . . .
pieces. Easily undone to identify un-
derlying kinematics

10 +

0 T
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 17



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

k. algorithm How well can an algorithm identify
dmin is diB = 11432 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 . This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

] ’_JT—‘ETT?—‘ k; clusters soft “junk” early on in the
30 1 clustering

Its last step is to merge two hard

20 A . . . .
pieces. Easily undone to identify un-
derlying kinematics

10 +

0 T
0 1 2 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

|dentifying jet substructure: try out k;

k: algorithm

p,/GeV

50 -

e

20 -

10 A

0 1 2 3 4y

Jets lecture 3 (Gavin Salam

CERN Academic Training

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

k; clusters soft “junk” early on in the
clustering

Its last step is to merge two hard
pieces. Easily undone to identify un-
derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour '93

Butterworth, Cox & Forshaw '02

March/April 2011 17 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 4
40
30 4
20 A

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an alg_ori'_thm i.dentify
L the “blobs” of energy inside a jet that
DeltaR_{ij} = 0.142857

p/GeV come from different partons?

50 4
40
30 4 M
20 A

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 4
40
30 4 M
20 A

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
DeltaR,_{ij = 0.214286 the “blobs” of energy inside a jet that
p/GeV - come from different partons?

Cambridge/Aachen algorithm

50 4
40 -
30: no I
20 A

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 4
40 -
30: no I
20 A

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an alg_ori'_thm i.dentify
L the “blobs” of energy inside a jet that
DeltaR_{ij} = 0.415037

p/GeV come from different partons?

50 4
o,
] .
20 4

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 4
o,
] .
20 4

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm o }
the “blobs” of energy inside a jet that

DeltaR_{ij} = 0.686928 :
p/GeV come from different partons?
50 4
40 +
30 4 M
20 A
10 A
0 4+l . -
0 1 2 3 4 y

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

C/A identifies two hard blobs with
limited soft contamination

Cambridge/Aachen algorithm

50 4
o,
S N T
20 4

10 A

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm o }
the “blobs” of energy inside a jet that

DeltaR_{ij} = 1.20645 :
p/GeV come from different partons?

50 | C/A identifies two hard blobs with
limited soft contamination, joins
them

40 -

30 - h

20 +

10 -

0 L L

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm o }
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 | C/A identifies two hard blobs with
limited soft contamination, joins
them

40 -

30 -

20 +

10 +

O L L

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm o }
the “blobs” of energy inside a jet that

DeltaR_{ij} = 1.93202 s
p/GeV come from different partons?
50 | C/A identifies two hard blobs with
limited soft contamination, joins
20 them, and then adds in remaining
soft junk
30 -
20 +
10 -
0 L L

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that

p/GeV come from different partons?
50 | C/A identifies two hard blobs with
limited soft contamination, joins
20 them, and then adds in remaining
soft junk
30 -
20 -
10 -
0 v L
0 1 2 4 y
Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

How well can an algorithm identify
the “blobs” of energy inside a jet that

DeltaR_{ij} > 2 .
p/GeV come from different partons?
50 | C/A identifies two hard blobs with
limited soft contamination, joins
20 them, and then adds in remaining
soft junk
30 -
20 -
10 -
0 v L
0 1 2 4 y
Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

30: W

20 +

10 A

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 3 (Gavin Salam

CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

p,/GeV

30: W

20 +

10 A

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 3 (Gavin Salam

CERN Academic Training March/April 2011 18 / 29



[1 jet > 2 partons]

|dentifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 | C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
40 A .

soft junk

30 1 The interesting substructure is buried

inside the clustering sequence — it's

20 4 less contamined by soft junk, but
needs to be pulled out with special
10 | techniques

Butterworth, Davison, Rubin & GPS '08
Kaplan, Schwartz, Reherman & Tweedie '08
0 o T l T > T 3 T Al Butterworth, Ellis, Rubin & GPS '09

y Ellis, Vermilion & Walsh '09

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 18 / 29



anti-k; algorithm k: algorithm Cambridge/Aachen

p/GeV p/GeV p/GeV
50 50 50
40 40 40
30 ‘ !—rﬁ& ‘j—‘—‘ 30 ; 30 W )—WH
20 20 20
10 10 10
0 1 0 0 1
0 1 2 3

4y 0 1 2 3 4y 0 12 3 4y

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet = 2 partons]

L {An cmld] H — bb (main light-Higgs decay) v. hard to see

Best hope is pp — W*H, W* — (=v, H — bb.

Jets lecture 3 (Gavin Salam CERN Academic Training



[1 jet > 2 partons]

L {An cmld] H — bb (main light-Higgs decay) v. hard to see

Best hope is pp — W*H, W* — (=v, H — bb.

1500

Difficulties, e.g.

Events /4 GeV

» gg — tt has (vbb with same intrinsic
mass scale, but much higher partonic
luminosity

1000

> Wijj background has cut-induced peak
++" > Need exquisite control of bkgd shape
. pp — WH — (ubb + bkgds b

- ATLAS TDR H

ol v v
50 100

S)

Jets lecture 3 (Gavin Salam CERN Academic Training



[1 jet > 2 partons]

T H — bb (main light-Higgs decay) v. hard to see

Best hope is pp — W*H, W* — (=v, H — bb.

Difficulties, e.g.

1500

Events /4 GeV

» gg — tt has (vbb with same intrinsic
mass scale, but much higher partonic
luminosity

1000

> Wijj background has cut-induced peak

500 ++" > Need exquisite control of bkgd shape
, pp— WH — Lubb + bkeds b
: ATLAS TDR ﬁ'i
o L v 0 b
Conclusion (ATLAS TDR): w \ 5
“The extraction of a signal from H — bb b

decays in the WH channel will be very
difficult at the LHC, even under the most
optimistic assumptions [...]"

Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 20 / 29



S Study subset of WH/ZH with high p;

L [An example]

Take advantage of the fact that /s > My, my,...

Go to high p;:
[J Higgs and W/Z more likely to be central
bV U high-p; Z — v becomes visible
b

[J Fairly collimated decays: high-p; ¢*, v, b
/ Good detector acceptance

J‘rz [J Backgrounds lose cut-induced scale

[J tt kinematics cannot simulate bkgd
Gain clarity and S/B

v [J Cross section will drop dramatically
By a factor of 20 for p;y > 200 GeV
Will the benefits outweigh this?
And how do we ID high-p; hadronic Higgs decays?

e,

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

Noise removal

L [An example]

UE adds A ~ 10 — 15 GeV of noise per unit rapidity. For a jet of size R,
effect on jet mass goes as

2 R? m" D ta, M
(6m®) ~ App— ~ 4N — asgupta, Magnea
3
4 p: & GPS '07

Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Ry,p, throw out softest subjets:

» Filtering: break jet into subjets on angular scale Ry, take ngy hardest
subjets Butterworth, Davison, Rubin & GPS '08

» Trimming: break jet into subjets on angular scale Ryim, take all subjets
wWith pt sub > €trimPt jet Krohn, Thaler & Wang '09

» Pruning: as you build up the jet, if the two subjets about to be
recombined have AR > Rprune and min(pe1, pr2) < €prune(Pe1 + pe2),
discard the softer one. Ellis, Vermilion & Walsh '09
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[1 jet 2 2 partons]

(An example] Noise removal

These techniques matter most for moderate p; objects

(And also for high-mass resonances — jets)




e pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p,GeV] |
90-]
80
70

all jets, default R = 1.2

Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS '08
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e pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

all jets, default R = 1.2

Fill it in, — show jets more clearly

Butterworth, Davison, Rubin & GPS '08
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[1 jet = 2 partons]
[An example]

pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p,[GeV] |

90-]
80

Butterworth, Davison, Rubin & GPS '08

Jets lecture 3 (Gavin Salam

Hardest jet, pt=246.211 m=150.465

Consider hardest jet, m = 150 GeV

CERN Academic Training

SIGNAL
200 < pyz < 250 GeV
0.15
0.1 - 4
A
[\
0.05 S~ ~_ B
| o
)
777,,‘,//

o " "
80 100 120 140 160

Zbb

0.008
0.006
0.004

0.002

o
80 100 120 140 160

my, [GeV]

BACKGROUND

200 < p; < 250 GeV

my, [GeV]

arbitrary norm.

March/April 2011 23 / 29



[1 jet = 2 partons]
[An example]

pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

| Drop step 1; Delta R = 1.03129; pt1=243.291 m1=139.158; pt2=3.044 m2=5.24475
P, [GeV] =
90]
80
70

split: m = 150 GeV, w = 0.92 — repeat

Butterworth, Davison, Rubin & GPS '08

Jets lecture 3 (Gavin Salam CERN Academic Training

0.15

SIGNAL

200 < p;y < 250 GeV

0.1

o — " "
80 100 120 140 160

my, [GeV]

Zbb BACKGROUND

200 < p; < 250 GeV

0.008

0.006

0.004

0.002

80 100 120 140
my, [GeV]

160

arbitrary norm.

March/April 2011
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1 jet 2 2 partons ——
e pp — ZH — vivbb, @14 TeV, my=115GeV
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 ZOOSLGP(ZN:AZ';O oy
0.15
pt [GSV] | Drop step 2; Delta R = 0.87699; pt1=1.:45.536 m1=52.3423; pt.2=|02.522 m2=27.7967
0.1 i
90]
80 A
] 0.05 / ]
/
7*’TJ L L
80 100 120 140 160
my, [GeV]

Zbb BACKGROUND

200 < p; < 250 GeV

0.008
0.006

0.004

0.002 |-
S

split: m = 139 GeV, w = 0.37 — mass drop

Butterworth, Davison, Rubin & GPS '08

Jets lecture 3 (Gavin Salam

CERN Academic Training

o
my, [GeV]

arbitrary norm.
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1 jet 2 2 partons ——
e pp — ZH — vivbb, @14 TeV, my=115GeV
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 ZOOSLGP(ZN:AZ';O oy
0.15
pt [GSV] | Drop step 2; Delta R = 0.87699; pt1=1.:45.536 m1=52.3423; pt.2-|DZ 622 m2=27.7967
0.1 i
90]
80 A
] 0.05 / ]
/
7*’TJ L L
80 100 120 140 160
my, [GeV]

check: yjo ~

Zbb BACKGROUND

200 < p; < 250 GeV

0.008
0.006

0.004

0.002 |-
S

ptz ~ 0.7 — OK + 2 b-tags (anti-QCD)

Jets lecture 3 (Gavin Salam

Butterworth, Davison, Rubin & GPS '08

CERN Academic Training

o
my, [GeV]

arbitrary norm.

March/April 2011
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[1 jet = 2 partons]
[An example]

pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3

p,[GeV] |

90-]
80

R = 0.3

Butterworth, Davison, Rubin & GPS '08

Jets lecture 3 (Gavin Salam

CERN Academic Training

SIGNAL
200 < py < 250 GeV
0.15
o1 | ]
M
0.05 | | —
”
/
7777J . .
80 100 120 140 160
my; [GeV]
Zbb BACKGROUND
200 < p < 250 GeV
0.008 ‘ :
0.006 |- ]
0.004 B
0.002 | ]

TN~

o
80 100 120 140 160

my, [GeV]

arbitrary norm.
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[1 jet = 2 partons]
[An example]

pp — ZH — visbb, @14 TeV, my=115GeV

SIGNAL

200 < p;y < 250 GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

0.15

p,[GeV] |

90-]
80

Final filtered result, pt=227.257 m=117.211

R4 = 0.3: take 3 hardest, m = 117 GeV

Jets lecture 3 (Gavin Salam

CERN Academic Training

0.1

o
80

100 120 140 160

my, [GeV]

Zbb BACKGROUND

200 < p; < 250 GeV

0.008

0.006

0.004

0.002

Butterworth, Davison, Rubin & GPS '08

March/April 2011

o
80 100 120 140 160

my, [GeV]

arbitrary norm.
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[1 jet > 2 partons]

channels to reject tt.

60 80 10012014016018020 » Assume my = 115 GeV.
Mass (GeV)

[An example] Combine HZ and HW, pt > 200 Gev
24407 ©) —
® [ sNB=45 — Vijets » Take Z — (T0—, Z — v,
< 120[ in 112-128GeV “Hvv _ W — fu (=ep
8 r =V+Higgs
2 100F i > piv, Pe > 200 GeV
£ 8of > [nvl, InH| < 2.5
E 60f » Assume real /fake b-tag rates of
a0l 0.6/0.02.
c » Some extra cuts in HW
%

20 40

At ~ 5¢ for 30 fb~! this looks like a competitive channel for light
Higgs discovery. A powerful method!

Currently under study in the LHC experiments
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e ATLAS combined results

L [An example]

Likelihood-based analysis of all three channels together gives signal
significance of

3.70 for 30 fb~t (14 TeV) |

To be compared with 4.2¢ in hadron-level analysis for my = 120 GeV
K-factors not included: don't affect significance (~ 1.5 for VH, 2 — 2.5 for Vbb)
With 5% (20%) background uncertainty, ATLAS result becomes 3.5¢ (2.80)

Comparison to other channels at ATLAS (my = 120, 30 fb™1):

g —H—-~vww WW—->H-—>7mr gg—H—ZZ*

4.20 490 2.60

Extracted from 0901.0512

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011



[1 jet > 2 partons]
[An example]

Tagging boosted top-quarks

Many papers on top tagging in '08-'11: jet mass + something extra.

Questions

» What efficiency for tagging top?
» What rate of fake tags for normal jets?

Rough results for top quark with p; ~ 1 TeV

[from T&W]
Brooijmans '08

Thaler & Wang '08
Kaplan et al. '08

Ellis et al. '09

ATLAS '09

Chekanov & P. '10
Almeida et al. '08-'10
Thaler & v Tilburg '10

“Extra” eff. fake
just jet mass 50% 10%
3,4 k; subjets, dc: 45% 5%
2,3 k; subjets, z.,: + various 40% 5%
3,4 C/A subjets, zeye + 65 40% 1%
C/A pruning 10% | 0.05%
3,4 k; subjets, dc,: MC likelihood 90% 15%
Jet shapes 60% 10%
Template + shapes 13% | 0.02%

Subjettiness

40% 2%

Plehn et al. '09-"10

C/A MD, 0y,/Dalitz [busy evs, p; ~ 300] | 35% 2%

Jets lecture 3 (Gavin Salam
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[1 jet = 2 partons] o
S Comparison of top taggers
8 C L T ]
© |- === Hopkins e
(%) L CMS ]
Z ww Pruning PR
IS o ATLAS \\“nu‘\;‘{u\ﬂ,\\s‘\‘\‘u
10-1 === Thaler/Wang “\\\s\\‘"‘\'"““‘\:\‘\‘\u

107 -
.
_A‘l MR B 1_

0.1 0.7
efficiency

Boost 2010 conference proceedings
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Closing
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[1 jet > 2 partons]

[An example] COﬂClUSionS

LHC events will cover 2 orders of magnitude in jet p;

Flexibility in the choice of jet definitions has potential to
bring significant gains

[anti-k; with R = 0.5 or 0.6 will sometimes be far from optimal]

EW-scale particles are “light” relative to the TeV scale

Using the full power of jet algorithms & their substructure
helps pull out signals that might otherwise be missed

[currently a very active research field]
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EXTRAS
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e e Other work — improving the methods
» Using matrix-element methods for Cui et al BDT v. BRDS

the substructure  Done analytically
Soper & Spannowsky '11

R=12; Fi

L

tering + [kt Substructur

£/ \[Eg

o

Most “physically interesting”

~

» Using jet shapes. E.g. subjettiness:
break a jet into subjets 1,2,... N

R=12 Filtering  massdrop
(wide mass window)

Filtering + mass dro
L]

4 mas!

w

7)) :
)

\YA&A\\\\\\\\MN\\\\
\

1
SN — p_ Zpti min(5R,-1, .. -5RIN)
t

J-H Kim "10; Thaler & Van Tilburg '10

7

P

iR=1.2mass

» Using boosted decision trees TP A B -, -
Cui, Han & Schwartz '10; seems powerful 5

Biggest improvements are to be had at moderate signal efficiencies J

Conclusion from Boost 2010 comparison study of top taggers
The method to be adopted depends on the signal efficiency you want



Pileup

high p; — requires high lumi — high pileup

28/03/2011

LHC &:30 meeting
2011 Records

Ttems n red are records set in the past week

[Peak stabe Luminosity Delivered [24zo® i 1645 [ro322, 1712
|Mawmum Peak Events per Bunch Crossing l 13.08 l Fill 1644 |11/DE!22, 02:20
[Maximum Average Events per Bunch Crossing | 1CEEI | Fill 1644 110322, 02:20

2 10 events per bunch crossing
O (10 GeV) of extra p; per jet, with large fluctuations

Jets lecture 3 (Gavin Salam CERN Academic Training

/April 2011



[1 jet = 2 partons]

L o] Subtracting noise from jets

subtracted

P; jet = Prjet — P X Ajet J

Cacciari, GPS & Soyez '08

Ajet = jet area

p = p; per unit area from pileup
(or "background")

This procedure is intended to be common to pp (p ~ 1—2 GeV), pp with
pileup (p ~ 2 — 15 GeV) and Heavy-lon collisions (p ~ 100 — 300 GeV)

As proposed so far: jet-by-jet area determination,
event-by-event p determination

Jets lecture 3 (Gavin Salam CERN Academic Training March /April 2011



[1 jet > 2 partons]

Event-by-event p (background) estimation

L [Pileup]
IN A SINGLE EVENT Most jfa’ts in event are “back-
80 ‘ ‘ ‘ ground
median (pt/area)
o Their p; is correlated with their
60 L o area.
- dijet event .
o= 40 +10minbias Estimate p:
(Kt-alg, R=1)
¢ Pt jet
20 . p =~ median 2
ets i
...as {J } jet
% o‘
0 0 1 2 3 4 Median limits bias
) from hard jets
jet area

Cacciari & GPS '07

Jets lecture 3 (Gavin Salam
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[1 jet = 2 partons]

L Pilens] Comparing pileup estimation methods

Compare FastJet median p to
Monte Carlo truth (ppjrect)

12 T T T -
minbias: PY6 + <5>*PY8 /
R,=0.5 e
10 Y
/ -
P
8r o W b
s
o L
O 6 P ]
N
& P
il
FH 0+
4 A 1
Lt
o
2L AR ]
o+
0 R . . . .
0 2 4 6 8 10 12
Ppirect [GeV]
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[1 jet > 2 partons] . . . o
L Pilens] Comparing pileup estimation methods
Compare FastJet median p to Works much better than
Monte Carlo truth (ppjrect) counting primary vertices
12 : : : 12 : : :
minbias: PY6 + <5>*PY8 g minbias: PY6 + <5>*PY8
R, =05 / R,=05 .,
10 S 10 ) ]
3 i 3 L
O 6r S < o 6l g + ]
& G & - SRR
+*tﬂ+ PO : +
i ‘ RS ‘
e P :
2l | NS S
ﬁ+ + ;% % fj: PR
0 (AR . . . . 0 N *fi + f L L .
0 2 4 6 8 10 12 0o 2 4 6 8 10 12
Poirect [GeV] n vertex seen (2 central tracks pt>0.1GeV)
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e A non-trivial issue: rapidity dependence
The original method assumed dijets50, 15 PU
rapidity dependence was small S L B — e racton T
12 F ]
< W0} ]
[}
S ol - :
3
5 6F 3
El
2 4} 3
8
2 - -
0
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e A non-trivial issue: rapidity dependence
The original method assumed dijets50, 15 PU
rapidity dependence was small S S — o abracton
L. 12 FJ global p =<~
» In some sense it is, < 1.5 GeV
s 0f ]
(]
S o} - :
3
5 6F ]
E
2 4} 3
¢
2 - -
e T
0 * X
=
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e A non-trivial issue: rapidity dependence
The original method assumed dijets50, 15 PU
rapidity dependence was small S S — o abracton
L. 12 FJ global p =<~
» In some sense it is, < 1.5 GeV FJ global p (y-rescaled) : %
: 10 | ]
» Measure p globally, and include § B
a rapidity-dependent rescaling > °F \-
g .t ]
sub _ ., f A °
pi” = pe — f(y)p g
S af ]
%]
determine f(y) from min-bias e
2 - -
e T
0 S STEPY SR SR ST SRRV ST S
=
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1 jet > 2 partons . . -
e A non-trivial issue: rapidity dependence
The original method assumed dijets50, 15 PU
rapidity dependence was small e S — T T
- 12 FJ global p +—<~ -
» In some sense it is, < 1.5 GeV FJ global p (y-rescaled) : %
10 | FJstrip1.5 & ]

» Measure p globally, and include
a rapidity-dependent rescaling

pi*® = pr — f(y)pA

determine f(y) from min-bias

residual offset [GeV]
[} oo
T T
\
+
/
1 1

2 F 3
» Measure p “locally” in strips of R .
=B S SRS R o I

|Ay| < 1.5 0 W

5 4 3 -2 -1 0 1 2 3 4 5
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e A non-trivial issue: rapidity dependence
The original method assumed ttbar, 15 PU
1di 14 T T T T T T T T T
rapidity dependence was small T acton
L. 12 FJ global p -~ <4
» In some sense it is, < 1.5 GeV FJ global p (y-rescaled) : %
. 10 | 015 ]
» Measure p globally, and include § FIstip L5 o
a rapidity-dependent rescaling z °f 7
£
sub __ _f A o &f E
pi” =pe—f(y)p g
S af ]
%]
determine f(y) from min-bias e
2 - -
» Measure p “locally” in strips of PEEE .
IAy| < L5 0 pi gk el
But lower number of total jets 5 4 3 2 1 0 1 2 3 4 5
more biased by hard jets (e.g. tt) y
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e A non-trivial issue: rapidity dependence
The original method assumed ttbar, 15 PU
rapidity dependence was small S S — SRS S A
o 12 F FJ globalp >~ B
» In some sense it is, < 1.5 GeV FJ global p (y-rescaled) : %
. 10 | 015 - ]
» Measure p globally, and include > FIstip L5 o
a rapidity-dependent rescaling % 8r - 7
sub % 6 E
pi” = pe = f(y)pA El
determine f(y) from min-bias ¢
2 | ]
» Measure p “locally” in strips of PEEE .
IAy| < L5 0 pi gk el
But lower number of total jets 5 4 3 2 1 0 1 2 3 4 5
more biased by hard jets (e.g. tt) y

Conclusion: global p determination with fixed rapidity-dependent
rescaling is probably the most effective choice J
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[1 jet > 2 partons]

L Pilens] Hints from charged tracks

dijets50, 15 PU
. . . 8 T T T T T T | T T
Dispersion of offset gives another no subtraction ~——

measure of the subtraction “quality”

» several GeV without subtraction

residual fluctuations [GeV]

L
5 4 -3 -2 -1 0 1 2 3 4 5
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[1 jet > 2 partons]

e Hints from charged tracks
dijets50, 15 PU

8 T T T T T T T T T
Dispersion of offset gives another no subtraction ~——
. m s 7r FJ global p (y-rescaled) -~ -4
measure of the subtraction “quality global p &y )
6F g

» several GeV without subtraction

» only partially reduced with FJ
subtraction

residual fluctuations [GeV]

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 37



[1 jet > 2 partons]
L [Pileup]

Hints from charged tracks

dijets50, 15 PU

8 T T T T T T T T T
Dispersion of offset gives another no subtraction
fth b . “ lity” 7F FJ global p (y-rescaled) - < -
measure of the subtraction “quality < PUgng in jeligng =
. . v 6 —
» several GeV without subtraction <)
2 s5fF
. : S
» only partially reduced with FJ g 4t )
subtraction 2 L
s 3r
=] X X
» alternative: use PF to remove B oab o E
PU charged tracks in each jet A ]
if PU is in-time
0 1 1 1 1 1 1 1 1 1
» scaling PU charged track in the 54321012 3 45
jet to correct also for neutrals y
Jets lecture 3 (Gavin Salam CERN Academic Training March/April 2011 37 / 29



[1 jet > 2 partons]
L [Pileup]

Hints from charged t

racks

Dispersion of offset gives another
measure of the subtraction “quality”

» several GeV without subtraction

» only partially reduced with FJ
subtraction

» alternative: use PF to remove
PU charged tracks in each jet
if PU is in-time

» scaling PU charged track in the
jet to correct also for neutrals

» or supplementing with FJ
subtraction for the neutrals
better still

Jets lecture 3 (Gavin Salam

residual fluctuations [GeV]

CERN Academic Training

dijets50, 15 PU

8 T T T T T T T T T
no subtraction ——+—
7r FJ global p (y-rescaled) -+ L J
PUgpg in jet/fopg =%
6 FPUgpg + foi*(FJ global [y-rscid]) =
5 -
4 F 3¢
s | x
8 S K X
2F wE P é’é* 3
o CRE™
22}
1 r -
0 1 1 1 1 1 1 |

March/April 2011
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[1 jet > 2 partons]
[Pileup]

Hints from charged tracks

Dispersion of offset gives another
measure of the subtraction “quality”

» several GeV without subtraction

» only partially reduced with FJ
subtraction

» alternative: use PF to remove
PU charged tracks in each jet
if PU is in-time

» scaling PU charged track in the
jet to correct also for neutrals

» or supplementing with FJ
subtraction for the neutrals
better still

Jets lecture 3 (Gavin Salam

dijets50, 15 PU

8 T T T T T T T T T
no subtraction ——+—
7r FJ global p (y-rescaled) -+ L J
= PUchg in jeﬂfchg [
$ 6 [ PUgng * fiyg*(FJ global [y-rscld]) - o
2 s
K]
©
2 4f )
3]
=] X
s 3
= . - X
@ 2F sk T B B TEe
- = CRE™
ﬁ 22}
1 r -
0 L L 1 1 1 1 1

Direct knowledge of PU from tracks
can be beneficial J

CERN Academic Training

Detector impact harder to judge

March/April 2011 37 / 29



[1 jet > 2 partons]

e Jet masses etc.?

Fat-jet studies need more than just
the jet p;. E.g. jet mass

There are methods to limit PU sen-
sitivity of jet masses.

Filtering: Butterworth et al '08

Pruning: Ellis et al '09

Trimming: Thaler et al '09

4-vector subtraction can also help
Pl = pu — F(y)pA,

“Automatically” corrects mass
as long as hadron masses set to zero

Jets lecture 3 (Gavin Salam CERN Academic Training /April 2011 38 /29



[1 jet > 2 partons]
L [Pileup]

Jet masses etc.?

Fat-jet studies need more than just
the jet p;. E.g. jet mass

There are methods to limit PU sen-
sitivity of jet masses.

Filtering: Butterworth et al '08

Pruning: Ellis et al '09

Trimming: Thaler et al '09

4-vector subtraction can also help

P = pu— f(¥)pA,

“Automatically” corrects mass
as long as hadron masses set to zero

Jets lecture 3 (Gavin Salam

Omje; GeV]

100
90
80
70
60

50

40
30

CERN Academic Training

mean jet mass

-~ hard event only

Pythia 6.4 dijet events
Pygen > 500 GeV, UE switched off

Pileup from Pythia 8.145, tune 4C

7\1/4,%4;4—:»7**{&1/1’%&\547}{—1\/7

anti-k;

area/median PU sub [k, R=0.4, Voronoi]
hadron masses - 0

- FastJet 3.0a

, R=0.7

0 5 10 15

r]pileup

/April 2011

20




[1 jet > 2 partons]

e Jet masses etc.?

Fat-jet studies need more than just
the jet p;. E.g. jet mass

mean jet mass

o 100 | ——+— hard event only T
There are methods to limit PU sen- o | with pileup |
sitivity of jet masses. R
Filtering: Butterworth et al '08 ' 80 r I 1
Pruning: Elliset al '09 & 0 1
Trimming: Thaler et al '09 & 60 P& sfes  =r==s_1
. % anti-k;, R=0.7
4-vector subtraction can also help 50 [ areaimedian PU sub [k, R=0.4, Voronoi] |
hadron masses - 0
40 + FastJet 3.0a -
hia 6.4 dij
pLSUb) = p//' — f(_y) pAN 30 gz,;e,:a>65‘(1)0Igé\e/Y?JnEtsswitched off )
Pileup from Pythia 8.145, tune 4C
“Automatically” corrects mass 0 5 10 15 20
n .
as long as hadron masses set to zero pileup
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[1 jet > 2 partons]
L [Pileup]

Jet masses etc.?

Fat-jet studies need more than just
the jet p;. E.g. jet mass

There are methods to limit PU sen-
sitivity of jet masses.

Filtering: Butterworth et al '08

Pruning: Ellis et al '09

Trimming: Thaler et al '09

4-vector subtraction can also help
Pl = pu — F(y)pA,

“Automatically” corrects mass
as long as hadron masses set to zero

Jets lecture 3 (Gavin Salam

Omje; GeV]

100

90

80
70
60

50

40
30

CERN Academic Training

mean jet mass

——+— hard event only 1
< with pileup
—— PU subtracted .

x—x b

I

=X

anti-k, R=0.7
area/median PU sub [k, R=0.4, Voronoi]
hadron masses - 0
FastJet 3.0a
Pythia 6.4 dijet events
Ptgen > 500 GeV, UE switched off

Pileup from Pythia 8.145, tune 4C

5 10 15 20

r]pileup

/April 2011



[1 jet > 2 partons]
L [Pileup]

Jet masses etc.?

Fat-jet studies need more than just
the jet p;. E.g. jet mass

100
There are methods to limit PU sen- %
sitivity of jet masses.
Filtering: Butterworth et al '08 = 80
Pruning: Elliset al '09 &, 70
Trimming: Thaler et al '09 E_‘Q 60
. ]
4-vector subtraction can also help 50
(sub) 40
su _
Py = Pu— f(Y)PAM 30

“Automatically” corrects mass
as long as hadron masses set to zero

mean jet mass

——+— hard event only 1
< with pileup
—— PU subtracted . . ==

X

anti-k, R=0.7
area/median PU sub [k, R=0.4, Voronoi]
hadron masses - 0
FastJet 3.0a
Pythia 6.4 dijet events
Ptgen > 500 GeV, UE switched off

Pileup from Pythia 8.145, tune 4C
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Many more things can be corrected for PU beyond jet p;
Tests are still in v. early stages / drawing board J
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