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JETS
Collimated, 

energetic bunches 
of particles
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Sterman and Weinberg, 
Phys. Rev. Lett. 39, 1436 (1977):

Jets date back to the late 1970s
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578 records found
Find all papers by ATLAS and CMS
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Pull out those that refer to one widely used jet-alg
347 records found

60% of papers use jets!
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Jet usage at the LHC
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Two key aspects to discussing jets
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How jets come to have the structure they do

Jets as projections[Introduction]
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Projection to jets should be resilient to QCD effects
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Reconstructing jets
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Reconstructing jets is an ambiguous task

12

Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?
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Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?
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2 clear jets 3 jets?
or 4 jets?

Reconstructing jets is an ambiguous task
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Make a choice: specify a jet definition
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{pi} {jk}
jet definition

particles,
4-momenta,

calorimeter towers, ....

jets

• Which particles do you put together into a same jet?
• How do you recombine their momenta

(4-momentum sum is the obvious choice, right?)

“Jet [definitions] are legal contracts between theorists and experimentalists’’ 
-- MJ Tannenbaum

They’re also a way of organising the information in an event
1000’s of particles per events, up to 20.000,000 events per second
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There is no objectively "correct" clustering algorithm, 
but […] "clustering is in the eye of the beholder."[1] 
The most appropriate clustering algorithm for a 
particular problem often needs to be chosen 
experimentally, unless there is a mathematical reason 
to prefer one cluster model over another.
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Partitioning / 
centroid-based clustering

[cone algorithms]



Matteo Cacciari - LPTHE MadGraph School - May 2013 - Beijing

k-means

18

Example of a partitional algorithm
1) Choose K centroids at random
2) Assign objects to closest centroid, forming K clusters
3) Calculate centroid (mean of distances) of each cluster, update centroids
4) Check if an object in a cluster is closer to another centroid. 
    Reallocate in case.
5) Repeat from step 3 until no object changes cluster anymore.

Step 1
(random centroids)

Step 2
(allocate objects)

Step 3
(move centroids)

Step 5
(end of iteration)
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! “Hardest particle” is collinear
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! “Hardest particle” is collinear
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Notes

! “Hardest particle” is collinear

unsafe more right away...
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Notes

! “Hardest particle” is collinear
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Notes

! “Hardest particle” is collinear

unsafe more right away...
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cone axis

! Draw cone around seed

! Sum the momenta use as new

seed direction, iterate until stable
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Notes

! “Hardest particle” is collinear

unsafe more right away...
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! “Hardest particle” is collinear
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One of the simplest of the cone algs

e.g. CMS iterative cone

! Take hardest particle as seed for

cone axis

! Draw cone around seed

! Sum the momenta use as new

seed direction, iterate until stable

! Convert contents into a “jet” and

remove from event

Notes
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Notes
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seed direction, iterate until stable
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remove from event

Notes

! “Hardest particle” is collinear
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Notes

! “Hardest particle” is collinear
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e.g. CMS iterative cone
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seed direction, iterate until stable

! Convert contents into a “jet” and

remove from event

Notes

! “Hardest particle” is collinear
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Collinear splitting can modify the final hard jets
The algorithm is collinear unsafe 
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Consequences of collinear unsafety[Theory v. experiment]

[Cone algorithms]

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Jets lecture 2 (Gavin Salam) CERN Academic Training March/April 2011 9 / 28
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Comparing theory and experiment[Theory v. experiment]

The full cross section that you measure in experiment should correspond to
an expression looking roughly as follows:

σfull = σLO

(

1 + αsc1 + α2
s c2 + α3

s c3 + . . .+O
(
ΛQCD

pt

))

A perturbative series

plus a non-perturbative contribution, suppressed by a power of ΛQCD/pt

We don’t have the technology to calculate the full series or the
non-perturbative part. Typically, one might “just” calculate next-to-leading
order

σNLO = σLO (1 + αsc1)

The point to perturbation theory is that the c2α2
s , etc. terms are small

compared to the ones you have calculated — hence (e.g.) NLO should be a
good approximation.

Jets lecture 2 (Gavin Salam) CERN Academic Training March/April 2011 4 / 28
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IRC safety & real-life

Real life does not have infinities, but pert. infinity leaves a real-life trace

α2
s + α3

s + α4
s ×∞ → α2

s + α3
s + α4

s × ln pt/Λ → α2
s + α3

s + α3
s

︸ ︷︷ ︸

BOTH WASTED

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS MidPoint CMS it. cone Known at
cone [IC-SM] [ICmp -SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (→ NNLO)
W /Z + 1 jet LO NLO NLO NLO (→ NNLO)
3 jets none LO LO NLO [nlojet++]
W /Z + 2 jets none LO LO NLO [MCFM]
mjet in 2j + X none none none NLO [Blackhat/Rocket/...]

NB: 50,000,000$/£/CHF/e investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC

And LHC relies on QCD for background double-checks

extraction of cross sections, extraction of parameters79
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There is a way of resolving this kind of 
problem for cone algorithms

SISCone
[Seedless Infrared Safe Cone]

But, in the end, this is not the solution 
that the LHC experiments chose, so let’s 

spend our time on the one they did

Infrared/collinear safety and real life
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Hierarchical clustering
[sequential recombination algorithms]
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Sequential recombination algorithms (e+e-)

• Define a distance measure dij between all pairs of 
particles.

• Recombine pair with smallest dij

• Repeat until all dij > dcut

The algorithm’s general behaviour is governed by 
how one defines the interpair distances dij 

dcut is a resolution parameter, which governs how 
whether jets are coarse or fine objects

83

[aka hierarchical agglomerative clustering]
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Classic e+e- seq. rec. algorithms (1)

JADE algorithm – the original seq. rec. algorithm

84

The most obvious choice?
But does not give sensible behaviour

[see blackboard]

dij = m2
ij ' 2EiEj(1� cos ✓ij)
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Classic e+e- seq. rec. algorithms (2)

kt / Durham algorithm – the most widely used at LEP

85

Use QCD divergences to help decide distance measure:
The stronger the divergence between a pair of particles, 
the more likely it is they should be associated with each 
other.                                                       [see blackboard]

dij = 2min(E2
i , E

2
j )(1� cos ✓ij)

Catani, Dokshitzer, Olsson, Turnock & Webber ’91
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kt/Durham in action

86

kt/Durham algorithm features[Sequential recombination]

[kt in e+e−]

! Gives hierarchy to event and jets
Event can be charaterised

by y23, y34, y45.

! Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

! Collinear safe: collinear particles recombined early on

! Infrared safe: soft particles have no impact on rest of clustering seq.

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 21 / 35

ycut = dcut/Q
2

Fraction of events 
with n jets, as a 
function of the 

resolution parameter
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kt alg. at hadron colliders (1)

What changes at a hadron collider? 

• You have (unseen) beams, introduce a “beam distance”

• You want to use longitudinally invariant variables, i.e. pt, 
rapidity (y) and azimuth (φ) 

87

diB = 2E2
i (1� cos ✓iB)

squared trans. mom. wrt beam

exclusive kt algorithm
still just one parameter dcut

Catani, Dokshitzer, Seymour & Webber 1993

dij = min(p2ti, p
2
tj)�R2

ij , �R2
ij = (yi � yj)

2 + (�i � �j)
2

diB = p2ti
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kt alg. at hadron colliders (2)

Two parameters, R and pt,min
(These are the two parameters in essentially every widely 
used hadron-collider jet algorithm)

Reformulate algorithm
1. Find smallest of dij, diB

2.  If ij, recombine them
3. If iB, call i a jet and remove from list of particles
4.  repeat from step 1 until no particles left

 Only use jets with pt > pt,min

88

Inclusive kt algorithm
S.D. Ellis & Soper, 1993

dij = min(p2ti, p
2
tj)

�R2
ij

R2
, �R2

ij = (yi � yj)
2 + (�i � �j)

2
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In what way do the inclusive and exclusive variants’ 
behaviours differ?

[see blackwhiteboard]

Is one “right”, the other wrong”?
A priori no, maybe we’ll come back to this later.



kt in action[Sequential recombination]

[kt for hadron colliders]

kt alg.: Find smallest of

dij = min(k2ti , k
2
tj )

∆R2
ij

R2
, diB = k2ti

! If dij recombine

! if diB , i is a jet

Example clustering with kt algo-
rithm, R = 1.0

φ assumed 0 for all towers

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 26 / 3590



kt in action[Sequential recombination]

[kt for hadron colliders]

pt/GeV

60

50

40

20

0
0 1 2 3 4 y

30

10

kt alg.: Find smallest of

dij = min(k2ti , k
2
tj )

∆R2
ij
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, diB = k2ti

! If dij recombine

! if diB , i is a jet

Example clustering with kt algo-
rithm, R = 1.0

φ assumed 0 for all towers
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kt in action[Sequential recombination]

[kt for hadron colliders]
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! if diB , i is a jet

Example clustering with kt algo-
rithm, R = 1.0

φ assumed 0 for all towers
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[kt for hadron colliders]
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[kt for hadron colliders]
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[kt for hadron colliders]
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[kt for hadron colliders]
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[kt for hadron colliders]
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[kt for hadron colliders]
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φ assumed 0 for all towers
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kt v. cones

113

Essential characteristic of cones?[Comparing algorithms]

Cone (ICPR)

kt alg.

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 31 / 35

(Some) cone algorithms give
circular jets in y − φ plane

Much appreciated by experi-
ments e.g. for acceptance

corrections

kt jets are irregular

Because soft junk clusters to-
gether first:

dij = min(k2ti , k
2
tj )∆R2

ij

Regularly held against kt



Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014 114

The kt algorithms form one of several “families” of sequential 
recombination jet algorithm

Others differ in

1. the choice of distance measure between pairs of particles
[i.e. relative priority given to soft and collinear divergences]

2. using 3→2 clustering rather than 2→1
[ARCLUS; not used at hadron colliders, so won’t discuss it more]
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Cambridge/Aachen: the simplest of hadron-collider algorithms 

• Recombine pair of objects closest in ΔRij

• Repeat until all ΔRij > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge): more involved e+e− form
Wobisch & Wengler ’99 (Aachen): simple inclusive hadron-collider form

One still applies a pt,min cut to the jets, as for inclusive kt

Sequential recombination variants

C/A privileges the collinear divergence of QCD; 
it ‘ignores’ the soft one
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anti-kt

Anti-kt: formulated similarly to inclusive kt, but with 

Cacciari, GPS & Soyez ’08 [+Delsart unpublished]

116

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Anti-kt privileges the collinear divergence of QCD and 
disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle
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Anti-kt in action

117

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt gives 
cone-like jets 
without using 
stable cones

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores



Is it really only about the “circularity” 
of the jets’ boundaries?
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Figure 3.5: Calorimetric jet reconstruction efficiency (a, c, e) and purity (b, d, f) for jets

in |η | <0.4. Efficiency (a) and purity (b) for simulated QCD di-jet events with p̂T in the

interval [8,1120] GeV; efficiency (c) and purity (d) for simulated QCD di-jet events with

p̂T in the interval [560,1120] GeV; efficiency (e) and purity (f) for isolated jet in simulated

QCD di-jet events with p̂T in the interval [560,1120] GeV.

Anti-kt experimental performance

135

As good as, or better than 
all previous experimentally- 

favoured algorithms.

Essentially because anti-kt 
has linear response to soft 

particles.

And it’s also infrared and 
collinear safe (as needed 

for theory calcs).

[see blackboard for explanation of plot]

Efficiency for finding detector 
jet that matches particle jet

from Ph.D. thesis by P. Francavilla

http://cds.cern.ch/record/1479432?ln=it
http://cds.cern.ch/record/1479432?ln=it
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Anti-kt experimental performance

135

As good as, or better than 
all previous experimentally- 

favoured algorithms.

Essentially because anti-kt 
has linear response to soft 

particles.

And it’s also infrared and 
collinear safe (as needed 

for theory calcs).

[see blackboard for explanation of plot]

Efficiency for finding detector 
jet that matches particle jet

from Ph.D. thesis by P. Francavilla

This, and other analogous 
plots, are among the factors 

that led to anti-kt being 
adopted as the main jet 

algorithm in ATLAS and CMS

http://cds.cern.ch/record/1479432?ln=it
http://cds.cern.ch/record/1479432?ln=it
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kt
sequential recombination
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in relative pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

sequential recombination
dij = ΔRij2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt
sequential recombination
dij = min(kti-2,ktj-2)ΔRij2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN



Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014

Infrared & Collinear safe algorithms

136

kt
sequential recombination
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in relative pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

sequential recombination
dij = ΔRij2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt
sequential recombination
dij = min(kti-2,ktj-2)ΔRij2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

anti-kt algorithm
pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

kt algorithm
pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

Cambridge/Aachen

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10



Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014

Infrared & Collinear safe algorithms

136

kt
sequential recombination
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in relative pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

sequential recombination
dij = ΔRij2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt
sequential recombination
dij = min(kti-2,ktj-2)ΔRij2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

Advertisment

All are available in FastJet, http://fastjet.fr
(as well as many IRC unsafe ones)

Other (recent) software

SpartyJet (python/root interface to FastJet)
SlowJet (in Pythia8)

SlowJet (mathematica code by J. Ruderman)

http://fastjet.fr
http://fastjet.fr


Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014

http://fastjet.fr/

137

  // specify a jet definition
 JetDefinition jet_def(antikt_algorithm, double R); 

jet_algorithm can be any one of the four IRC safe algorithms, or also 
most of the old IRC-unsafe ones, for legacy purposes

http://fastjet.fr
http://fastjet.fr
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  // extract the jets
 vector<PseudoJet> jets = sorted_by_pt(cs.inclusive(jets));
 
 // pt of hardest jet
 double pt_hardest = jets[0].pt();
 
 // constituents of hardest jet
 vector<PseudoJet> constituents = jets[0].constituents();

  // specify a jet definition
 JetDefinition jet_def(antikt_algorithm, double R); 

jet_algorithm can be any one of the four IRC safe algorithms, or also 
most of the old IRC-unsafe ones, for legacy purposes

  // specify the input particles
 vector<PseudoJet> input_particles = . . .; 

  // create a ClusterSequence
 ClusterSequence cs(input_particles, jet_def);

http://fastjet.fr
http://fastjet.fr
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FastJet speed

138

Time needed to cluster an event with N particles
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