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Jets date back to the late 1970s

Sterman and Weinberg,
Phys. Rev. Lett. 39, 1436 (1977):

To study Jets, we consider the partial cross section
o(E,B,R,¢,8) for e*e- hadren production events, in which all but
a fraction e <<]1 of the total e*e- energy E 1is emitted within
some pair of oppositely directed cones of nalf-angle § << 1,
lying within two fixed cones of solid angle 1 (with wé? << << 1)

.‘._
at an angle & to the e ¢ beam line., We expect this to be measur-

- | 7
o(E,0,0,c,8) = (do/dQ) R 1-(g§:/3n’){3£n6+42n6 in 2¢ *’l’i’"'%}
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Find all papers by ATLAS and CMS
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1. Measurement of the W+W- cross section in pp collisions at sqrt(s) = 7 TeV and limits on anomalous WW gamma and WWZ couplings
CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) ef al.). Jun 5, 2013.
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e-Print: arXiv:1306.1126 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
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Detailed record

2. Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production
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CMS Collaboration (Serguei Chatrchyan (Yerevan Phys. Inst.) ef al.). May 31, 2013.
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Pull out those that refer to one widely used jet-alg
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Jet usage at the LHC
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Two key aspects to discussing jets

How jets come to have the structure they do

quark ?%%

How we “reconstruct” jets

T

non-perturbative
[ ] t':l x
bt

hadronisation

iy

anti-
jet 1 jet 2 quark quark
jet flndlng mterpretatlon
LO partons
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quark

Why do we see jets?
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Reconstructing jets
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Jet finding as a form of projection

Y R

LO partons NLO partons parton shower hadron level
Jet l Def" Jet l Def" Jet l Defn Jet l Def"
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VN N

Projection to jets should be resilient to QCD effects
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Reconstructing jets is an ambiguous task
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Reconstructing jets is an ambiguous task

2 clear jets
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Reconstructing jets is an ambiguous task

2 Clear jets 3 |ets?
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Reconstructing jets is an ambiguous task

2 Clear jets 3 |ets?
or 4 jets?
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Make a choice: specify a jet definition

{P } jet definition {j k}

particles, jets
4-momenta,

calorimeter towers, ....

e \Which particles do you put together into a same jet”

® How do you recombine their momenta
(4-momentum sum is the obvious choice, right?)

“Jet [definitions] are legal contracts between theorists and experimentalists”
-- MJ Tannenbaum

They’re also a way of organising the information in an event
1000’s of particles per events, up to 20.000,000 events per second
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CMS Experiment at LHC, CERN

Data recorded: Thu Apr 5 05:47:32 2012 CEST

Run/Event: 190401 /
Lumi section: 75

12545076

1347

Orbit/Crossing: 19495845 /
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Cluster analysis

From Wikipedia, the free encyclopedia

Cluster analysis or clustering is the task of grouping a set of objects in such a

way that objects in the same group (called cluster) are more similar (in some sense or another) to each other than to those in
other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis used
in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.

Contents [hide]
There is no objectively "correct" clustering algorithm,

but [...] "clustering is in the eye of the beholder."[1]
The most appropriate clustering algorithm for a
particular problem often needs to be chosen
experimentally, unless there is a mathematical reason
to prefer one cluster model over another.

1 Clusters and clusterings

2 Clustering algorithms
2.1 Connectivity based clustering (hierarchical clustering)
2.2 Centroid-based clustering
2.3 Distribution-based clustering
2.4 Density-based clustering
2.5 Newer developments

3 Evaluation of clustering results
3.1 Internal evaluation
3.2 External evaluation

4 Applications

5 See also
5.1 Related topics
5.2 Related methods

6 References
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Partitioning /
centroid-based clustering
lcone algorithms]
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k-means

Example of a partitional algorithm

|) Choose K centroids at random
2) Assign objects to closest centroid, forming K clusters
3) Calculate centroid (mean of distances) of each cluster, update centroids
4) Check if an object in a cluster is closer to another centroid.
Reallocate in case.
5) Repeat from step 3 until no object changes cluster anymore.

@] o @) ‘x.
o o o
X °e X e X %o °
° o° o° o
wx X %X “
: % 3 % 20e
o o o o
Step | Step 2 Step 3 Step 5
(random centroids) (allocate objects) (move centroids) (end of iteration)

One of the main shortcomings:

result of final convergence can be highly sensitive to choice of initial seeds.
Also, the concept of ‘mean distance’ (to calculate the centroid) must be defined.

Matteo Cacciari - LPTHE MadGraph School - May 2013 - Beijing




Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Seed = hardest particle

60
» Take hardest particle as seed for

cone axis
50

40

30

20

10

Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014 19



Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis

50

| » Draw cone around seed
40 :

I

|
30 I

I
20

10 -
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
| » Draw cone around seed
|
40 | » Sum the momenta use as new
| seed direction, iterate until stable
I
30 |
|
20

10 I

Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014 21



Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed
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I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
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I

30 |
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20 I
|
I
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p,/GeV ] praw cone
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I
| cone axis
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta == seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30
20

10 <L
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
| » Take hardest particle as seed for
I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
| seed direction, iterate until stable
I

30 | » Convert contents into a “jet” and
: remove from event

20 I
I
I

10 B

0 |'

0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
10 I
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Seed = hardest particle

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 | » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20
10
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I - bi= "
30 | » Convert contents into a “jet” and
| remove from event
20

10 A —
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I . i 1
30 | » Convert contents into a “jet” and
| remove from event
|
20

10 <L
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One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60
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! cone axis
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
| » Take hardest particle as seed for
I
| cone axis
50 |
| » Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20 I
I
I
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
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0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone
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50
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I . bin "
30 | » Convert contents into a “jet” and
| remove from event
|
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I
30d » Convert contents into a “jet” and
| remove from event
204
I
I
0] |
I
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I . bi 1
30d » Convert contents into a “jet” and
| remove from event
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I
I
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta == seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I
30d » Convert contents into a “jet” and
| remove from event
204
I
I

Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014 44



Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
1
O I
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
Notes
| » “Hardest particle” is collinear
I unsafe more right away...
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Seed = hardest particle

60
» Take hardest particle as seed for

cone axis
50
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30
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis

50

| » Draw cone around seed
40 :

I

|
30 I

I
20

10 -
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
| » Draw cone around seed
|
40 | » Sum the momenta use as new
| seed direction, iterate until stable
I
30 |
|
20

10 I
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60 |
| » Take hardest particle as seed for
I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
| seed direction, iterate until stable
I

30 |
|

20 I
|
I

10 |
I

0

0] 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60 |
| » Take hardest particle as seed for
I
| cone axis
50 |
| » Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I
30 I
I
20 I
I
I

10 iL-»

0 1 2 3 4

y
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt | e.g. CMS iterative cone
60 !
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30
20

10 iu-»
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60
| » Take hardest particle as seed for
I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
| seed direction, iterate until stable
I

30 |
|

20 I
|
I

10 |
I

0

0] 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
| » Take hardest particle as seed for
I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
| seed direction, iterate until stable
I

30 I
I

20 I
I
I

10 B

0 |'

0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta == seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30
20

10 <L
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
| » Take hardest particle as seed for
I
| cone axis

50 |
| » Draw cone around seed

40 i » Sum the momenta use as new
| seed direction, iterate until stable
I

30 | » Convert contents into a “jet” and
: remove from event

20 I
I
I

10 B

0 |'

0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
10 I
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Seed = hardest particle

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 | » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20
10
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I - bi= "
30 | » Convert contents into a “jet” and
| remove from event
20

10 A —
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I . i 1
30 | » Convert contents into a “jet” and
| remove from event
|
20

10 <L
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60
| » Take hardest particle as seed for
I
! cone axis

50 |
| » Draw cone around seed

40 | » Sum the momenta use as new
| seed direction, iterate until stable
I

30 | » Convert contents into a “jet” and
: remove from event

20 I
I
I

10 I
I

0

0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
| » Take hardest particle as seed for
I
| cone axis
50 |
| » Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20 I
I
I

10 <L
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta == seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20

10 <LLb>
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
| » Take hardest particle as seed for
I
| cone axis
50 |
| » Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20 I
I
I

10 <L
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
10 B
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Seed = hardest particle

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 | » Sum the momenta use as new
| seed direction, iterate until stable
I
30 | » Convert contents into a “jet” and
| remove from event
20
10
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I . bi 1
30 | » Convert contents into a “jet” and
| remove from event
20

log >
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta != seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 i » Sum the momenta use as new
| seed direction, iterate until stable
I . bin "
30 | » Convert contents into a “jet” and
| remove from event
|
20

lo@ >
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV Iterate seed

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I
30d » Convert contents into a “jet” and
| remove from event
204
I
I
0] |
I
0
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV ] praw cone

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I . bi 1
30d » Convert contents into a “jet” and
| remove from event
204
I
I
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs

/GeV sum of momenta == seed : :
Pt e.g. CMS iterative cone
60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p/GeV ] cone is stable

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
| seed direction, iterate until stable
I
30d » Convert contents into a “jet” and
| remove from event
204
I
I
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One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
1
O I
0 1 2 3 4
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Iterative Cone, Prog Removal (IC-PR)

One of the simplest of the cone algs
e.g. CMS iterative cone

p,/GeV J Convert into jet

60
» Take hardest particle as seed for
cone axis
50
» Draw cone around seed
40 » Sum the momenta use as new
seed direction, iterate until stable
30 » Convert contents into a “jet” and
remove from event
20
Notes
| » “Hardest particle” is collinear
I unsafe more right away...
0
0 1 2 3 4
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iterative cone issue

cone iteration — — cone axis
> cone
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iterative cone issue

cone iteration — — cone axis
> cone
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iterative cone issue
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> cone
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iterative cone issue

= cone iteration — — cone axis
500 B | > cone
’SG 400 - 1>
(3 300 | l
= 200 —
100
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iterative cone issue

= cone iteration — — cone axis
500 B | > cone
’SG 400 >
) B |
g 300 I :
— 200 |
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iterative cone issue

cone iteration — — cone axis
> cone

(GeV/c)

W
o
o
et

jet 1 rapidity
| |

jet 2

Collinear splitting can modify the final hard jets
The algorithm is collinear unsafe
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Collinear Safe Collinear Unsafe

I? I
I
| El | ‘l | | 13I | | ‘l | | | | | ‘l | | 13 | | ‘l

jet 1 jet 1 jet 1 jet 1 |
jet 2
Og X (=) Og X (+) Og X (=) 0og X (+o0)
Infinities cancel Infinities do not cancel

Invalidates perturbation theory
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he full cross section that you measure in experiment should correspond to
an expression looking roughly as follows:

A
ol — 5, o <1+ascl +a§cz+a§c3+...+0< iCD>>
t

A perturbative series
plus a non-perturbative contribution, suppressed by a power of Agcp/p:

We don’t have the technology to calculate the full series or the
non-perturbative part. Typically, one might “just” calculate next-to-leading
order

oo — J10 (]. -+ ascl)

The point to perturbation theory is that the coa?, etc. terms are small
compared to the ones you have calculated — hence (e.g.) NLO should be a
good approximation.
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Infrared/collinear safety and real life

Real life does not have infinities, but pert. infinity leaves a real-life trace
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Infrared/collinear safety and real life

Real life does not have infinities, but pert. infinity leaves a real-life trace

2 3 2 2 3 4 2
o +ai+afxoo—sat+ad+al xinp/N— a2+ ol +al

Among consequences of IR unsafety:

Last meaningful order

BOTH WASTED

JetClu, ATLAS | MidPoint | CMS it. cone | Known at
CONe [IC-SM] (1Crrp-SM] [IC-PR]
Inclusive jets LO NLO NLO NLO (— NNLO)
W/Z + 1 jet LO NLO NLO NLO (— NNLO)
3 jets none LO LO NLO [nlojet++]
W/Z + 2 jets none LO LO NLO [MCFM]
Mier In 2j + X none none none NLO [Blackhat/Rocket/.. ]

NB: 50,000,000%/ £/CHF /€ investment in NLO
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Infrared/collinear safety and real life

Real life does not have infinities, but pert. infinity leaves a real-life trace

o + af x 0o = o + af x Inp; /N — ol + o

BOTH WASTED

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS | MidPoint | CMS it. cone | Known at
cone [IC-SMV] (1Crrp-SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (— NNLO)
W/Z + 1 jet LO NLO NLO NLO (— NNLO)
3 jets none LO LO NLO [nlojet++]
W/Z + 2 jets none LO LO NLO [MCFM]

Mier In 2j + X none none none NLO [Blackhat/Rocket/.. ]

NB: 50,000,000%/£/CHF /€ investment in NLO

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC relies on QCD for background double-checks
extraction of cross sections, extraction of parametersss



Infrared/collinear safety and real life

Real life does not have infinities, but pert. infinity leaves a real-life trace

o + al x oo — o + a xInpe /N — o + al

BOTH WASTED

Among cong

There is a way of resolving this kind of

problem for cone algorithms !

Inclusive jet NNLO)
W/Z+1] SISCone NNLO)
?Ajjtzs +2; [Seedless Infrared Safe Cone] peh T
Miet 1IN 2J lackhat /Rocket /.|

But, in the end, this is not the solution IXGENKe

that the LHC experiments chose, so let’s
Multi-jet co

spend our time on the one they did
ble-checks

B parameterss+



Hierarchical clustering
[sequential recombination algorithms]
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Sequential recombination algorithms (e+e-)

[aka hierarchical agglomerative clustering]

® Define a distance measure dij between all pairs of
particles.

® Recombine pair with smallest d;;

® Repeat until all dij > deut

The algorithm’s general behaviour Is governed by
how one defines the interpair distances d;

decut IS a resolution parameter, which governs how
whether jets are coarse or fine objects

Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014 83



Classic e+e- seq. rec. algorithms (1)

JADE algorithm - the original seq. rec. algorithm
2
dz‘j — mz-j ~ QEZE](l — COS (923)

The most obvious choice?
But does not give sensible behaviour

|see blackboard]
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Classic e+e" seq. rec. algorithms (2)

Use QCD divergences to help decide distance measure:

The stronger the divergence between a pair of particles,
the more likely it Is they should be associated with each
other. [see blackboard]

ki / Durham algorithm - the most widely used at LEP

df,;j — Qmm(EZQ, EJZ)(l — COS 6’@])

Catani, Dokshitzer, Olsson, Turnock & Webber '91
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ki/Durham in action .

=
€ ;. OPAL (91 GeV)
= Durham
2 |
081 Fraction of events
| s e with n jets, as a
0.5/ L Y function of the
5-jet resolution parameter
PYTHIA
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ki alg. at hadron colliders (1)

What changes at a hadron collider?

® You have (unseen) beams, introduce a “beam distance”

dz’B — 2Ei2(1 — COS HZB)

squared trans. mom. wrt beam

® You want to use longitudinally invariant variables, I.e. p;,
rapidity (y) and azimuth (¢p)

dij = min(py;, pp;) ARG, ARY = (i —y5)° + (di — ¢;)°
dip = p;
iB — P
exclusive k: algorithm

still just one parameter deut
Catani, Dokshitzer, Seymour & Webber 1993

Gavin Salam (CERN) Jets and jet substructure (1) CFHEP, April 2014

87



ki alg. at hadron colliders (2)

Two parameters, R and p: min

(These are the two parameters in essentially every widely
used hadron-collider jet algorithm)

. AR;;
dij — mln(p%iap%j) sz ) AR?j — (yz — yj)2 T (Cbz — €bj)2

Reformulate algorithm

1. Find smallest of dj, dis
2. It ij, recombine them

3. It /B, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left

Only use jets with pt > ptmin Inclusive k: algorithm

S.D. Ellis & Soper, 1993
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In what way do the inclusive and exclusive variants’
behaviours ditfer?
[see blfackwhiteboard]

ls one “right”, the other wrong”?
A priori no, maybe we’ll come back to this later.
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|Sequential recombination]

[kt for hadron colliders| kt In aCthn

ki alg.: Find smallest of

AR2

2
RQ, dip = Ky

d’.l — mm(ktn k )
It djj recombine

if dig, 1 1s a jet

Example clustering with k; algo-
rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 /



Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is dij = 0.166597 ki alg.: Find smallest of
60 ARg ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is dij = 2.66556 ki alg.: Find smallest of
60 ARﬁ ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 / .



|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV J dmin is dij = 4.16493 ki alg.: Find smallest of
60 ARﬁ ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV [ dmin is dij = 8.75775 ki alg.: Find smallest of
60 ARg ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 ) 35



|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV [ dmin is dij = 12.7551 ki alg.: Find smallest of
60 ARI? ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-
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¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 /



|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV [} dmin is dij = 15.3298 ki alg.: Find smallest of
60 ARﬁ ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p,/GeV dmin is dij = 229.802 kt alg-: Find smallest of
60 ARI? ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is dij = 285.007 ki alg.: Find smallest of
60 ARﬁ ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p,/GeV dmin is diB = 1776.02 kt alg-: Find smallest of
60 ARI? ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 is a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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dij = min(kz, k )?7 dip = Ki
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30 Example clustering with k; algo-
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is diB = 2155.61 ki alg.: Find smallest of
60 ARg ;
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 is a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-
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The kt algorithms form one of several “tamilies” of sequential
recombination jet algorithm

Others differ in

1. the choice of distance measure between pairs of particles
[i.e. relative priority given to soft and collinear divergences]

2. using 3—2 clustering rather than 2—1
[ARCLUS; not used at hadron colliders, so won't discuss it more]
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Sequential recombination variants

Cambridge/Aachen: the simplest of hadron-collider algorithms

- Recombine pair of objects closest in AR,;
- Repeat until all AR; > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge): more involved e+e— form
Wobisch & Wengler '99 (Aachen): simple inclusive hadron-collider form
One still applies a ptmin cut to the jets, as for inclusive ki

C/A privileges the collinear divergence of QCD;
it ‘ignores’ the soft one
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anti-K; .

Anti-ki: formulated similarly to inclusive k:, but with

1 AR, 1
dij = 5y a0 4B = 5
max(py;, p; ] ) R Pt;

Cacciari, GPS & Soyez '08 [+Delsart unpublished]

Anti-k; privileges the collinear divergence of QCD and
disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle
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Anti-k: In action

2

Clustering grows g 1 AR7; i 1
17 ] i - —

around hard cores 7 max(pj;, p;;) R? 2
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Anti-k: In action

. 2
Clustering grows - ARij -

1) 2 .2 9 B — 9

around hard cores max(Py;, Pt R Ds;

anti-kt, d = 1.00e+100

Anti-k; gives
cone-like jets
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stable cones
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s it really only about the “circularity”
of the jets’ boundaries!?



Linearity: k; v. anti-k;

p/GeV

kt clustering, R=1
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Linearity: k; v. anti-k;
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Anti-ki experimental performance

Efficiency for finding detector
jet that matches particle jet

3 it | a) | Asgoodas, or better than
S 1 s-a--g:g® all previous experimentally-
N \ favoured algorithms.
095~ [, -*r:
09_%}* 1 Essentially because anti-ki
C —e— Antikt - D=0.4 1 has linear response to soft
0.85 :—_*,'_ -- @ -- ATLAS-Cone R=0.4 E partiCIeS.
- e Kt D=0.4 .
0'85 --©-- SIS-Cone R=0.4 1 And it’s also infrared and
0.75 — 3—  collinear safe (as needed
pTrifiGev] for theory calcs).

from Ph.D. thesis by P. Francavilla

[see blackboard for explanation of plot]
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Anti-ki experimental performance

Efficiency for finding detector
jet that matches particle jet

3 it | a) | Asgoodas, or better than
S 1 g:a%age | all previous experimentally-
. & \ favoured algorithms.
095 /i s
09_%} 1 Essentially because anti-k
—e— Antikt D=0 : i esponse to soft
0.85:—_*,'_ ATL/
I S =S8 This, and other analogous
i e plots, are among the factors ZIELERl
0.75 — 2 that led to anti-k: being S needed
from Ph.D. thesis by P. Francavil adopted as the main jet lcs).

algorithm in ATLAS and CMS

[see blackboard for e
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Infrared & Collinear safe algorithms

sequential recombination |
Catani et al ‘91

Kt dj = min(k?,k?) ARZ/R2 | £ e gs | NINN
hierarchical in relative p, ’
: seguential recombination
Cambrldge/ . (;[_.a_ Aegg/sz)l atio Dokshitzer etal 97 |\
Aach dij = AR Wengler, Wobish ‘98 | '\
dacnen hierarchical in angle
sequential recombination VIC. Salam. Soves 08
[ ] . ) J Z
anti-ki dij = min(ke2, ki 2) AR;2/R2 Doloart) NG/2

gives perfectly conical hard jets

Seedless iterative cone
SISCone with split-merge Salam, Soyez ‘07 | N2InN

gives ‘economical’ jets
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Infrared & Collinear safe algorithms

anti-k; algorithm ki algorithm Cambridge/Aachenf nN
;pt/GeV p/GeV p/GeV |

50 50 50 -

40 - 40 - 40 5 ' NN
30 - 30 - 30 A

20 o 20 o 20 o

§3/2
10 - 10 - 10 - E

() M S — () M I — o
2 3 4y 0 1 2 3 4y 0 1 2 3 4

S | SCOne with split-merge Salam, Soyez ‘07 N2InN

gives ‘economical’ jets
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Infrared & Collinear safe algorithms

sequential recombination |
Catani et al ‘91

Kt dj = min(k?,k?) ARZ/R2 | £ e gs | NINN
hierarchical in relative of
: sequential recombination | |
Ci\rggﬁg[ge/ | di = ARi2/R2 | Dokshitzeretal 97 | \inN
| Advertisment
anti-k All are available in Fastdet, http://tastjet.ir N3/2

(as well as many IRC unsafe ones)

Other (recent) software

SISCol N2InN

Spartydet (python/root interface to FastJet)
Slowdet (in Pythia8)
Slowdet (mathematica code by J. Ruderman)
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// specify a jet definition
JetDefinition jet def(antikt algorithm, double R);

jet_algorithm can be any one of the four IRC safe algorithms, or also
most of the old IRC-unsafe ones, for legacy purposes
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// specify a jet definition
JetDefinition jet def(antikt algorithm, double R);

jet_algorithm can be any one of the four IRC safe algorithms, or also
most of the old IRC-unsafe ones, for legacy purposes

// specify the input particles
vector<Pseudodet> input particles = . . .;
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http://fastjet.fr/

// specify a jet definition
JetDefinition jet def(antikt algorithm, double R);

jet_algorithm can be any one of the four IRC safe algorithms, or also
most of the old IRC-unsafe ones, for legacy purposes

// specify the input particles
vector<Pseudodet> input particles = . . .;

// create a ClusterSequence
ClusterSequence cs(input particles, jet def);
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http://fastjet.fr/

// specify a jet definition
JetDefinition jet def(antikt algorithm, double R);

jet_algorithm can be any one of the four IRC safe algorithms, or also
most of the old IRC-unsafe ones, for legacy purposes

// specify the input particles
vector<Pseudodet> input particles = . . .;

// create a ClusterSequence

ClusterSequence cs(input particles, jet def);

// extract the jets
vector<PseudoJdet> jets

sorted by pt(cs.inclusive(jets));

// pt of hardest jet
double pt hardest = jets[0].pt();

// constituents of hardest jet
vector<PseudoJdet> constituents = jets[0].constituents();
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FastJet speed

Time needed to cluster an event with N particles

10° F———————— -
" Intel® i5 760 ;
10 | Fastet3o1 S oS o & :
s o -
10" ‘
2 102
O
E 100 bl e :
10%F A collisions oo ;
. with pileup .
1077 bahArie gt e :;k .
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