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Lecture 3: PDFs and DGLAP
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[PDFs]

Factorization & parton distributions

Cross section for some hard

process in hadron-hadron
collisions

o= Z/dxlf;'/p(xlvlﬁ-')/dXQ'?/p(X27N%)&U(§7N%?7N%)7 § = x1x28
i
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» Total X-section is factorized into a ‘hard part’ &(xip1, xop2, ?) and
‘normalization’ from parton distribution functions (PDF).
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» Total X-section is factorized into a ‘hard part’ &(xip1, xop2, ?) and
‘normalization’ from parton distribution functions (PDF).

» Measure total cross section <+ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).
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[PDFs]

Factorization & parton distributions

Cross section for some hard
process in hadron-hadron
collisions

P4 P2

o= Z/dxlﬂ/p(xlvﬂ%-')/dX2'§/p(X27ﬂ%—')&ij(§7/~L%?aN%—')7 § = x1x28
i

» Total X-section is factorized into a ‘hard part’ &(xip1, xop2, ?) and
‘normalization’ from parton distribution functions (PDF).

» Measure total cross section <+ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

» Picture seems intuitive, but

» how can we determine the PDFs? NB: non-perturbative
» does picture really stand up to QCD corrections?
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[PDFs]

T8 e Deep Inelastic Scattering: kinematics

Hadron-hadron is complex because of two incoming partons — so start
with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:

"(1_y)k" B QZ ' _ pq 5 _
e X_2p.q' y_p.k' @7 =
k q (Q%=-¢) /S = c.o.m. energy
xp
p
\proton
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[PDF] Deep Inelastic Scattering: kinematics

L [DIS kinematics]

Hadron-hadron is complex because of two incoming partons — so start
with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:

"(1-y)k" we O P4 2
e 2p.q’ Y p.k' Y
k q (Q%=-¢) /S = c.o.m. energy

» Q? = photon virtuality <> transverse
resolution at which it probes proton

X|
p structure
p » x = longitudinal momentum fraction of
5 struck parton in proton
proton

» y = momentum fraction lost by electron
(in proton rest frame)
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[PDFs]

DS inemaricd Deep Inelastic scattering (DIS): example

@9 ] 2 =125030 GeV? vy =0.56, x=0.50 ‘

e* , proton
e+
Q2 o
X
N roton H1 Run 122145 Event 69506
jet P Date 19/09/1995

Gavin Salam (CERN QCD basics 3 4

32



[PDFs) E.g.: extracting u & d distributions

L [DIS X-sections]

Write DIS X-section to zeroth order in as (‘quark parton model’):

d?0®™ 4ma? (14 (1—y)?

~ Fem

dxd@? — xQ* ( 2 2" O (a5)>
x F3M [structure function]

Fo = x(e2u(x) + e3d(x)) = x <gu(x) + ;d(x)>
[u(x), d(x): parton distribution functions (PDF)]

NB:

> use perturbative language for interactions of up and down quarks

» but distributions themselves have a non-perturbative origin.
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[PDFs) E.g.: extracting u & d distributions

L [DIS X-sections]

Write DIS X-section to zeroth order in as (‘quark parton model’):

d?0®™ 4ma? (14 (1—y)?

~ Fem

dxd@? — xQ* ( 2 2" O (a5)>
x F3M [structure function]

Fo = x(e2u(x) + e3d(x)) = x <gu(x) + ;d(x)>
[u(x), d(x): parton distribution functions (PDF)]

NB:

> use perturbative language for interactions of up and down quarks

» but distributions themselves have a non-perturbative origin.

F> gives us combination of u and d.
How can we extract them separately?
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[Quark distributions]

iy Extracting full flavour structure?

» Using neutrons and isospin

n 4 1
Fj = §Un(X) + §dn(X)
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[Quark distributions]

iy Extracting full flavour structure?

» Using neutrons and isospin

Fy = gun(X) + édn(x) = 5 dp(x) + 5 up(x)
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[Quark distributions]

N Extracting full flavour structure?

» Using neutrons and isospin

Fy = gun(X) + édn(x) = 5 dp(x) + 5 up(x)

» Using charged-current (W®) scattering
[neutrinos instead of electrons in initial or final-state]
» W interacts only with d, @i
» angular structure of interaction differs between d and &

Gavin Salam (CERN QCD basics 3 6 /32



[Quark distributions]

v & d All quarks

quarks: xq(x)
- T - These & other methods — whole set
Q% = 10 GeV? of quarks & antiquarks

CTEQS6D fit

0.6

0.5 NB: also strange and charm quarks
04
0.3
0.2

0.1
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[LQ[L:lag :istributions] A” quarks
quarks: xq(x)
0.6 - - - These & other methods — whole set
Q% = 10 GeV? of quarks & antiquarks
0.5 CTEQS6D fit NB: also strange and charm quarks
04l | » valence quarks (uy = u — @) are
) hard
03 | | x = 1:xqy(x) ~ (1—x)3
’ quark counting rules
x = 0: xqy/(x) ~ x>
02y i Regge theory
0.1 1
0
0 02 04 06 038 1
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g All quarks
quarks: xq(x)
0.6 ' ' ' These & other methods — whole set
Q% = 10 GeV? of quarks & antiquarks
0.5 CTEQED fit | NB: also strange and charm quarks
0.4 | » valence quarks (uy = u — @) are
hard
03 | | x = 1:xqy(x) ~ (1—x)3
' quark counting rules
x = 0: xqy/(x) ~ x>
0.2 | | Regge theory
0.1 ] » sea quarks (us = 21, ...) fairly
soft (low-momentum)
0 x = 1:xqs(x) ~ (1 —x)7
0 02 04 06 08 f x —0:xqs(x) ~ x702
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[Quark distributions] Momentum Sum rule

Llu & d]

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

qi momentum
dy 0.111
uy 0.267
ds 0.066
us 0.053
Ss 0.033
Cs 0.016
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Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

qi momentum
dy 0.111
uy 0.267
ds 0.066
us 0.053
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total 0.546
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[Quark distributions] Momentu m sum ru Ie

Llu & d]

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

gi  momentum Where is missing momentum?

dy 0.111 Only parton type we've neglected so far is the
uy 0.267

ds 0.066 gluon

us 0.053

Ss 0.033

Ccs 0.016
total 0.546
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[Quark distributions] Momentum Sum rule

Llu & d]

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

gi  momentum Where is missing momentum?

dy 0.111 Only parton type we've neglected so far is the
uy 0.267

ds 0.066 gluon

Us 0.053 Not directly probed by photon or W=,

s 0.033 NB: it's crucial to know it for gg — H
cs 0.016
total 0.546
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[Quark distributions] Momentum sum rule

Llu & d]

Check momentum sum-rule (sum over all species carries all momentum):

Z/dqu,-(x) =1

gi  momentum Where is missing momentum?
dy 0.111 Only parton type we've neglected so far is the
uy 0.267
ds 0.066 gluon
Us 0.053 Not directly probed by photon or W=,
ss 0.033 NB: it's crucial to know it for gg — H
cs 0.016
total 0.546 To discuss gluons we must go beyond ‘naive’
leading order picture, and bring in QCD split-
ting. ..
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[Initial-state splitting]

L 1ot order analyse] Recall final-state splitting

Yesterday: calculated g — qg (0 < 1, E < p) for final state of arbitrary
hard process (op):

_asCr dE df? N p 2P
Thte =9h— T F g2 , “
k 0=(1-z)p
Rewrite with different kinematic variables
i~ UhOzSCF dz dkt2 E = (1 — z)p
& T 1—2z k? ke = Esinf ~ EO

If we avoid distinguishing g + g final state from g (infrared-collinear safety),
then divergent real and virtual corrections cancel

/
N /

o VN*O'haSCF dz dk? p p
WETTIII R ) N

1
1
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[Initial-state splitting]

L [1st order analysis] Initial_state Spllttlng

For initial state splitting, hard process occurs after splitting, and
momentum entering hard process is modified: p — zp.

asCF dz dfkg
T 1—=z kt2

og+h(P) =~ on(zp)

For virtual terms, momentum entering hard process is unchanged

asCr  dz dk,_?

p p
ov4+h(p) = —on(p) 2 - s e
T 1oz K A .

Total cross section gets contribution with two different hard X-sections

Qg CF dktz dz
kl? 1—-=z
NB: We assume o, involves momentum transfers ~ Q > k;, so ignore extra

transverse momentum in op
Gavin Salam (CERN QCD basics 3 10 / 32
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[Initial-state splitting]

L 1t order analysi] Initial-state collinear divergence

aCr (@ dik? dz
Ogt+h+ Ovin SW £ / / [Uh zp) — on(p)]

» In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
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[Initial-state splitting]

L 1t order analysi] Initial-state collinear divergence

aCr (@ dik? dz
Ogt+h+ Ovin SW £ / / [Uh zp) — on(p)]

finite

» In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
» For 1 —z#0, ox(zp) — on(p) # 0, so z integral is non-zero but finite.
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[Initial-state splitting]

L 1t order analysi] Initial-state collinear divergence

aCr (@ dk2
Tgt+h T OVih = —

infinite finite

% lou(zp) — on(p)]

» In soft limit (z — 1), on(zp) — on(p) — O: soft divergence cancels.
» For 1 —z#0, ox(zp) — on(p) # 0, so z integral is non-zero but finite.

BUT: k; integral is just a factor, and is infinite
This is a collinear (k; — 0) divergence.
Cross section with incoming parton is not collinear safe!
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[Initial-state splitting]

L 1t order analysi] Initial-state collinear divergence

aCr (@ dik? dz
Ogt+h+ Ovin SW i / / [Uh zp) — on(p)]

infinite finite

» In soft limit (z — 1), on(zp) — on(p) — 0: soft divergence cancels.
» For 1 —z #0, on(zp) — on(p) # 0, so z integral is non-zero but finite.

BUT: k; integral is just a factor, and is infinite
This is a collinear (k; — 0) divergence.
Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles
So how do we do QCD calculations in such cases?

Gavin Salam (CERN QCD basics 3 11 / 32



[Initial-state splitting] COI I i near Cutof‘f‘

L [1st order analysis]

k - By what right did we go to k; = 07
We assumed pert. QCD to be valid for
all scales, but below 1 GeV it becomes
non-perturbative.

Cut out this divergent region, & instead
put non-perturbative quark distribution
in proton.

o0 = /dx on(xp) q(x,1 GeV?)

1 GeV? ™~
N XP (1-z)xp

s

asCr [© dk? [ dxdz
oy~ —==F — [oh(2xp) — on(xp)] Gx, 1 GeV?)
1Gev? ki 1-2z
finite (large) finite

Gavin Salam (CERN QCD basics 3 12 / 32



[Initial-state splitt'\.ng] COI I i near Cutof‘f‘

L [1st order analysis]

K . By what right did we go to k; = 07

non-perturbative.

in proton.

o0 = /dx on(xp) q(x, 1%)

Q% 4.2 i dz
/ [T lonxp) - anlop)] gl

t

(1-2)xp

finite (Iarge) finite

In general: replace 1 GeV? cutoff with arbitrary factorization scale ,u%.

Gavin Salam (CERN QCD basics 3

We assumed pert. QCD to be valid for
all scales, but below 1 GeV it becomes

Cut out this divergent region, & instead
put non-perturbative quark distribution
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[Initial-state splitting]

L [1st order analysis] Sum mary SO far

» Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have different longitudinal momenta

» Situation analogous to renormalization: need to regularize (but in IR
instead of UV).

Technically, often done with dimensional regularization

» Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.
Choice of factorization scale, 12, is arbitrary between 1 GeV? and Q2

» In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.
Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

Gavin Salam (CERN QCD basics 3 13 /32



[Initial-state splitting]

L [1st order analysis] Sum mary SO far

» Collinear divergence for incoming partons not cancelled by virtuals.
Real and virtual have different longitudinal momenta

» Situation analogous to renormalization: need to regularize (but in IR
instead of UV).

Technically, often done with dimensional regularization

» Physical sense of regularization is to separate (factorize) proton
non-perturbative dynamics from perturbative hard cross section.
Choice of factorization scale, 12, is arbitrary between 1 GeV? and Q2

» In analogy with running coupling, we can vary factorization scale and get
a renormalization group equation for parton distribution functions.
Dokshizer Gribov Lipatov Altarelli Parisi equations (DGLAP)

increase
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[Initial-state splitting]

S DGLAP equation (g < q)

Change convention: (a) now fix outgoing longitudinal momentum x; (b)
take derivative wrt factorization scale ji2

2
(HS)P X

dg(x, 1) _ as [* q(x/z. 1) o5 [ 2
M—%/X dZqu(Z)f 277/0 dz pqaq(2) q(x, 1%)

1+ 22
11—~z

Pqq is real g < g splitting kernel: p,,(z) = Cr

Until now we approximated it in soft (z — 1) limit, pgq ~ ff’;

Gavin Salam (CERN QCD basics 3 14 / 32



o DGLAP rewritten

Awkward to write real and virtual parts separately. Use more compact
notation:

dq(x, (?) _ as /1 q(x/z, 11*) 1422
L) =2 [ dz P (z) TR =
din 2 o . 2 Pgq(2) 2 ) qaq F .

Paq®q

This involves the plus prescription:

1 1 1
/0 dz [g(2)]; F(z) = /0 dz g(2) F(2) /0 dz g(2) £(1)

z =1 divergences of g(z) cancelled if f(z) sufficiently smooth at z =1

Gavin Salam (CERN QCD basics 3 15 / 32



e DGLAP flavour structure

L [DGLAP]

Proton contains both quarks and gluons — so DGLAP is a matrix in flavour

space:
(i) B ) (3)
din@2\ g Peegq Pgcg g

[In general, matrix spanning all flavors, anti-flavors, Pgq = 0 (LO), Pgg = Pggl

Splitting functions are:

1+ (1-2)?
Pule) =Tl + (- 2], Pale) =G |[FEEEE)
V4 1—2z (11CA—4nfTR)
P =2C 1-— fl1l-z)—m———-—=.
ele) = 264 | g+ T 2l - 2)] o - AT

Have various symmetries / significant properties, e.g.
» Pgg, Pgg: symmetricz <+ 1 —z (except virtuals)
» Pqq, Pgg: diverge for z — 1 soft gluon emission
» Pgg, Pgqy: diverge for z — 0 Implies PDFs grow for x — 0
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e el DGLAP flavour structure

L [DGLAP]

Proton contains both quarks and gluons — so DGLAP is a matrix in flavour

space:
(i) B ) (3)
din@2\ g Peegq Pgcg g

[In general, matrix spanning all flavors, anti-flavors, Pgq = 0 (LO), Pgg = Pggl

Splitting functions are:

1+ (1-2)?
Pule) =Tl + (- 2], Pale) =G |[FEEEE)
V4 1—2z (11CA—4nfTR)
P =2C 1-— fl1l-z)—m———-—=.
ele) = 264 | g+ T 2l - 2)] o - AT

Have various symmetries / significant properties, e.g.
» Pgg, Pgg: symmetricz <+ 1 —z (except virtuals)
» Pqq, Pgg: diverge for z — 1 soft gluon emission
» Pgg, Pgqy: diverge for z — 0 Implies PDFs grow for x — 0

2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov & Parisi
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[Initial-state splitting]

Lipaiae Higher-order calculations

NLO:

o 201 8 56
PW(x) = 4Cen, ;;—2+6x—4Hg+x 3Ho = | +(1+2)|5Ho — 2Ho,o

Qg
Py = p0)
PR = 4CAn((2970§ — 24 25x — 2pqg(—x)H_1,0 — 2pqg (x)Hy,1 + X [ Ho — ?}

As p)
1672

+4(1 — x) [Ho,o — 2Hg + le] — 4¢yx — 6Ho o + QHO) +4Cpny (2pqg(x) [Hl,o +Hp 1+ Hy
2 5 29
—Cz] + 4x [Ho +Hoo + E] +2(1—x) {Hu + Hoo — 2xHy + T] ~~ ~Hoo— —Hu>
Curci, Furmanski
) 1 11 58 44 .,
Pei(x) = 4CACF(; +2qu(x)[H1,o +Hyg+Hy — ?Hl] —x LHO - 7} +4G =2 & Petronzio '80
37 2
—T7Ho + 2Hg,g — 2Hyx + (1 + x) [2H010 — 5Hg + ?] - ngq(fx)H,LQ) —4Ceny (gx
2 10 ) 77
_qu(x)[ng - ;D +4C (qu(x) [31'11 - ZH1,1] +(1+x) [Ho,o -5t EHO} — 3Ho o

3
+- SHo+ 2H1x)

) 10 Bl L, 2 2 N
PP = ACAn,(l — X = —pgg(x) — 7(; — X ) = 3@+ xHo — 75(1—x)) +4C, (27

9
27 67 /1
+(1+x)[ H0+8H00771|+2pgg( x)[HOO—QH 10—(2]—3(——x)—12H0
X

44
-3 Hy +2pgg(x)[— - (2+Hgo+2H10+2H2} +6(1 —x)[ +3<3D +4anf(2Hu

21 10
+§—+—x —12+(1+x)[4—5H0—2H00} 755(17@) .

X
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e T NNLO splitting functions

NNLO, szb): Moch, Vermaseren & Vogt '04

Gavin Salam (CERN QCD basics 3 18 / 32



it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 :
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
2 just quarks:

Q%=12.0 GeV?

1.5 i (?InQQq:Pqeq‘@q
Ohn Q28 = 'Dg<—q ®q
1 i
» quark is depleted at large x
0.5 1 » gluon grows at small x
0
0.01 0.1 1
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 —
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
R | just quarks:
2 Q?=150Gev? 1 14"
15 | ] On@2d = Pgeq @ q
Oin Q8 = Pgeqg®q
1 - N
» quark is depleted at large x
05t T v 1 » gluon grows at small x
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 —
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
just ks:
2 f Q?=27.0Gev? | U ANE
15 | . On @24 = Pacq @4
O Q28 = 'Dg<—q X q
1L i
» quark is depleted at large x
0.5 \T ‘ 1 » gluon grows at small x
0 1
0.01 0.1 1
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 —
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
R | just quarks:
2 Q?=350Gev? | U
15 i ?'“QQq:Pqu‘@q
O Q28 = 'Dg<—q X q
1L i
» quark is depleted at large x
0.5 \?\‘ 1 » gluon grows at small x
0 1

0.01 0.1 1
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 T >
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
R | just quarks:
2 Q?=460Gev? | I
15 i ?'“QQq:Pqu‘@q
O Q28 = 'Dg<—q X q
1L i
» quark is depleted at large x
0.5 \'\‘\ 1 » gluon grows at small x
0 1

0.01 0.1 1
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 —
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
N | just quarks:
2 Q?=600Gev? | 1Y
15 | . On @24 = Pacq @4
O Q28 = 'Dg<—q X q
1L i
» quark is depleted at large x
05t ‘ 1 » gluon grows at small x
0 1
0.01 0.1 1

Gavin Salam (CERN QCD basics 3 19 / 32



it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

3 :
xg(x,Q%) ——
25 | Xq + xgbar ,
Take example evolution starting with
2 just quarks:

Q% =90.0 GeV? |

0|anq: Pqeq‘@q

1.5 - ) -
dln Q8 = Pg<—q ®q
1 i
» quark is depleted at large x
0.5 1 » gluon grows at small x
0
0.01 0.1 1
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it Effect of (LO) DGLAP: initial quarks

xq(x,Qz), xg(x,Qz)

xg(x,Q%) ——
25 | Xq + xgbar ,

Take example evolution starting with

Q2= 150.0 Gev?| 1USt quarks:

0|anq: Pqeq‘@q

1.5 - ) -
dln Q8 = Pg<—q ®q
1 i
» quark is depleted at large x
0.5 1 » gluon grows at small x
0
0.01 0.1 1
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q%) ——
S Xq + xgbar i
2nd example: start with just gluons.
d Q?=120GeV? | ,,
=le On@2q =P g®g
3 r 8 0|n02g:'DgHg®g
2 r 1 » gluon is depleted at large x.
» high-x gluon feeds growth of
1+t 1 small x gluon & quark.
0 Il
0.01 0.1 1
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

{ xg(x,Q%) ——

S Xq + xgbar i

2nd example: start with just gluons.
d Q?-=150GeV? | ,,

=0 On@2q =P g®g

3 r 8 0|n02g:'DgHg®g
2 r 1 » gluon is depleted at large x.

» high-x gluon feeds growth of
1+t 1 small x gluon & quark.
0 I w—— S
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q%) ——
S Xq + xgbar i
2nd example: start with just gluons.
d Q?=27.0GeV? | ,,
=el. On@2q =P g®g
3 r 8 0|n02g:'DgHg®g
2 r 1 » gluon is depleted at large x.
» high-x gluon feeds growth of
1+t 1 small x gluon & quark.
0
0.01 0.1 1
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q%) ——
S Xq + xgbar i
2nd example: start with just gluons.
i Q?-350GeV? | ,,
=99 On@2q =P g®g
3r 1 0In02g:Pgeg®g
2 r 1 » gluon is depleted at large x.
» high-x gluon feeds growth of
1+t 1 small x gluon & quark.
0 \’\v\
0.01 0.1 1
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q2) —
S Xq + xgbar i
2nd example: start with just gluons.
4T 2 2 |
Q° =46.0 GeV

On@2q =P g®g
; On @28 = Pgeg®8g

1 » gluon is depleted at large x.

» high-x gluon feeds growth of
1 small x gluon & quark.
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q2) —
S Xq + xgbar i
2nd example: start with just gluons.
4T 2 2 |
Q° =60.0 GeV

On@2q =P g®g
; On @28 = Pgeg®8g

1 » gluon is depleted at large x.

» high-x gluon feeds growth of
1 small x gluon & quark.
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q2) —
S Xq + xgbar i
2nd example: start with just gluons.
4T 2 2 |
Q" =90.0 GeV

On@2q =P g®g
; On @28 = Pgeg®8g

1 » gluon is depleted at large x.

» high-x gluon feeds growth of
1 small x gluon & quark.
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e Effect of (LO) DGLAP: initial gluons

xq(x,QQ), xg(x,Qg)

xg(x,Q%) ——
Xq + xgbar i

2nd example: start with just gluons.

2 _ 2 ,,
Q" =150.0 GeV On@q=Pgeg®g

; On @28 = Pgeg®8g

1 » gluon is depleted at large x.

» high-x gluon feeds growth of
1 small x gluon & quark.

Gavin Salam (CERN QCD basics 3 20 / 32



e DGLAP evolution

» As Q? increases, partons lose longitudinal momentum; distributions all
shift to lower x.
» gluons can be seen because they help drive the quark evolution.

Now consider data
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
NMC —x— at initial scale Qg =12 GeV2.
NB: Qp often chosen lower
1.2 ¢ Q%= 12.0 GeV? ]| ’

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
NMC —x— at initial scale Qg =12 GeV2.
NB: Qp often chosen lower
1.2 ¢ Q? = 15.0 GeV? | ’

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
NMC —x— at initial scale Qg =12 GeV2.
NB: Qp often chosen lower
1.2 Q? = 27.0 GeV? | ’

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
NMC —x— at initial scale Qg =12 GeV2.
3 NB: @y often chosen lower
121 Q2= 35.0 GeV? ]| 0

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
. NMC —x— at initial scale Qg =12 GeV2.
NB: Qp often chosen lower
L Q? = 46.0 GeV? | °

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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oo et DGLAP with initial gluon =0

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

16 ZEUS + | Fit quark distributions to Fa(x, Q2),
: NMC —x— at initial scale Qg =12 GeV2.
NB: Qp often chosen lower
tap ” Q2 = 60.0 GeV? | 0

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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[Determining gluon] DGLAP with initial g|uon =0

L [Evolution versus data]

Fb (x,Q%)

DGLAP: g(x,Qp9) =0 ——

1.6 ZEUS - | Fit quark distributions to F(x, Qg),
at initial scale Qg =12 GeVZ2.
1 NB: Qo often chosen lower
1t2r Q2 =90.0 GeV? 0

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

0.001 0.01 0.1 1
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[Determining gluon] DGLAP with initial g|uon =0

L [Evolution versus data]

Fb (x,Q%)

DGLAP: g(x,Qp?) =0 ——

1.6 ZEUS - | Fit quark distributions to F(x, Qg),
at initial scale Qg =12 GeVZ2.
I NB: Qp often chosen lower
1.2 ¢ Q2 = 150.0 GeV?| 0

Assume there is no gluon at Qg:
g(Xv Qg) =0

Use DGLAP equations to evolve to
higher Q?; compare with data.

Complete failure!

0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

F3 (x.Q°)
DGLAP (CTEQ6D) ——
161 ZEUS |
NMC —x If gluon # 0, splitting g — gqg gen-
1ol ) , | erates extra quarks at large Q2.
) Q" =12.0 GeV w faster rise of F»

Find a gluon distribution that leads

to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

F3 (x.Q°)
DGLAP (CTEQ6D) ——
161 ZEUS |
NMC —x If gluon # 0, splitting g — gqg gen-
1ol ) , | erates extra quarks at large Q2.
) Q" =15.0 GeV w faster rise of F»

Find a gluon distribution that leads

to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

F5 (x,Q?%)
DGLAP (CTEQ6D) ——
161 ZEUS |
NMC —x If gluon # 0, splitting g — gqg gen-
i o ) , | erates extra quarks at large Q2.
' Q" =27.0 GeV = faster rise of F;
Find a gluon distribution that leads
0.8 r to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
04 r
0
0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

F5 (x,Q%)
DGLAP (CTEQ6D) ——
161 ZEUS |
NMC —x If gluon # 0, splitting g — gqg gen-
i o ) , | erates extra quarks at large Q2.
) Q" =35.0 GeV w faster rise of F»
Find a gluon distribution that leads
0.8 r to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
04
0
0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

F5 (x.Q%)
DGLAP (CTEQ6D) ——
161 ZEUS |
NMC —x If gluon # 0, splitting g — gqg gen-
1ol ) , | erates extra quarks at large Q2.
) Q" = 46.0 GeV w faster rise of F»
Find a gluon distribution that leads
0.8 to correct evolution in Q2.
Done for us by CTEQ, MRST, ...
PDF fitting collaborations.
04
0
0.001 0.01 0.1 1
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[Determining gluon]
L [Evolution versus data]

DGLAP with initial gluon # 0

If gluon # 0, splitting g — gqg gen-
erates extra quarks at large Q2.
w faster rise of F»

Find a gluon distribution that leads

1 to correct evolution in Q2.

Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

Fb (x,Q%)
DGLAP (CTEQ6D) ——

1.6 1 ZEUS ]
1.2 1 Q% = 60.0 GeV? ]|
08 |
04 | .

0

0.001 0.01 0.1

Gavin Salam (CERN
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L Evaraton s date] DGLAP with initial gluon # 0

Fb (x,Q%)

DGLAP (CTEQ6D) ——
ZEUS |

1.6

If gluon # 0, splitting g — gqg gen-
erates extra quarks at large Q2.

121 w faster rise of F»

Q% =90.0 GeV?

Find a gluon distribution that leads
0.8 | 1 to correct evolution in Q2.
Done for us by CTEQ, MRST, ...

PDF fitting collaborations.
04 §

0.001 0.01 0.1 1
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[Petermining gluon] DGLAP with initial gluon # 0

L [Evolution versus data]

Fb (x,Q%)
DGLAP (CTEQ6D) ———
161 ZEUS |
If gluon # 0, splitting g — gqg gen-
1ol ) ,| erates extra quarks at large Q2.
' Q" =150.0 GeV = faster rise of Fp

Find a gluon distribution that leads

0.8 E 1 to correct evolution in Q2.

Done for us by CTEQ, MRST, ...
PDF fitting collaborations.

04 r 1

Success!

0.001 0.01 0.1 1

Gavin Salam (CERN QCD basics 3 23 / 32



[Determining full PDFs]

L [Global fits] GIUOH distribution

xq(x), xg(x)

Q% =10 GeV?
CTEQSD fit

Gluon distribution is HUGE!

4 gluon 1 Can we really trust it?
3 41 » Consistency: momentum sum-rule
is now satisfied.
2 1 NB: gluon mostly at small x
] » Agrees with vast range of data
u
0 v
0.01 0.1 1
X
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A R DIS data and global fits

H1 and ZEUS

o [T T Ty - . ;
L% F HERA Data ] bl 1 o HERANCep04fb
S | Em HL 1994-2000 i o VE ® HERANCe'p0SfHh™
SSTRIS ZEUS 1994-1997 El E, ol T oo Vs =318 GeV
E 3 Eoeee h 1ud o Fi
[ == zEus Ber 1997 3 L O L " Fixed Target
L ] R ey~ wmsm HERAPDF2.0 €'p NNLO
5 r ZEUS SVX 1995 1 105 _’,.-:_‘-.":.. Mx,‘=nmn5;=16 mmm HERAPDF2.0 ¢*p NNLO
L N 15
10 E E= =l svx 1995, 2000 E| F & i
E 3 4
[ =3 u1 gEDC 1997 A " Bl i
10 2L Fixed Target Experiments: 7 103 o
E O mc E| Fo- oy
[ &4 BepMs i I“Zf '-'M xyy=0032,i=7
E e seeeserrerrreet 3y =005is6
10 ¢ D =6es E i L s SRSSS S =~ =008, 125
[ = suac E ; o . =013, i=4
[ ] .
1 3 E "
E E o xyy= 040 =1
i ] i |
-1 g .
10 & , 107 H 3y =065,i=0
b T R 3 !
-6 -5 -4 -3 -2 -1 10 S -
10 10 10 10 10 10 xl 1 10 10° 10° 10° 10°
2 2
Q7 GeV
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[Determining full PDFs]
L [Global fits]

DIS data and global fits

NNPDF3.0 NLO dataset

TEVEW

TEVJET
ATLASEW
LHOBEW

LHG JETS

HERA2

ATLAS JETS 2.76TEV
ATLAS HIGH MASS
ATLAS WoT
CSWASY

CHIS JETS

s W TOT
CHIS W RAT
LHOBZ

0000000 OO ¥ ¥ ¥ ¥ % ¥ % %

TIBAR

10°

Gavin Salam (CERN

10* 10°
X

10° 10" 1

QCD basics 3

i
O, ncX2

H1 and ZEUS

i ® HERA NCep 04 b~
07 ® HERANCe'p05fH™
[ = Vs =318 GeV
06 Tr. n%‘l m o :
13 ':.-—' [ Fixed Target
LT U 8, === HERAPDF20 €p NNLO
05 ’,.—:_"_":.. Mx,‘ =00005,i-16  memm HERAPDF2.0 ¢'p NNLO
04
0 e
2| e eerbeitt 4
107 M Xy =0032,i=7
E gy =005, 16
F 3y, = 0.08,1=5
» ; 3= 03,4
1
.]‘
e
107
" 3 =t
1 10 10} 10} 10 10°
2 2
Q7 GeV




[Determining full PDFs]

L [Back to factorization] Other processes

Factorization of QCD cross-sections into convolution of:

» hard (perturbative) process-dependent partonic subprocess

» non-perturbative, process-independent parton distribution functions

etq —> e + jet qg —> 2 jets
X X X2
] X
q(x, @) / a4(x5, @2) l 9alxp, Q2)
proton proton 1 proton 2
Oep = Oeq ® q Opp—2jets = Oqg—2jets & q1 & &2 + - -+
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[Determining full PDFs]
L [Back to factorization]

Other processes

Factorization of QCD cross-sections into convolution of:

» hard (perturbative) process-dependent partonic subprocess

» non-perturbative, process-independent parton distribution functions

e*q —> et + jet

I

a(x, Q2) AW

proton

Oep = Oeq ® q

Gavin Salam (CERN

qg —> 2 jets
X X2
=
q4(Xq5 Q2 /4{ ﬁ 9a(Xy, Q2

proton 1

proton 2

Opp—2jets = Oqg—2jets & q1 & &2 + - -+

QCD basics 3

26 / 32



S Taking PDFs from HERA to LHC

Suppose we produce a system of

LHC parton kinematics mass M at LHC from partons with
o’ T T momentum fractions xi, Xo:
X, = (Mi14 TeV) exp(+y)
10 Q=M M=10TeV > M — X1X25
10 o] L. 1 X1
, » rapidity y = = In —
100 F M=1Tev A 4 2 X2
' pseudorapidity = n = Intan g
~ 10F E - .
= Lo = rapidity for massless objects
:2 10' M=100Gev /- A < 5 at LHC
5 , ; =
o' SoSS SN Are PDFs being used in region where
y= 6 4 2 0 2 4 ol
ok L measured?
M =10 GeV
fixed
10' F HERA
target
o ‘ ‘ ‘
107 10 10 10t 10 10° 10" 10°

Gavin Salam (CERN QCD basics 3 27 / 32



L [Back to factorization]

[Determining full PDFs] Tak|ng PDFs from HERA to LHC

Suppose we produce a system of
LHC parton kinematics mass M at LHC from partons with

T T momentum fractions xi, Xo:
X, , = (M{14 TeV) exp(zy)

Wbk atm M=10Tev ’ » M= \/m
: - 1
> rapidity y = 5 In

X1
X2
pseudorapidity = n = Intan g

10° £ M=1TeV o 75

s = rapidity for massless objects

]

N; 10' E M =100 GeV S 5 at LHC
o' Are PDFs being used in region where
wb L8 measured?

M =10 GeV
YE Only partial kinematic overlap
» DGLAP evolution is essential for
) the prediction of PDFs in the
LHC domain.
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[Determining full PDFs]

L [Back to foctorization] Comparisons to hadron-collider data

Lepton charge asym. v. CT14 @ DO & CMS

0.30
02 DO, L=9.7 b CMS, Vs=7 TeV, L=4.7 [fb]!

e
2
3

0.0

Electron charge asymmetry
Muon charge asymmetry
o
- 15
S

-0.2
0 B
""" CT10 NNLO
“0.6[ --- CTEQ6.6 NLO e — j? >3560:VC
——E§ > 25 GeV, Eq i > 25 GeV. N 'T14, 68% C.L.
0.8 03 ] T3 5 53 K] . 0.5 1 i 1.5 2 2.5
el !
o7 CMS 2,60 < M <120 Gev NLO, ATLAS jets (7 TeV), 0.0 < [y| < 0.3
1_do NNLO ——
Tl 06 prre NLO F . . .
L ATLAS inclusive jets
b MMHT v. ) ratio to MMHT
0.3 . . g
»lZ rapidity @ £t
»  CMS
11
1
£ Yz‘xr“x;&ﬁl‘g%vﬁ@}g{:el?t{!Yvii{'T;
3 o a 1 ; L :
S oo % 100 1000
0 0.5 1 15 2 pr [GeV]
lyz|
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Precision of today's PDFs (from PDF4LHC)

NNLO, Q% = 100 GeV?

[Determining full PDFs]
L [Back to factorization]

NNLO, Q% = 100 GeV?

¥ NNPDF3.0
g e down quark

¢ MMHT14

up quark

d(x,Q)/d(x Q) ref]

u(x Q)7 u(x Q)ref]

X
NNLO, Q% = 100 GeV?

NNLO, Q% = 100 GeV?
1 1.
¥ NNPDF3.0
£ 13 CT14 <

g i s+5
2 s = ¢ MMHT14 4
(b' . é’ o 12

Z kit =~

= ',:.;:, te L

= Lo =

kel o

< 5

(=21 *,n

N 107
X

A Lonnl
=

0% 10
X
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CoonelllL Precision of today's PDFs (from PDF4LHC)

In the range 1073 < x < 0.1 many

parton distributions are known with
precisions of a couple of percent.




[Conclusions]

Conclusions on PDFs

» Factorization is key to our ability carry out calculations for hadron
colliders

» Beyond leading order, factorization implies shuffling of divergences
between the PDFs and the perturbative part of the calculation

» Equation for (factorisation) scale dependence of PDFs is DGLAP

» Our knowledge of PDFs comes both from the direct DIS measurements
(for quarks) and from the scale-dependence of those measurements (for
gluons), as well as Tevatron & LHC data.

» Today's precision on (some) PDFs approaches the percent level, which is
crucial for Higgs precision prospects.
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[Conclusions] PDF exerClse 1

Check that LO DGLAP evolution preserves the momentum sum rule
unchanged.

Hints:

» One way of doing this is to use Mellin moments: f, fo dx xMN £/, (x, 1)

» Which Mellin moment tells you about the momentum carried by parton flavour
i?

» Show that the N Mellin moment of the DGLAP convolution, i.e.
fol dxxV [ %P(z (x/z) is given by the product of the N*' Mellin moments of

P and f,ie. PW f dzzNP(z fo dx xVf(x).

» Then work out the appropriate Mellin moments and you should be able to prove
momentum conservation.
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[Conclusions] PDF exerClse 2

Show that at asymptotically large @2, the fraction of a hadron’s
momentum that is contained in the gluons tends to the value

2CF
2CF + neTg

(and compare this to the result shown earlier in the slides)

Hints:

» write the evolution equation for the momentum in the quarks and gluons in
terms of Mellin moments as a differential matrix equation:

5 (2<N>(u2>>_as(u2) Py Py (zWW))
Inpt g(N)(,u2) o P(N) P(N) g(N)(’u2)

gr 88

where ¥ corresponds to a sum over all quark flavours. Watch out for the factors
. p(N)
of 2 and nf in P, .

> Examine the asymptotic solutions of this equation
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EXTRAS

Gavin Salam (CERN QCD basics 3 33 /32



[Extras]

L [Sea & valence] Anti_q Uarks in proton

How can there be infinite number of
quarks in proton?

Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:
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[Extras] Anti-quarks in proton

L [Sea & valence]

How can there be infinite number of
quarks in proton?

 —— E—— .
Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:

Antiquarks also have distributions, @(x), d(x)

Fa = G (xu(x) + x0() + 5 (xdl(x) + x3(x))

NB: photon interaction ~ square of charge — +ve
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[Extras] Anti-quarks in proton

L [Sea & valence]

How can there be infinite number of
quarks in proton?

- o .
Proton wavefunction fluctuates — extra
ut, dd pairs (sea quarks) can appear:

Antiquarks also have distributions, @(x), d(x)

Fa = G (xu(x) + x0() + 5 (xdl(x) + x3(x))

NB: photon interaction ~ square of charge — +ve

» Previous transparency: we were actually looking at ~ u+ 7, d +d

» Number of extra quark-antiquark pairs can be infinite, so
/dx(u(x) + (%)) = 0o

as long as they carry little momentum (mostly at low x)
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[Extras]

L [Sea & valence] “Va Ience” q UarkS

When we say proton has 2 up quarks & 1 down quark we mean

/dx (u(x)—o(x)) =2, /dx (d(x)—d(x)) =1

u— u = uy is known as a valence distribution.
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[Extras]

L [Sea & valence] “Valence” quarks

When we say proton has 2 up quarks & 1 down quark we mean

/dx (u(x)—o(x)) =2, /dx (d(x)—d(x)) =1
u— u = uy is known as a valence distribution.

How do we measure difference between u and u? Photon interacts
identically with both — no good. ..

Question: what interacts differently with particle & antiparticle?
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[Extras]

L [Sea & valence] “Valence” quarks

When we say proton has 2 up quarks & 1 down quark we mean

/dx (u(x)—o(x)) =2, /dx (d(x)—d(x)) =1
u— u = uy is known as a valence distribution.

How do we measure difference between u and u? Photon interacts
identically with both — no good. ..

Question: what interacts differently with particle & antiparticle?

Answer: W™ or W~

Gavin Salam (CERN QCD basics 3 35 / 32



[Extras]

RS By how much do PDFs evolve?

[llustrate for the gluon distribution

Gluon evolution from 2 to 100 GeV . .
Here using fixed @ scales

100 : :
% LO evolution I But for HERA — LHC
(c?, relevant @ range is x-dependent
! 10 F
o
5 » See factors ~ 0.1 — 10
o
= 1 » Remember: LHC involves product
[0 .
0 of two parton densities
8
o0t}
e} It's crucial to get this right!
< Input: CTEQ61 at Q = 2 GeV
> Evolution: HOPPET 1.1.1 . .
® oy L ‘ : Without DGLAP evolution, you
0.0001 0.001  0.01 0.1 1

couldn’t predict anything at LHC

X
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[Extras]

[Channels for dijet production]

Which PDF channels contribute?

Fractional contributions

Gavin Salam (CERN

Inclusive jet cross sections with MSTW 2008 NLO PDFs
Tevatron,\s = 1.96 TeV

0.1

0':

1=
0.9
0.8}
0.7F
0.6
05
0.4
0.3F
02}

0.‘i < y < 07_

qq - jets

T

gq — jets

99 — jets

“100
p, (GeV)

Fractional contributions

09F

0.8
0.7
0.6

0.5}
0.4

0.3

0.2f

0.1

LHC,\'s = 14 TeV

— _0.0<y<038
aq — jets]

T

- gq—ets \
-gg — jets .

F fastNLO withpy_=p1_=p.

E k; algorithm with D = 0.7

100 1000
P, (GeV)

A large fraction of jets are gluon-induced
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[Extras]
L [Higher order uncertainties]

Evolution uncertainty

uncertainty on g(x, Q = 100 GeV)

Uncert. on gluon ev. from 2 to 100 GeV
0.5

0.4
0.3
0.2
0.1
0
-0.1
-0.2

I O evolution

-0.3  Input: CTEQ61 at Q = 2 GeV
Evolution: HOPPET 1.1.1
-0.4 : ‘ ‘
0.0001  0.001 0.01 0.1 1

X

Estimate uncertainties on evolution

by changing the scale used for as in-
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