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JETS
Collimated, 

energetic bunches 
of particles
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850 records found
Find all papers by ATLAS and CMS
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Pull out those that refer to one widely used jet-alg
538 records found

> 60% of papers use jets!
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Why do we see jets?
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Why do we see jets? Parton fragmentation[Introduction]

[Background knowledge]

KL

π−

π+

π0

K+
no
n−
pe
rt
ur
ba
tiv
e

ha
dr
on
is
at
io
n

quark

Gluon emission:
∫

αs
dE

E

dθ

θ
≫ 1

At low scales:
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High-energy partons unavoidably lead to
collimated bunches of hadrons
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Jet finding as a form of projection
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Jets as projections[Introduction]

[Background knowledge]

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K
p φ

Projection to jets should be resilient to QCD effects

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 8 / 35

Projection to jets should be resilient to QCD effects
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Reconstructing jets is an ambiguous task
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Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35
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Reconstructing jets is an ambiguous task
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Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?
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2 clear jets
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Jets are what we see.
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2 clear jets 3 jets?
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Reconstructing jets is an ambiguous task
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Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?

Gavin Salam (CERN) Jets and jet substructure (1) June 2013 6 / 35

2 clear jets 3 jets? 
or 4 jets?
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Make a choice: specify a jet definition
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{pi} {jk}
jet definition

particles,
4-momenta,

calorimeter towers, ....

jets

• Which particles do you put together into a same jet? 
• How do you recombine their momenta  

(4-momentum sum is the obvious choice, right?)

“Jet [definitions] are legal contracts between theorists and experimentalists’’ 
-- MJ Tannenbaum

They’re also a way of organising the information in an event
1000’s of particles per events, up to 20.000,000 events per second
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Sterman and Weinberg, 
Phys. Rev. Lett. 39, 1436 (1977):

Jet definitions date back to the late 1970s
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Key requirement: infrared and collinear safety
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Consequences of collinear unsafety[Theory v. experiment]

[Cone algorithms]

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Jets lecture 2 (Gavin Salam) CERN Academic Training March/April 2011 9 / 28



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015

hadron-collider kt algorithm

Two parameters, R and pt,min 
(These are the two parameters in essentially every widely 
used hadron-collider jet algorithm)

Sequential recombination algorithm
1. Find smallest of dij, diB 

2.  If ij, recombine them 
3.  If iB, call i a jet and remove from list of particles 
4.  repeat from step 1 until no particles left 

 Only use jets with pt > pt,min

13

Inclusive kt algorithm
S.D. Ellis & Soper, 1993 

Catani, Dokshitzer, Seymour & Webber, 1993

dij = min(p2ti, p
2
tj)

�R2
ij

R2
, �R2

ij = (yi � yj)
2 + (�i � �j)

2
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Sequential recombination variants
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Cambridge/Aachen: the simplest of hadron-collider algorithms 

• Recombine pair of objects closest in ΔRij

• Repeat until all ΔRij > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge): more involved e+e− form
Wobisch & Wengler ’99 (Aachen): simple inclusive hadron-collider form 

One still applies a pt,min cut to the jets, as for inclusive kt

C/A privileges the collinear divergence of QCD;  
it ‘ignores’ the soft one
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anti-kt

Anti-kt: formulated similarly to inclusive kt, but with  

Cacciari, GPS & Soyez ’08 [+Delsart unpublished]

15

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Anti-kt privileges the collinear divergence of QCD and 
disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle
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Anti-kt in action
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dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Anti-kt in action

16

Anti-kt gives 
circular jets  
(“cone-like”) 

in a way that’s 
infrared safe

dij =
1

max(p2ti, p
2
tj)

�R2
ij

R2
, diB =

1

p2ti

Clustering grows 
around hard cores
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Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 18

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 19

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 20

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 21

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 22

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 23

Linearity: kt v. anti-kt

1

2 3

pt/GeV
40

20

0
0 1 2 3

30

10

y

kt clustering, R=1



Gavin Salam (CERN) QCD basics 4 ICTP-SAIFR school, July 2015 24

Linearity: kt v. anti-kt
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Linearity: kt v. anti-kt
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  // specify a jet definition
 double R = 0.4
 JetDefinition jet_def(antikt_algorithm, R); 

jet_algorithm can be any one of the four IRC safe algorithms, or also  
most of the old IRC-unsafe ones, for legacy purposes

  // specify the input particles
 vector<PseudoJet> input_particles = . . .; 

More this afternoon in the tutorial
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  // extract the jets
 vector<PseudoJet> jets = jet_def(input_particles);
 
 // pt of hardest jet
 double pt_hardest = jets[0].pt();
 
 // constituents of hardest jet
 vector<PseudoJet> constituents = jets[0].constituents();

  // specify a jet definition
 double R = 0.4
 JetDefinition jet_def(antikt_algorithm, R); 

jet_algorithm can be any one of the four IRC safe algorithms, or also  
most of the old IRC-unsafe ones, for legacy purposes

  // specify the input particles
 vector<PseudoJet> input_particles = . . .; 

More this afternoon in the tutorial
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Small v. large jet radius (R)

Small jet radius Large jet radius

single parton @ LO: jet radius irrelevant

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 3 / 1934



Small v. large jet radius (R)

Small jet radius

θ

Large jet radius

θ

perturbative fragmentation: large jet radius better
(it captures more)

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 3 / 19



Small v. large jet radius (R)

Small jet radius
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Large jet radius

K
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π
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θ

non-perturbative fragmentation: large jet radius better
(it captures more)

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 3 / 19
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Pileup
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Pileup

37

Jet

perturbative 
radiation

non-perturbative 
phase (hadronisation)

background radiation 
(underlying event)

background radiation 
(pileup)

Out of time pileup
(especially ATLAS)
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ATLAS

Pileup for real

a few cm

~ 
20

 m



Small v. large jet radius (R)

Small jet radius

UE

K
L

π
−π
+

π
0 K
+

non−perturbative
hadronisation

θ

Large jet radius

UE

K
L

π
−π
+

π
0 K
+

non−perturbative
hadronisation

θ

underlying ev. & pileup “noise”: small jet radius better
(it captures less)

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 3 / 19



Small v. large jet radius (R)

Small jet radius Large jet radius

multi-hard-parton events: small jet radius better
(it resolves partons more effectively)

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 3 / 19



Can we capture all quarks and gluons?

Should we capture all quarks and gluons?



pp → tt̄pp → tt̄pp → tt̄
simulated with Pythia, displayed with Delphes

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 17 / 19



6 partons v. 6 jets?

Alpgen pp → t̄t → 6q

 0
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fraction of pp→tt→6q events with all Rqq > R

pp, 7 TeV
Alpgen partons

no pt cut on quarks

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 18 / 19



6 partons v. 6 jets?
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6 partons v. 6 jets?

Alpgen pp → t̄t → 6q
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6 partons v. 6 jets?

Alpgen pp → t̄t → 6q
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6 partons v. 6 jets?

Alpgen pp → t̄t → 6q
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Herwig pp → t̄t → hadrons
Distribution of number of jets
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anti-kt R=0.5
pt,jet > 20 GeV

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 18 / 19
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Two things that make jets@LHC special 

The large hierarchy of scales
√s ⨠ MEW 

The huge pileup
npileup ~ 20 – 40 

[These involve two opposite extremes: low pt and high pt, 
which nevertheless talk to each other]

48
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e.g. ttbar resonances

49

E.g. X → tt̄ resonances of varying difficulty[1 jet ! 2 partons]

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 103 times tt̄
Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 10 / 29
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Boosted hadronic decaysBoosted massive particles → fat jets

Normal analyses: two quarks from
X → qq̄ reconstructed as two jets

jet 1

jet 2

X at rest
X

High-pt regime: EW object X
is boosted, decay is collimated,

qq̄ both in same jet

single
fat jet

z

(1−z)

boosted X

Happens for pt ! 2m/R

pt ! 320 GeV for m = mW , R = 0.5

Gavin Salam (CERN/LPTHE/Princeton) Jets in Higgs Searches HC2012 2012-11-18 19 / 29

50

Boosted EW scale objects
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Papers on jet substructure
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More than 150 papers 
 since 2008 

(+ some background noise)

Number of papers containing  
the words ‘jet substructure’
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Papers containing "jet substructure"
+ pioneering papers by Mike Seymour in 1991 and 1994

(Source: INSPIRE)
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Exploded around 2008
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Tagging & Grooming

52

Tagging
• reduces the background, leaves much of signal

Grooming
• improves signal mass resolution (removing pileup, 

etc.), without significantly changing background & 
signal event numbers

Two widely used terms 
though there’s not a 

consensus about 
what they mean
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One core idea for  
tagging
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Inside the jet mass
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QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 15 / 29
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Inside the jet mass
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Inside the jet mass
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Inside the jet mass
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One core idea for  
grooming

[see blackboard]
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“Grooming”

60

Noise removal from jets[1 jet ! 2 partons]

[Some of the other ideas]

[Boost 2010

writeup]

! Filtering Butterworth et al ’08

! Pruning Ellis, Vermillion and Walsh ’09

! Trimming Krohn, Thaler & Wang ’09

[With earlier methods by Seymour ’93 and Kodolova et al ’07;

Rubin ’10 for filtering optimisation; also Soper & Spannowsky ’10, ’11]

Jets 2 (M. Cacciari and G. Salam) GGI September 2011 24 / 29

Plain jet mass
(anti-kt)

Groomed jet
masses
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How do the tools work  
in practice?



Identifying jet substructure: try out anti-kt

anti-kt algorithm
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the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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kt algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

Zbb BACKGROUND

arbitrary norm.



pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Fill it in, → show jets more clearly

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

Zbb BACKGROUND

arbitrary norm.



pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, m = 150 GeV

Butterworth, Davison, Rubin & GPS ’08
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 150 GeV, max(m1,m2)
m

= 0.92 → repeat

Butterworth, Davison, Rubin & GPS ’08
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 139 GeV, max(m1,m2)
m

= 0.37 → mass drop

Butterworth, Davison, Rubin & GPS ’08
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃
pt2
pt1

≃ 0.7 → OK + 2 b-tags (anti-QCD)

Butterworth, Davison, Rubin & GPS ’08
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3

Butterworth, Davison, Rubin & GPS ’08
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

Butterworth, Davison, Rubin & GPS ’08
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Boosted Higgs analysis

122

Cluster with a large R
Undo the clustering into subjets, 

until a large mass drop  
is observed

Re-cluster with smaller 
R, and keep only 3 

hardest jets

pp →ZH → ννbb--
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different (2-body) substructure tools
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g

Tagging

jet 
mass

N-
subjettiness,  

CN, DN

filtering
trimming

pruning

MDT

Detailed relative positions depend on physics context 
(and are possibly contentious!)
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different (2-body) substructure tools

123

G
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Tagging

jet 
mass

N-
subjettiness,  

CN, DN

filtering
trimming

pruning

MDT

combined

multivariate  
taggers

Detailed relative positions depend on physics context 
(and are possibly contentious!)

template 
tagger

jet 
deconstruction

Q-jets
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Boosted Ws and tops in single jets: data!

W’s in a single jet

with Pruning + Mass Drop requirement

NB: combined in IR unsafe way. . .

tops in a single jet

with HEPTopTagger
Gavin Salam (CERN) Perturbative QCD in hadron collisions SILAFAE 2012-12-10 32 / 35

Seeing W’s and tops in a single jet

124

CMS single-jet W mass peak
in events with a lepton and
separate b-tagged jet.

Uses pruning (+ mass-drop
condition on split jet)

Gavin Salam (CERN/Princeton/CNRS) Theory of Fat Jets Higgs Hunting 2012-07-19 19 / 28

BOOST 2013    Flagstaff, AZ Chris Pollard    Duke University 24

HEPTopTagger

m23/m123

arctan(m13/m12)

C/A R=1.5 jets with pT > 200 GeV
after W→µν preselection and
default HEPTopTagger criteriamW/mt

98%
purity

~4000
tops!

ATLAS-CONF-2013-084
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ATLAS di-boson excess

125

About 30 interpretations on arXiv so far!
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Points to remember from these lectures

• Major difference relative to QED: quarks and gluons 
both emit gluons 

• Non-perturbative physics lurks in many places; 
limiting its impact (jets), factorising unavoidable non-
perturbative parts (PDFs), are both key to our 
successful use of perturbative QCD 

• Tightly connected with infrared and collinear 
divergences, which are ubiquitous in QCD

126
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Time to cluster N particles in FastJet

128

Time to cluster N 
particles 

Improvement  
wrt FJ 3.0.x,  
factor of 2 for 10k
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