QCD lecture 8: jets

Gavin Salam, Oxford, February 2020
as part of Claire Gwenlan’s QCD PhD course

(with extensive use of material by
Matteo Cacciari and Gregory Soyez)
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Jet finding as a form of projection

NN g

LO partons NLO partons parton shower hadron level
Jet l Defn Jet l Defn Jet l Defn Jet l Defn
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VOV

Projection to jets should be resilient to QCD effects
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Reconstructing jets is an ambiguous task
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Reconstructing jets is an ambiguous task
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Reconstructing jets is an ambiguous task

2 clear jets 3 |ets?
or 4 jets?
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CMS Experiment at LHC, CERN

Nala recorded: Thu Apr 5 05:47-32 2012 CEST
Run/Event: 190401 / 12545076

Lumi section: /95

Orkit/Crossing: 19495645 / 1347
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Make a choice: specify a jet definition

{P } jet definition {j k}

particles, jets
4-momenta,

calorimeter towers, ....

® \Which particles do you put together into a same |et”

® How do you recombine their momenta
(4-momentum sum is the obvious choice, right?)

“Jet [definitions] are legal contracts between theorists and experimentalists”
-- M) Tannenbaum

They're also a way of organising the information in an event
1000’s of particles per events, up to 20.000,000 events per second
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Jet definitions date back to the late 1970s

Sterman and Weinberg,
Phys. Rev. Lett. 39, 1436 (1977):

To study jets, we consider the partial cross section
ofE,B,R,¢,8) for e'e™ hadren production events, in which all but
a fraction € <<]1 of the total e+e- energy E is emitted within
some pair of oppositely directed cones of nalf-angle § << 1,
lying within two fixed cones of solid angle @1 (with wé? << << 1)

at an angle & to the e*e- beam line, We expect this to be measur-

pn

o(E,8,8,¢,8) = (do/dq) R|1 - (gé/hz){un §+4%n 6 &n 2¢

by
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Key requirement: infrared and collinear safety

Collinear Safe Collinear Unsafe
jet 1 jet 1 jet 1 jet 1 |
jet 2
n n n n
Og X (=) Og X (+ ) Og X (=) Og X (+ )
Infinities cancel Infinities do not cancel

Invalidates perturbation theory
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hadron-collider k: algorithm

Two parameters, R and p:min
(These are the two parameters in essentially every widely
used hadron-collider jet algorithm)

AR2

dij = min(pn,pt] : dip = Pt%a AR,-JZ- = (¥ - )’j)z + (¢; — ¢j)2

Sequential recombination algorithm

1. Find smallest of dj, dis
2. 1t ij, recombine them
3. It /B, call i a jet and remove from list of particles

4. repeat from step 1 until no particles left
P P P Inclusive k: algorithm

Only use jets with pt > pi,min S.D. Ellis & Soper, 1993
Catani, Dokshitzer, Seymour & Webber, 1993

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



hadron-collider k: algorithm

Two parameters, R and p:min
(These are the two parameters in essentially every widely
used hadron-collider jet algorithm)

AR2

dij = min(pn,pt] : dip = Pt%a AR,-JZ- = (¥ - )’j)z + (¢; — ¢j)2

Sequential recombination algorithm

3. If IB, call i a jet and remove from list of particles

f a particle 1 has no neighbours j within a distance ARU. <R,

then d;p < all dj;, and i becomes a jet.
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|Sequential recombination]

[kt for hadron colliders| kt In aCthn

ki alg.: Find smallest of

AR2

2
RQ, dip = Ky

d’.l — mm(ktn k )
It djj recombine

if dig, 1 1s a jet

Example clustering with k; algo-
rithm, R = 1.0

¢ assumed 0 for all towers
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Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers
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[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is dij = 0.166597 ki alg.: Find smallest of
60 ARg ;
dij = min(kz, k )?7 dip = Ki
50
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[k for hadron colliders| kt N aCtIOn
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It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 /



Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 ) 35



|Sequential recombination] . .
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p/GeV [ dmin is dij = 12.7551 ki alg.: Find smallest of
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[k for hadron colliders| kt N aCtIOn
p/GeV [} dmin is dij = 15.3298 ki alg.: Find smallest of
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p/GeV ] dmin is dij = 285.007 ki alg.: Find smallest of
60 ARﬁ ;
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50
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|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
p,/GeV dmin is diB = 1776.02 kt alg-: Find smallest of
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It djj recombine
40 » if dig, 1 is a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 ) 35



Sequential recombination . I
[l—[:t for hadron coIIiders]] kt N aCtlon
p./GeV ki alg.: Find smallest of
60 ARiJZ .
dij = min(kz, k )?7 dip = Ki
50
It djj recombine
40 » if dig, 1 1s a jet
30 Example clustering with k; algo-

rithm, R = 1.0

¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 ) 35



|Sequential recombination] . .
[k for hadron colliders| kt N aCtIOn
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[l—[:t for hadron coIIiders]] kt N aCtIOn
p./GeV ki alg.: Find smallest of
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40 » if dig, 1 1s a jet
30 Example clustering with k; algo-
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¢ assumed 0 for all towers

Gavin Salam (CERN Jets and jet substructure (1 June 2013 26 ; 35



Sequential recombination variants

Cambridge/Aachen: the simplest of hadron-collider algorithms

- Recombine pair of objects closest in AR,;
* Repeat until all AR; > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber '97 (Cambridge): more involved e+e— form
Wobisch & Wengler 99 (Aachen): simple inclusive hadron-collider form
One still applies a ptmin cut to the jets, as for inclusive ki

C/A privileges the collinear divergence of QCD;
it ‘ignores’ the soft one
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anti-Kki

Anti-ki: formulated similarly to inclusive ki, but with

1 AR, 1
dij = 52y e 4B = o
max(py;, p; j ) R Pt;

Cacciari, GPS & Soyez '08 [+Delsart unpublished]

Anti-k; privileges the collinear divergence of QCD and
disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle
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Anti-k: In action

>

Clustering grows g 1 AR - 1
1 T ] i - —

around hard cores 7 max(p?,, pgj) R2 2
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Anti-ki In action

Clustering grows AR?J‘ _ i
2

around hard cores YT max(p2,p2) R2 P

anti-kt, d = 1.00e+100

Anti-k: gives

circular jets

(“cone-like”
in a way that’s

iInfrared safe

e T
o i -
Cl T g
T T g e g
. T e T L
cy 5 e T
. " e
L o plly e

o 2
T
S e
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Linearity: kt V. anti—kt

p/GeV

kt clustering, R=1
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S 35 : S 35| :
o i ] o [ ]
N f— kg - o antikalg.
0 10 15 0 5 15

Pt o [GeV]

10
Pt o [GeV]



Linearity: kt V. anti—kt

p/GeV

kt clustering, R=1 pt/GeV anti—kt clustering, R=1
40 40
- | L -
30 1 30 1 4
20
10 Circular jets and linearity
; % wrt soft radiation are two
reasons why anti-ki has 3
50— become the default jet S :
= 45} | algorithm at the LHC :
0 f——H~ ki alg. 0 anti-k, alg. -

0 5 10 15 0 5 10 15



http://fastjet.fr/

// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also
a variety of ete- algorithms, both native and plugins

// specify the input particles
vector<Pseudodet> input particles = . . .;

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020


http://fastjet.fr

http://fastjet.fr/

// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R);

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also
a variety of ete- algorithms, both native and plugins

// specify the input particles
vector<Pseudodet> input particles = . . .;

// extract the jets
vector<Pseudodet> jets = jet def(input particles);

// pt of hardest jet
double pt hardest = jets[0].pt();

// constituents of hardest jet
vector<PseudoJdet> constituents = jets[0].constituents();

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020


http://fastjet.fr

Small v. large jet radius (R)

Small jet radius Large jet radius

/r/rWWT Wm
A

single parton @ LO: jet radius irrelevant

Gavin Salam (CERN Jets and jet substructure (2 CFHEP, April 2014 3 /160



Small v. large jet radius (R)

Small jet radius Large jet radius
—
- =
_/
—/
—7
\v/ ;g/

perturbative fragmentation: large jet radius better
(it captures more)

Gavin Salam (CERN Jets and jet substructure (2 CFHEP, April 2014 3/19



Small v. large jet radius (R)

Small jet radius Large jet radius
o * ° < +¥Il:,’. %ﬁ-\‘vli:‘i’ IRJ.AJ
° N . e
\\\ / // (AR - / /‘,LJJ
no rbative =
hadronisation A o
/
\V4

non-perturbative fragmentation: large jet radius better
(it captures more)

Gavin Salam (CERN Jets and jet substructure (2 CFHEP, April 2014

3
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Pileup

Gavin Salam (Oxford)

f non-perturbative
Mhase (hadronisation)

| / y perturbative

/_l/l// radiation

background radiation
/ (underlying event)

/

|
I
|
|I
}

/
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Pileup

f non-perturbative

! " phase (hadronisation)

D\
perturbative

/ . .
| — radiation
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Pileup

non-perturbative
phase (hadronisation)

perturbative
radiation Out of time pileup

/ (especially ATLAS)
L background radiation

(underlying event)
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ileup for real
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Small v. large jet radius (R)

Small jet radius Large jet radius
o * ° < +¥Il:,’. %Tﬁvliz’ IRJ.AJ
° N . e
\\\ / // (AR - / /‘,LJJ
no rbative =
hadronisation A o
/
\V4

UE

underlying ev. & pileup “noise”: small jet radius better
(it captures less)

Gavin Salam (CERN Jets and jet substructure (2 CFHEP, April 2014 3/19



Small v. large jet radius (R)

Small jet radius Large jet radius

multi-hard-parton events: small jet radius better
(it resolves partons more effectively)

Gavin Salam (CERN Jets and jet substructure (2 CFHEP, April 2014 3/19



Can we capture all quarks and gluons!?

Should we capture all quarks and gluons?



pp — tt
simulated with Pythia, displayed with Delphes

Gavin Salam (CERN) Jets and jet substructure (2) CFHEP, April 2014 17 / 19



6 partons v. 6 jets?

Alpgen pp — tt — 6q
fraction of pp—tt—6q events with all qu >R

1 ]
~ no p; cut on quarks
0.8 [ N\ -
o m— -
o4t N -
o2 NC -
- pp, 7 TeV
Alpgen partons
O L L L L 1 L L L L 1 L L L L
0 0.5 1 1.5
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6 partons v. 6 jets?

Alpgen pp — tt — 6q
fraction of pp—tt—6q events with all qu >R

1 —
require all py, > 10 GeV
0.8 N -

0.6 [ N -

04t N -

02 o NC -
- pp, 7 TeV

Alpgen partons

0 0.5 1 1.5
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6 partons v. 6 jets?

Alpgen pp — tt — 6q
fraction of pp—tt—6q events with all qu >R

1 —
require all p, >20 GeV

0.8 [ -

o6 _

04l N_ -

el NC |
- pp, 7 TeV 1

Alpgen partons

0 0.5 1 1.5
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6 partons v. 6 jets?

Alpgen pp — tt — 6q
fraction of pp—tt—6q events with all qu >R

1 ' ' ' ' I ' ' ' ' I

require all py, > 30 GeV
0.8 [ -
0.6 [ -
04t -
02 fF —0 -
- pp, 7 Te
Alpgen partons
O L L L L | L L L L | L N e ———
0 0.5 1 1.5
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6 partons v. 6 jets?

~ Alpgen pp — tt — bq Herwig pp — tt — hadrons
fraction of pp—tt—6q events with all R,, > R Distribution of number of jets

1 I I I I l I I I I l I I I I 4 1 1 1 1 !
. Herwig 6.5 (no UE)
require all py, > 20 GeV 2. 7 TeV
o8r - anti-k, R=0.5
| | %) 3T Ptjet > 20 GeV
E
06 e e - -
2
| | %, 27 |
04F  N_ - e
kS
| | o
°o -
o2 N e -
- pp, 7 TeV ?
Alpgen partons
O L ! ! ! l . . . . . X A n O 1T 1 1 L —
0 0.5 1 1.5 0 2 4 6 8 10 12
R number of jets
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Two things that make jets@LHC special

The large hierarchy of scales

VS > Mew

The huge pileup
Npileup ~ 20 — 40 (— 140 at HL-LHC)

[These involve two opposite extremes: low pr and high pt,
which nevertheless talk to each other]

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



e.g. ttbar resonances

102 = I I I I I I | I I I I | | | | | | | | | | | | | | | E
B E do(pp » (G ») tt)/dm; [pb/20 GeV] ]

: i . LO, CTEQ6BL1, LHC ]

10% = m =600 GeV =
- S k/M_=0.07 7

- e /M =0.04

100 | ---- xk/M _=0.02 —
m —— x/M_=0.01 3

1072 .
-

10_3 | | | | | | | | | | | | | | | i

500 1000 1500 2000 2500 3000
tt invariant mass [GeV]

RS KK resonances — tt, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ~ 103 times tt

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



Boosted EW scale objects

Normal analyses: two quarks from
X — qgq reconstructed as two jets

High-p; regime: EW object X
iIs boosted, decay is collimated,
qgq both in same jet

pe \
Pad \

1 .
boosted X - - single
—— 1 fat jet

EE—— /

7S

Happens for p; 2 2m/R
p: = 320 GeV for m = my, R =0.5

Gavin Salam (Oxford)
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Tagging & Grooming

Two widely used terms
though there’s not a
consensus about

what they mean

Tagging
® reduces the background, leaves much of signal

® you can tag with underlying hard n-prong structure
and based on radiation pattern

Grooming

® improves signal mass resolution (removing pileup,

etc.), without significantly changing background &
sighal event numbers

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



One core idea for
tagging
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1/N dN/dlog(me;)

QCD Jet Mass distribution

Pythia 6.4, gqgq—qq, no UE
anti-k;, R=0.7
LHC, 7 TeV

Pt jets > 700 GeV

10

100
Miet [GeV]

Inside the jet mass

QCD jet mass distribution has the
approximate

N R
d ~ o In Pel o Sudakov
dlnm m

Work from '80s and '90s
+ Almeida et al '08

Gavin Salam (Oxford)
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QCD Jet Mass distribution

Pythia 6.4, gqgq—qq, no UE
anti-k;, R=0.7
LHC, 7 TeV

Pt jets > 700 GeV

100
Miet [GeV]

0.9
0.8 F
0.7 F
£ 0.6
2 057
)
Z 04
©
§ 0.3
0.2 F
0.1 F
0
10
;
~ 0.1 F
0.01 F

o-body -
phasespace

10

100
Migt [GeV]

Inside the jet mass

QCD jet mass distribution has the
approximate

N R
d Nozslnpt— x Sudakov
dlnm m

Work from '80s and '90s
+ Almeida et al '08

The logarithm comes from integral
over soft divergence of QCD:

N
N R

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2020



1/N dN/dlog(me;)

0.01

after cuton z > 0.25

QCD Jet Mass distribution
Pythia 6.4, gqgq—qq, no UE
anti-k,, R=0.7 7]
LHC, 7 TeV

Pt jets > 700 GeV

(a la BERS)

100
Miet [GeV]

keep

- reject

cuton z |

2-body |
phasespace

10

100
Migt [GeV]

Inside the jet mass

QCD jet mass distribution has the
approximate

a ~ Qg In ﬂ x Sudakov
dinm m

Work from '80s and '90s
+ Almeida et al '08

The logarithm comes from integral
over soft divergence of QCD:

dz
w2z

p? R2

N[~

A hard cut on z reduces QCD back-
ground & simplifies its shape

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2020



1/N dN/dlog(me;)

0.01

after cuton z > 0.25

QCD Jet Mass distribution
Pythia 6.4, gqgq—qq, no UE
anti-k,, R=0.7 7]
LHC, 7 TeV

Pt jets > 700 GeV

(ala BERY)
10 100
Migt [GeV]
keep
. cuton z |
- reject .
2-body
i phasespace
10 100
Migt [GeV]

1/N dN/dlog(me;)

3.5

3

2.5

2

1.5

1

0.5

0

0.01

Inside the jet mass

W+jet Jet Mass distribution
i Pythia 6.4, pp—Wj, no UE 1
anti-k;, R=0.7
B LHC, 7 TeV 7
pt,jets > 700 GeV
10 100
Miet [GeV]
T
2-body
i phasespace |
L L L R .
10 100
Migt [GeV]
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1/N dN/dlog(me;)

0.01

Gavin Salam (Oxford)

QCD Jet Mass distribution
Pythia 6.4, gqgq—qq, no UE
anti-k,, R=0.7 7]
LHC, 7 TeV

Pt jets > 700 GeV

after cuton z > 0.25

(ala BERY)
10 100
Migt [GeV]
keep
. cuton z |
- reject .
2-body
i phasespace
10 100
Migt [GeV]

1/N dN/dlog(me;)

3.5

3

2.5

2

1.5

1

0.01

Inside the jet mass

W+jet Jet Mass distribution
Pythia 6.4, pp—Wj, no UE
anti-k;, R=0.7

i LHC, 7 TeV 7

Pt jets > 700 GeV

after cuton z > 0.25

Migt [GeV]
keep
. cuton z |
L reject .
2-body
i phasespace
10 100
Migt [GeV]
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0.25 . . |
aq — qqgq + Wj mixture

0.2 i
B

E 015 Ptiets > 700 GeV -
S anti-ky, R =0.7 Signal + bkgd
% o after cut on z

0.05 + CA subjet (z > 0.25) _

0 ' . .
0 50 100 150 200
Miet [GeV]
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One core idea for
grooming

|see blackboard]
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“Grooming”

E L[ | T | T | T | T | T T T 1 [ -
o T _ -
S 04— | % CAFilter0.35:3 _
E - | —e— Antiktto I _
Q B ] .
& 008 | —s— cat0Prunen 510 «—— Groomed et
[ | —e— CA10Trim0.3540.03 il - Masses
0.06 il -
- [Boost 2010 _ J-_ -
004 writeup] I — o
- N Plain jet mass
0001 1] - (anti-k)
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How do the tools work
N practice”
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|dentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30
20

10



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is dij = 3.57137e-05 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30 K
20

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30
20

10



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is dij = 0.000496598 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30

20

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30

20

10



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is dij = 0.000688842 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30

20

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in

40 the jet (e.g. z).

30

20

10



ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

anti-k; algorithm
dmin is dij = 0.000805103

p,/GeV

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

50

40

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.

30

20

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
| Anti-k; gradually makes its way
30 h through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.
10
0
0 1 2 3 4



ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

anti-k; algorithm
dmin is dij = 0.000773759

p,/GeV

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

50

40

Anti-k; gradually makes its way
through the secondary blob — no
clear identification of substructure
associated with 2nd parton.

30

20

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.
10
0
0 1 2 3 4



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is dij = 0.0014577 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
| : ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.
10
0
0 1 2 3 4



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is diB = 0.00147749 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.
10
0
0 1 2 3 4



ldentifying jet substructure: try out anti-k;

anti-k; algorithm How well can an algorithm identify
dmin is diB = 1.96 the “blobs” of energy inside a jet that
p/GeV come from different partons?

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.

10




ldentifying jet substructure: try out anti-k;

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

anti-k; algorithm

50 This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

40
; ‘ ‘ Anti-k; gradually makes its way
30 h ‘ through the secondary blob — no
clear identification of substructure
20 associated with 2nd parton.
10
0
0 1 2 3 4



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50
40
30
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an alg.Orl'l.:hm |-dent|fy
N the “blobs” of energy inside a jet that
DeltaR {13J} = 0.142857

p/GeV come from different partons?

50
40
30 N
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50
40
30
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an alg.Orl'l.:hm |-dent|fy
N the “blobs” of energy inside a jet that
DeltaR {ij} = 0.214286

p/GeV come from different partons?

50
40
30 N
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50
40
30 N
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm HOW We” can an alg.Orl'l.:hm |-dent|fy
N the “blobs” of energy inside a jet that
DeltaR {13} = 0.415037

p/GeV come from different partons?

50
40
30 il
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50
40
30 il
20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Cambridge/Aachen algorithm

DeltaR {ij} = 0.686928

p,/GeV

50

40

30

20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 C/A identifies two hard blobs with
limited soft contamination

40

30 il

20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an alg.ori’Fhm i_dentify
the “blobs” of energy inside a jet that

come from different partons?

DeltaR {ij} = 1.20645

p,/GeV

C/A identifies two hard blobs with

limited soft contamination, joins
them

50

40

30

20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify

Cambridge/Aachen algorithm . |
the “blobs” of energy inside a jet that

p/GeV come from different partons?

50 C/A identifies two hard blobs with
limited soft contamination, joins
them

40

30 B EE

20

10

0)

0) 1 2 3 4 y

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm How well can an a|g0r|thm |dent|fy
N the “blobs” of energy inside a jet that
DeltaR {ij} = 1.93202

p/GeV come from different partons?

50 C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining

40 :
soft junk

N I

20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining

40 :
soft junk
W] TR
20
10
0
0 1 2 3 4

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
DeltaR {ij} > 2 the “blobs” of energy inside a jet that
p/GeV B come from different partons?

Cambridge/Aachen algorithm

50 C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining

40 -
soft junk

o T

20

10

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining

40 :
soft junk
W T
20
10
0
0 1 2 3 4

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013



Identifying jet substructure: Cam/Aachen
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50 C/A identifies two hard blobs with
limited soft contamination, joins
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Identifying jet substructure: Cam/Aachen

How well can an algorithm identify
the “blobs” of energy inside a jet that
p/GeV come from different partons?

Cambridge/Aachen algorithm

50 C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining

40 -
soft junk
30 ‘ ‘ ||| N The interesting substructure is buried
Inside the clustering sequence — it's
20 less contamined by soft junk, but
needs to be pulled out with special
10 techniques
Butterworth, Davison, Rubin & GPS '08
Kaplan, Schwartz, Reherman & Tweedie '08
0 : 1 : : ; Butterworth, Ellis, Rubin & GPS '09
y Ellis, Vermilion & Walsh '09

G. Salam (CERN/Princeton/Paris test-bed., G. Salam June 13, 2013
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p — ZH — vibb, @14 TeV, my=115GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3

all jets, defg_ult R=1.2
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luster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS '08



p — ZH — vibb, @14 TeV, my=115GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3

all jets, defg_ult R= 1.2_

oW

I,
x T T
R,

5 o
o= s o
o S A

Fill it in, — show jets more clearly

Butterworth, Davison, Rubin & GPS '08



p — ZH — vibb, @14 TeV, my=115GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3

p, [GeV]

90
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(=2
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o oo

.

Hardest jet, pt=2§6.211 m=150.465

%
AR
i

onsider hardest jet, m = 150 GeV

Butterworth, Davison, Rubin & GPS '08
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arbitrary norm.



p — ZH — vibb, @14 TeV, my=115GeV

SIGNAL

200 < piz < 250 GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3

0.15 -
b, [GeV] Drop step 1; Delta R = 1.03129; pt1=243.291 m1=139.158; pt2=3.944 m2=5.24475
0.1 | —
90—; : ]
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P R s | T N /bb BACKGROUND
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split: m = 150 GeV, M2{M.M2) _ 9> _; repeat ol .
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my [GeV]

Butterworth, Davison, Rubin & GPS '08 .
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p — ZH — vibb, @14 TeV, my=115GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3

Drop step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967
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split: m = 139 GeV, max(':?l’mz) = 0.37 — mass dro

Butterworth, Davison, Rubin & GPS’
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p — ZH — vibb, @14 TeV, my=115GeV

erwig 6.510 + Jimmy 4.31 + FastJet 2.3 ZOC,SLEDIiI;o Gev

0.15 ——
b, [GeV] Drop step 2; Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967
0.1 1
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check: y1o ~ % ~ 0.7 = OK + 2 b-tags (anti-QCD) |
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Butterworth, Davison, Rubin & GPS '08 .
arbitrary norm.



p — ZH — vibb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3
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Butterworth, Davison, Rubin & GPS '08
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p — ZH — vibb, @14 TeV, my=115GeV

SIGNAL

erWig 0.510 + Jimmy 4.31 + FastJet 2.3 200 < py> < 250 GeV
0.15 - — . — :
[GeV] Final filtered re?ﬂl_t..’........P-t=227'257.rn=117'211 :
. . _
903 i
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s = 0.3: take 3 hardest, m = 117 GeV N
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Butterworth, Davison, Rubin & GPS '08 .
arbitrary norm.



Boosted Higgs analysis
op =#ZH = wbb

| R 7
) b b R
mass drop filter
Vi Hl_rdm_ jet, pt=246.211 m=150.465 > (GoV] | Cropswep? DeltaR«087630: pt1=146.53 mIs52.3423 pt2+102.022 m2+27.7967 | 1 Final filtered result, pt=227.257 m=117.211
e \ A - -

Undo the clustering into subjets, Re-cluster with smaller
Cluster with a large R until a large mass drop R, and keep only 3
IS observed hardest jets

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



Seeing W’s and tops in a single jet

W'’s in a single jet tops in a single jet

/
\ N /> N | | | I | | s
o E I RERA AR I ! I 8 - ATLAS Preliminary .
s E 3 - - | Ldt=20.3fb -
O ¢t . O : }
o F = % 400 {s = 8 TeV &
- . g
o F — = : 5 Data 2012 ]
t F * Data - S 300F £ wejes E
G>J - - tt m A’E - = Single Top .
[ ] B Z+jets 7
- u -W+Jets ] g 200__ St;tistical uncertainty _
:_ I:I Non-W MJE g_ i :
C — Datafit J © i i
- -=MCfit A 1001 E
- OO 30 60 90 120 150 180 210240
| m(W-jet) (GeV/c ) 3 N Top Quark Candidate Mass [GeV] e
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today'’s jet substructure tools

e SoftDrop: uses the same key ideas of C/A

declustering,
and more flexi

out with better theoretical properties
bility In phasespace

e Subjettiness / energy-energy-correlations /
energy-flow polynomials / Lund Plane structure:

e Machine learning: jet subs
c p

dynam
had in

Oull

aygrounds for M

ing out all info fro

all try to measure the energy flow around the core n-
prong structure of a jet (e.qg. 2-prong for Higgs decay)

ructure is one of the most
_, with large gains to be

M Jets

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2020



intrajet energy flow for QCD jets & W jets

QCD jets, averaged primary Lund plane ; W jets, averaged primary Lund plane
Vs =14 TeV, p;>2 TeV Vs =14 TeV, p;>2 TeV
6 Pythia8.230(Monash13) 6 Pythia8.230(Monash13)
5 5
4 4
> 3 > 3
© ©
X 2 z 2
< <
1 1
0 0
—1 -1
—2 —2
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using intra-jet energy flow for W tagging

QCD rejection v. W efficiency QCD rejection with use

5000 A
: mMDTZ(0.025) - thi
5000 - T2 energy flow v‘vzthm the
1000 - jet (beyond just hard
. .. 500 -
QCD rejection with - — prongs)
just jet mass -Ei—"-m——b 5-10x better
= 50 A
(SD/mMDT) o (and newer ML can do
10 4 e even better)
> 1 — Lund+LL
2 === mMDT mass
1 LN BN B NS BLNLELEL BN BLELELELE BLELELLE ILELELEL BB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ew

Dreyer, GPS & Soyez, arXiv:1807.04758
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http://arxiv.org/abs/arXiv:1807.04758

Take-home messages

® There are myriad approaches to jet finding

e -or applications with a singl|

e moderately hard scale

(e.q. ttbar), anti-kt, R=0.4, with a p: cut of a few tens
of GeV is often a good default

poosted top /W /H /etc.)o

e For problems with multiple hard scales (e.g. highly

ne needs to look at events

on multiple angular scales: |

et substructure

Gavin Salam (Oxford) Jets PhD lecture, Oxford February 2020



EXTRAS



Time to cluster N particles in FastJet

2
1 O :I 1 1 I 1 1 I 1 1 1 I 1 1 1 ! 1
- Intel® X3360, gocd.4(-02)

10 - Fastlet3.1,R=04 4/ 7
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FJContrib packages

Version 1.043 of FastJet Contrib is distributed with the following packages

Package Version Release date Information
ClusteringVetoPlugin 1.0.0 2015-05-04 README NEWS
ConstituentSubtractor 1.45 2020-02-23 README NEWS
EnergyCorrelator 1.3.1 2018-02-10 README NEWS
FlavorCone 1.0.0 2017-09-07 README NEWS
GenericSubtractor 1.3.1 2016-03-30 README NEWS
JetCleanser 1.0.1 2014-08-16 README NEWS
JetFFMoments 1.0.0 2013-02-07 README NEWS
JetsWithoutJets 1.0.0 2014-02-22 README NEWS
LundPlane 1.0.3 2020-02-23 README NEWS
Nsubjettiness 2.2.5 2018-06-06 README NEWS
QCDAwarePlugin 1.0.0 2015-10-08 README NEWS
RecursiveTools 2.0.0-beta2 2018-05-29 README NEWS
ScJet 1.1.0 2013-06-03 README NEWS
SoftKiller 1.0.0 2014-08-17 README NEWS
SubjetCounting 1.0.1 2013-09-03 README NEWS
ValenciaPlugin 2.0.2 2018-12-22 README NEWS
VariableR 1.2.1 2016-06-01 README NEWS
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