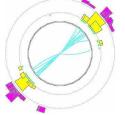
Event shapes for hadron colliders

Gavin P. Salam (in collaboration with Andrea Banfi & Giulia Zanderighi)

LPTHE, Universities of Paris VI and VII and CNRS

HERA-LHC workshop CERN, Geneva, January 2005

- ullet Perhaps the most basic class of final-state observables in e^+e^-
- Continuous measure of deviation from lowest-order 'Born' event



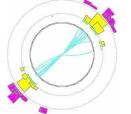
2-jet event: Thrust $\simeq 1$

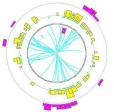
3-jet event: Thrust $\simeq 2/3$

- Many uses: serve as a QCD 'laboratory', both in e^+e^- and DIS:
 - ullet $lpha_s$ fits
 - Tuning of Monte Carlos
 - Colour factor fits $(C_{\Delta}, C_{E}, \dots)$

- Studies of analytical hadronisation models (1/Q, shape functions, ...)
- Largely neglected at hadronic colliders

- Perhaps the most basic class of final-state observables in e^+e^-
- Continuous measure of deviation from lowest-order 'Born' event





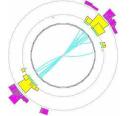
2-jet event: Thrust $\simeq 1$

3-jet event: Thrust $\simeq 2/3$

- Many uses: serve as a QCD 'laboratory', both in e^+e^- and DIS:
 - \bullet α_c fits
 - Tuning of Monte Carlos
 - Colour factor fits (C_A, C_F, \dots)

- Studies of analytical hadronisation models (1/Q,shape functions, ...)
- Largely neglected at hadronic colliders

- Perhaps the most basic class of final-state observables in e^+e^-
- Continuous measure of deviation from lowest-order 'Born' event



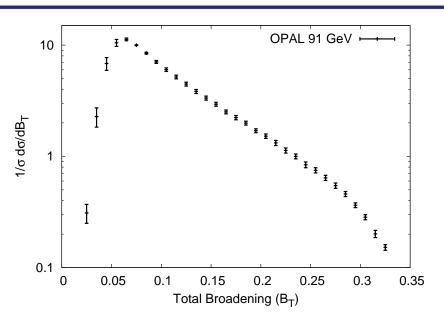
2-jet event: Thrust $\simeq 1$

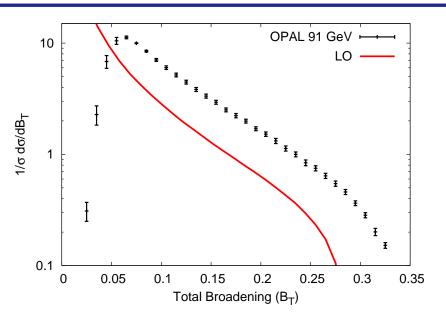
3-jet event: Thrust $\simeq 2/3$

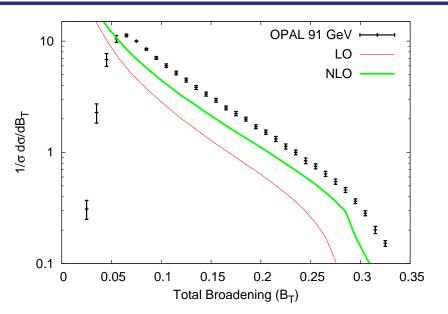
- Many uses: serve as a QCD 'laboratory', both in e^+e^- and DIS:
 - α_s fits
 - Tuning of Monte Carlos
 - Colour factor fits (C_A, C_F, \dots)

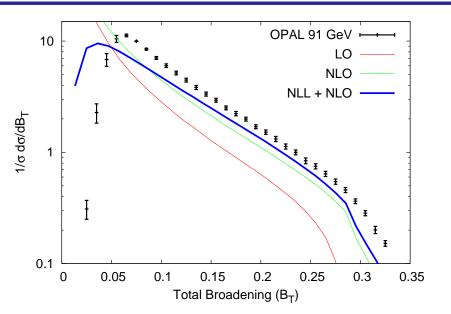
- Studies of analytical hadronisation models (1/Q, shape functions, . . .)
- Largely neglected at hadronic colliders

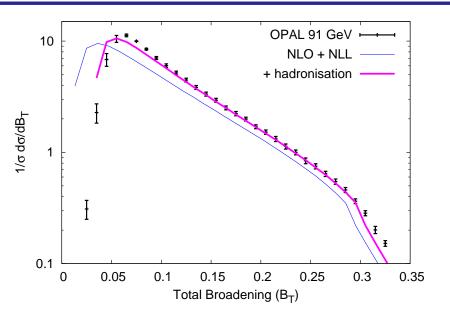
except: CDF broadening ('91) and D0 Thrust ('02).











Interest of hadronic colliders?

Various processes:

- $pp \rightarrow W/Z/H$ boson + jet
- $pp \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_s
- As for 3-jet/2-jet ratio in $p\bar{p}$, reduce dependence on PDFs
- But for event-shapes → distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk

New territory

- 4-jet (2 + 2) topology → novel perturbative structures soft colour evln matrices
- Underlying event test models (analytical & MC).

Various processes:

- $pp \rightarrow W/Z/H$ boson + jet
- *pp* → 2 jets

Standard applications (e.g.)

- Measure α_s
- As for 3-jet/2-jet ratio in pp̄, reduce dependence on PDFs
- But for event-shapes → distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk

New territory

- 4-jet (2 + 2) topology → novel perturbative structures
 soft colour evln matrices
- 3 & 4-jet topologies (& g-jets)
 → rich environment for analytical non-pert. studies
- Underlying event test models (analytical & MC).

Various processes:

- $pp \rightarrow W/Z/H$ boson + jet
- *pp* → 2 jets

Standard applications (e.g.)

- Measure α_s
- As for 3-jet/2-jet ratio in pp̄, reduce dependence on PDFs
- But for event-shapes → distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk

New territory

- 4-jet (2+2) topology → novel perturbative structures
 soft colour evln matrices
- 3 & 4-jet topologies (& g-jets)
 → rich environment for analytical non-pert. studies
- Underlying event test models (analytical & MC).

Various processes:

- $pp \rightarrow W/Z/H$ boson + jet
- *pp* → 2 jets

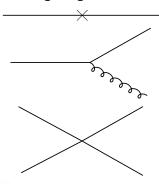
Standard applications (e.g.)

- Measure α_s
- As for 3-jet/2-jet ratio in pp̄, reduce dependence on PDFs
- But for event-shapes → distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk

New territory

- 4-jet (2+2) topology → novel perturbative structures
 soft colour evln matrices
- 3 & 4-jet topologies (& g-jets)
 → rich environment for analytical non-pert. studies
- Underlying event test models (analytical & MC).



2 jets: always in a *colour singlet*

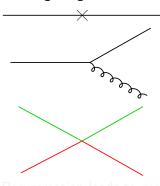
3 jets: colour state of any pair *fixed by third parton* (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to *matrix evolution equation for colour state of amplitudes* ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda & Sterman '89-99

Interesting to test it (NB: used also for top threshold corrections)...



2 jets: always in a *colour singlet*

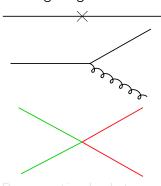
3 jets: colour state of any pair *fixed by third parton* (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to *matrix evolution equation for colour state of amplitudes* ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda & Sterman '89-99

Interesting to test it (NB: used also for top threshold corrections)



2 jets: always in a *colour singlet*

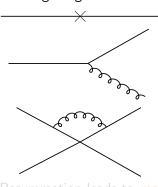
3 jets: colour state of any pair *fixed by third parton* (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to *matrix evolution equation for colour state of amplitudes* ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda & Sterman '89-99

Interesting to test it (NB: used also for top threshold corrections).



2 jets: always in a *colour singlet*

3 jets: colour state of any pair *fixed by third parton* (colour conservation).

4 jets: a given pair can be in various colour states. *Soft virtual corrections mix colour states.*

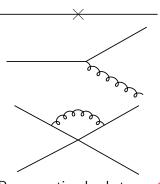
Resummation leads to *matrix evolution equation for colour state of amplitudes* ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda & Sterman '89–99

Interesting to test it (NB: used also for top threshold corrections).

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.



2 jets: always in a *colour singlet*

3 jets: colour state of any pair *fixed by third parton* (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to *matrix evolution equation for colour state of amplitudes* ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda & Sterman '89–99

Interesting to test it (NB: used also for top threshold corrections).

Fixed order

- Event shapes trivial for Born events (e.g. $p\bar{p} \rightarrow 2$ jets, thrust=1)
- First non-trivial order (LO) is Born + 1 parton, i.e. $p\bar{p} \rightarrow 3$ jets
- ullet For NLO, need a program like NLOJET++ $(par{p}
 ightarrow 3$ jets @ NLO)
- Also:
 - Kilgore-Giele code ($p\bar{p} \rightarrow 3$ jets @ NLO),
 - MCFM $(p\bar{p} \rightarrow W/Z/H + 2 \text{ jets @ NLO})$

Campbell & Ellis '02

Nagy, '01 & '03

Resummation

- In e^+e^- it was always done by hand, one observable at a time.
- Next-to-leading logs (NLL) are tedious, complicated, error-prone.
- Recently automated: Computer-Automated Expert Semi-Analytical Resummer (CAESAR).
 Banfi, GPS & Zanderighi '01-'04
- For $p\bar{p} \to 2$ jets, uses 'Stony Brook' soft-colour evolution matrices.
- Currently restricted to *continuously-global* observables

Fixed order

Theoretical tools

- Event shapes trivial for Born events (e.g. $p\bar{p} \rightarrow 2$ jets, thrust=1)
- First non-trivial order (LO) is Born + 1 parton, i.e. $p\bar{p} \rightarrow 3$ jets
- For NLO, need a program like NLOJET++ $(p\bar{p} \rightarrow 3 \text{ jets @ NLO})$
- Also:
 - Kilgore-Giele code ($p\bar{p} \rightarrow 3$ jets @ NLO),
 - MCFM $(p\bar{p} \rightarrow W/Z/H + 2 \text{ jets @ NLO})$

Campbell & Ellis '02

Nagy, '01 & '03

Resummation

- In e^+e^- it was always done by hand, one observable at a time.
- Next-to-leading logs (NLL) are tedious, complicated, error-prone.
- Recently automated: Computer-Automated Expert Semi-Analytical Resummer (CAESAR). Banfi, GPS & Zanderighi '01-'04
- For $p\bar{p} \rightarrow 2$ jets, uses 'Stony Brook' soft-colour evolution matrices.
- Currently restricted to continuously-global observables

Analytical work (done once and for all)

- A1. derive a master formula for a generic observable in terms of simple properties of the observable
- A2. formulate the exact applicability conditions for the master formula

Numerical work (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for the master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation

- a) they require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validatation of hypotheses uses methods inspired by "Experimental Mathematics"

Analytical work (done once and for all)

- A1. derive a master formula for a generic observable in terms of simple properties of the observable
- A2. formulate the exact applicability conditions for the master formula

Numerical work (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for the master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation

- a) they require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validatation of hypotheses uses methods inspired by "Experimental Mathematics"

Automated resummation

Analytical work (done once and for all)

- A1. derive a master formula for a generic observable in terms of simple properties of the observable
- A2. formulate the exact applicability conditions for the master formula

Numerical work (to be repeated for each observable)

- N1. let an "expert system" investigate the applicability conditions
- N2. it also determines the inputs for the master formula
- N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation

- a) they require high precision arithmetic to take asymptotic (soft & collinear) limits
- b) validatation of hypotheses uses methods inspired by "Experimental Mathematics"

e.g. total e^+e^- Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

light-hemisphere Broadening, B_{R}

making $B_R \ll 1$ restricts emissions n right-hand hemisphere $(\mathcal{H}_{\mathcal{R}})$.

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in H_R.

e.g. total e^+e^- Broadening, B

making $B\ll 1$ restricts emissions everywhere.

Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions n right-hand hemisphere $(\mathcal{H}_{\mathcal{R}}).$

Tempting to *assume* one can: ignore left hemisphere (He)

• use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

e.g. total e^+e^- Broadening, B

making $B \ll 1$ restricts emissions everywhere.

Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R

making $B_R \ll 1$ restricts emissions n right-hand hemisphere $(\mathcal{H}_{\mathcal{R}})$.

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

e.g. total e^+e^- Broadening, B

making $B \ll 1$ restricts emissions everywhere.

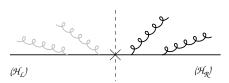
Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R



making $B_R \ll 1$ restricts emissions in right-hand hemisphere $(\mathcal{H}_{\mathcal{R}})$.

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

e.g. total e^+e^- Broadening, B

making $B \ll 1$ restricts emissions everywhere.

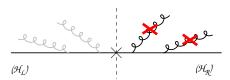
Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R



making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R) .

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

e.g. total e^+e^- Broadening, B

making $B \ll 1$ restricts emissions everywhere.

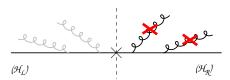
Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R

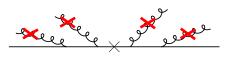


making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R) .

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

e.g. total e^+e^- Broadening, B



making $B \ll 1$ restricts emissions everywhere.

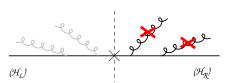
Coherence + globalness:

emissions can be resummed as if independent (proved)

Answers guaranteed to NLL accuracy

Non-Global observable:

Right-hemisphere Broadening, B_R



making $B_R \ll 1$ restricts emissions in right-hand hemisphere (\mathcal{H}_R) .

Tempting to *assume* one can:

- ullet ignore left hemisphere $(\mathcal{H}_{\mathcal{L}})$
- use independent emission approximation in $\mathcal{H}_{\mathcal{R}}$.

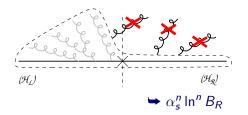
WRONG AT NLL ACCURACY

Dasgupta & GPS '01

Resummation of NG observables

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons



Difficulties:

- Logarithms resummed so far only in large-N_c limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

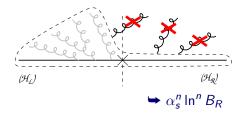
Appleby & Seymour '02, '03

Resummation of a general non-global observable is tricky. or time-being CAESAR deals only with global observables.NB:

Resummation of NG observables

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons



Difficulties:

- Logarithms resummed so far only in large- N_c limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

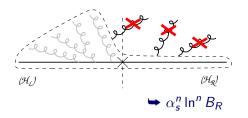
Appleby & Seymour '02, '03

Resummation of a general non-global observable is tricky. For time-being CAESAR deals only with global observables.NB:

Resummation of NG observables

All-orders:

Forbid coherent radiation from energy-ordered ensembles of large-angle gluons



Difficulties:

- Logarithms resummed so far only in large- N_c limit
- In general, boundary between the two regions may have arbitrary shape.
- It may depend on the pattern of emissions (e.g. with jet algorithm).

Appleby & Seymour '02, '03

Resummation of a general non-global observable is tricky. For time-being CAESAR deals only with global observables.NB:

(most) Monte Carlo's are also best suited to global observables

Contradiction?

Theoretical calculations are for global observables.

But experiments only have detectors in limited rapidity range.

(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\sf max}$

➡ Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

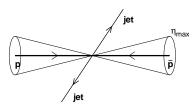
Contradiction?

Theoretical calculations are for global observables.

But experiments only have detectors in limited rapidity range.

(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\text{max}}$ \Rightarrow Problems with globalness



Take cut as being edge of most forward detector with momentum or energy resolution:

	Tevatron	LHC
η_{max}	3.5	5.0

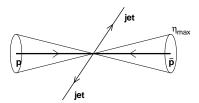
Contradiction?

Theoretical calculations are for global observables.

But experiments only have detectors in limited rapidity range.

(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta| < \eta_{\text{max}}$ \Rightarrow Problems with globalness



Take cut as being edge of most forward detector with momentum or energy resolution:

	Tevatron	LHC
$\eta_{\sf max}$	3.5	5.0

Select events with central, hard jets $(x_1, x_2 \text{ not too small})$, with transverse momentum P_{\parallel} .

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$k_{\perp} \sim P_{\perp} e^{-\eta_0} \ll P_{\perp}$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:

we can ignore rapidity cut & pretend measurement is global

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly.
 Banfi, Marchesini, Smye & Zanderighi '01

Select events with central, hard jets (x_1 , x_2 not too small), with transverse momentum P_{\perp} .

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$k_{\perp} \sim P_{\perp} e^{-\eta_0} \ll P_{\perp}$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:

we can ignore rapidity cut & pretend measurement is global

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly.
 Banfi, Marchesini, Smye & Zanderighi '01

Select events with central, hard jets (x_1 , x_2 not too small), with transverse momentum P_{\perp} .

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$k_{\perp} \sim P_{\perp} e^{-\eta_0} \ll P_{\perp}$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:

we can ignore rapidity cut & pretend measurement is global

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligibly.
 Banfi, Marchesini, Smye & Zanderighi '01

Select events with central, hard jets (x_1 , x_2 not too small), with transverse momentum P_{\perp} .

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$k_{\perp} \sim P_{\perp} e^{-\eta_0} \ll P_{\perp}$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:

we can ignore rapidity cut & pretend measurement is global

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligibly.
 Banfi, Marchesini, Smye & Zanderighi '01

Results that follow based on this (illustrative) event selection:

- Run longitudinally invariant inclusive k_t jet algorithm (could also use midpoint cone)
- Require hardest jet to have $P_{\perp,1} > P_{\perp,min} = 50 \text{ GeV}$
- Require two hardest jets to be central $|\eta_1|, |\eta_2| < \eta_c = 0.7$

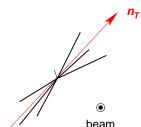
Pure resummed results
no matching to NLO (or even LO)
Shown for Tevatron run II

Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$T_{\perp,g} \equiv \max_{ec{m{n}_T}} rac{\sum_i |ec{m{q}}_{\perp i} \cdot ec{m{n}_T}|}{\sum_i q_{\perp i}} \,, \qquad au_{\perp,g} = 1 - T_{\perp,g} \,,$$

and Global Thrust Minor

$$T_{m,g} \equiv rac{\sum_{i} |\vec{q}_{i}.\vec{n}_{m}|}{\sum_{i} q_{\perp i}}, \qquad \vec{n}_{m} \cdot \vec{n}_{T} = 0$$

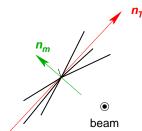


Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$T_{\perp,g} \equiv \max_{ec{m{n}_T}} rac{\sum_i |ec{m{q}}_{\perp i} \cdot ec{m{n}_T}|}{\sum_i q_{\perp i}} \,, \qquad au_{\perp,g} = 1 - T_{\perp,g} \,,$$

and Global Thrust Minor

$$T_{m,g} \equiv \frac{\sum_{i} |\vec{q}_{i}.\vec{n}_{m}|}{\sum_{i} q_{\perp i}}, \qquad \vec{n}_{m} \cdot \vec{n}_{T} = 0$$



Use <u>exclusive</u> long. inv. k_t algorithm: successive recombination of pair with smallest closeness measure d_{kl} , d_{kB} :

$$d_{kB} = q_{\perp k}^2$$
, $d_{kl} = \min\{q_{\perp k}^2, q_{\perp l}^2\} \left((\eta_k - \eta_l)^2 + (\phi_k - \phi_l)^2 \right)$.

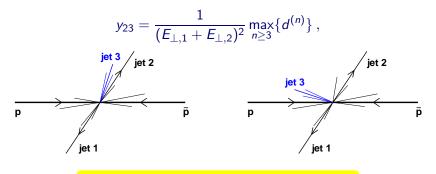
Define $d^{(n)}$ as smallest d_{kl} , d_{kB} when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold

Generalisation of 3-jet cross section

Use <u>exclusive</u> long. inv. k_t algorithm: successive recombination of pair with smallest closeness measure d_{kl} , d_{kB} :

$$d_{kB} = q_{\perp k}^2$$
, $d_{kl} = \min\{q_{\perp k}^2, q_{\perp l}^2\} \left((\eta_k - \eta_l)^2 + (\phi_k - \phi_l)^2 \right)$.

Define $d^{(n)}$ as smallest d_{kl} , d_{kB} when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold



Generalisation of 3-jet cross section

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G_{12}
$ au_{\perp,g}$	$2C_B + C_J$
$T_{m,g}$	$2C_B + 2C_J$
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$

 C_B = total colour of Beam partons C_J = total colour of Jet partons

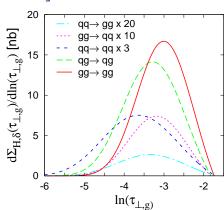
☐1. Directly global observables

Probability P(v) that event shape is smaller than some value v:

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂
$ au_{\perp,g}$	$2C_B + C_J$
$T_{m,g}$	$2C_B + 2C_J$
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$

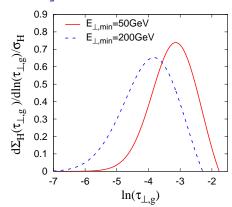
 $C_B = \text{total colour of Beam partons}$ $C_J = \text{total colour of Jet partons}$



$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂	
$ au_{\perp,g}$	$2C_B + C_J$	
$T_{m,g}$	$2C_B + 2C_J$	
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$	

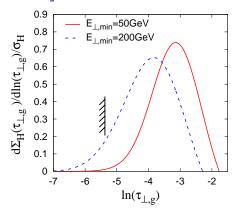
 $C_B = \text{total colour of Beam partons}$ $C_J = \text{total colour of Jet partons}$



$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂
$ au_{\perp,g}$	$2C_B + C_J$
$T_{m,g}$	$2C_B + 2C_J$
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$

 C_B = total colour of Beam partons C_J = total colour of Jet partons

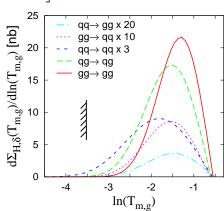


Beam cut: $\tau_{\perp,g} \gtrsim 0.15 e^{-\eta_{\text{max}}}$

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂
$ au_{\perp,g}$	$2C_B + C_J$
$T_{m,g}$	$2C_B + 2C_J$
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$

 $C_B = \text{total colour of Beam partons}$ $C_I = \text{total colour of Jet partons}$

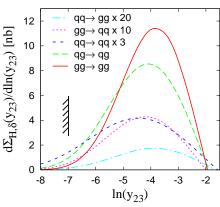


Beam cut: $T_{m,g} \gtrsim e^{-\eta_{\text{max}}}$

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂	
$ au_{\perp,g}$	$2C_B + C_J$	
$T_{m,g}$	$2C_B + 2C_J$	
<i>y</i> 23	$\frac{1}{2}C_B + \frac{1}{2}C_J$	

 C_B = total colour of Beam partons C_J = total colour of Jet partons



Beam cut: $y_{23} \gtrsim e^{-2\eta_{\text{max}}}$ [because $y_{23} \sim k_t^2$]

Divide event into central region (\mathcal{C} , say $|\eta| < 1.1$) and rest of event ($\overline{\mathcal{C}}$).

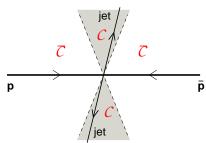
[NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets]

Define central \perp mom., and rapidity:

$$Q_{\perp,\mathcal{C}} = \sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}} = \frac{1}{Q_{\perp,\mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_i \, q_{\perp i}$$

and an exponentially suppressed forward term,

$$\mathcal{E}_{ar{\mathcal{C}}} = rac{1}{Q_{\perp,\mathcal{C}}} \sum_{i
otin \mathcal{C}} q_{\perp i} \, \mathrm{e}^{-|\eta_i - \eta_{\mathcal{C}}|} \, .$$



. Then add on $\mathcal{E}_{\bar{\mathcal{C}}}$.

Result is a global event shape, with suppressed sensitivity to forward region.

Divide event into central region (\mathcal{C} , say $|\eta| < 1.1$) and rest of event ($\overline{\mathcal{C}}$).

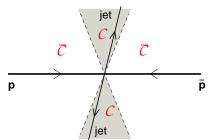
[NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets]

Define central \perp mom., and rapidity:

$$Q_{\perp,\mathcal{C}} = \sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}} = \frac{1}{Q_{\perp,\mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_i \, q_{\perp i}$$

and an exponentially suppressed forward term,

$$\mathcal{E}_{ar{\mathcal{C}}} = rac{1}{Q_{\perp,\mathcal{C}}} \sum_{i
otin \mathcal{C}} q_{\perp i} \, \mathrm{e}^{-|\eta_i - \eta_{\mathcal{C}}|} \, .$$



Define a non-global event-shape in \mathcal{C} . Then add on $\mathcal{E}_{\overline{\mathcal{C}}}$.

Result is a global event shape, with suppressed sensitivity to forward region.

- Split C into two pieces: Up, Down
- Define jet masses for each

$$\rho_{X,C} \equiv \frac{1}{Q_{\perp,C}^2} \Big(\sum_{i \in C_X} q_i \Big)^2, \qquad X = U, D,$$

Define sum and heavy-jet masses

$$\rho_{S,C} \equiv \rho_{U,C} + \rho_{D,C}, \qquad \rho_{H,C} \equiv \max\{\rho_{U,C}, \rho_{D,C}\},$$

Define global extension, with extra forward-suppressed term

$$\rho_{S,\mathcal{E}} \equiv \rho_{S,\mathcal{C}} + \mathcal{E}_{\bar{\mathcal{C}}}, \qquad \rho_{H,\mathcal{E}} \equiv \rho_{H,\mathcal{C}} + \mathcal{E}_{\bar{\mathcal{C}}}.$$

Similarly: total and wide jet-broadenings

$$B_{T,\mathcal{E}} \equiv B_{T,\mathcal{C}} + \mathcal{E}_{\bar{\mathcal{C}}}, \qquad B_{W,\mathcal{E}} \equiv B_{W,\mathcal{C}} + \mathcal{E}_{\bar{\mathcal{C}}}.$$

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G_{12}	
$ ho_{\mathcal{S},\mathcal{E}}$	$C_B + C_J$	
$ ho_{H,\mathcal{E}}$	$C_B + C_J$	
$B_{T,\mathcal{E}}$	$C_B + 2C_J$	
$B_{W,\mathcal{E}}$	$C_B + 2C_J$	
:	:	

 C_B = total colour of Beam partons C_I = total colour of Jet partons

$$P(v) = \exp \left[-G_{12} \frac{\alpha_s L^2}{2\pi} + \cdots \right], \quad L = \ln \frac{1}{v}$$

Ev.Shp.	G ₁₂	
$ ho_{\mathcal{S},\mathcal{E}}$	$C_B + C_J$	
$ ho_{H,\mathcal{E}}$	$C_B + C_J$	
$B_{T,\mathcal{E}}$	$C_B + 2C_J$	
$B_{W,\mathcal{E}}$	$C_B + 2C_J$	
:	:	

0.9 B_{W.ε}, E_{⊥.min}=50GeV $\rho_{H,\epsilon}$, $E_{\perp,min}$ =50GeV $B_{W,\epsilon}$, $E_{\perp,min}$ =200GeV 0.8 0.7 $1\Sigma_{\rm H}({\rm V})/{\rm d}\ln({\rm V})/\sigma_{\rm H}$ $\rho_{H,\epsilon}$, $E_{\perp.min}$ =200GeV 0.6 0.5 0.4 0.3 0.2 0.1 0 -2 -7 -6 ln(V)

 C_B = total colour of Beam partons C_I = total colour of Jet partons

Beam cuts: $B_{X,\mathcal{E}}, \rho_{X,\mathcal{E}} \gtrsim e^{-2\eta_{\text{max}}}$ [because $\mathcal{E}_{\bar{\mathcal{C}}} \sim k_t e^{-|\eta|}$]

By momentum conservation

$$\sum_{i \in \mathcal{C}} \vec{q}_{\perp i} = -\sum_{i \notin \mathcal{C}} \vec{q}_{\perp i}$$

Use central particles to define *recoil term*, which is *indirectly sensitive* to non-central emissions

$$\mathcal{R}_{\perp,\mathcal{C}} \equiv rac{1}{Q_{\perp,\mathcal{C}}} \left| \sum_{i \in \mathcal{C}} ec{q}_{\perp i}
ight| \, ,$$

Define event shapes exclusively in terms of central particles:

$$\rho_{X,\mathcal{R}} \equiv \rho_{X,\mathcal{C}} + \mathcal{R}_{\perp,\mathcal{C}}, \qquad B_{X,\mathcal{R}} \equiv B_{X,\mathcal{C}} + \mathcal{R}_{\perp,\mathcal{C}}, \dots$$

These observables are indirectly global

First studied at HERA (B_{zE} broadening)

CAESAR resummation works for observables having *direct exponentiation*:

$$P(v) = e^{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \dots}$$

For recoil observables, exponentiation holds fully only after Fourier & other integral transforms (generalised *b*-space resummation).

Manifestation: NLLs $(g_2(\alpha_s L))$ diverge at some $\alpha_s L \sim 1$.

Consequently, cannot extend distribution to v=0 — must cut before divergence.

CAESAR resummation works for observables having *direct exponentia*tion:

$$P(v) = e^{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \dots}$$

For recoil observables, exponentiation holds fully only after Fourier & other integral transforms (generalised *b*-space resummation).

Manifestation: NLLs $(g_2(\alpha_s L))$ diverge at some $\alpha_s L \sim 1$.

Consequently, cannot extend distribution to v=0 — must cut before divergence.

CAESAR resummation works for observables having *direct exponentiation*:

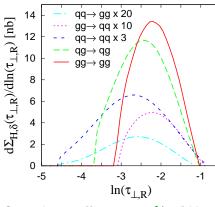
$$P(v) = e^{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \dots}$$

For recoil observables, exponentiation holds fully only after Fourier & other integral transforms (generalised *b*-space resummation).

Manifestation: NLLs $(g_2(\alpha_s L))$ diverge at some $\alpha_s L \sim 1$.

Consequently, cannot extend distribution to v=0 — must cut before divergence.

recoil transverse thrust



Quite large effect: \sim 15% of X-sct is beyond cutoff

CAESAR resummation works for observables having *direct exponentia*tion:

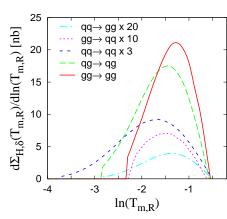
$$P(v) = e^{Lg_1(\alpha_s L) + g_2(\alpha_s L) + \dots}$$

For recoil observables, exponentiation holds fully only after Fourier & other integral transforms (generalised *b*-space resummation).

Manifestation: NLLs $(g_2(\alpha_s L))$ diverge at some $\alpha_s L \sim 1$.

Consequently, cannot extend distribution to v=0 — must cut before divergence.

recoil thrust minor



Moderate effect: few % of X-sct is beyond cutoff

Event-shape	Impact of $\eta_{\rm max}$	Resummation breakdown	Underlying Event	Jet hadronisation
$ au_{\perp,g}$	tolerable	none	$\sim \eta_{\sf max}/\mathit{Q}$	$\sim 1/Q$
$T_{m,g}$	tolerable	none	$\sim \eta_{\sf max}/\mathit{Q}$	$\sim 1/(\sqrt{\alpha_s}Q)$
<i>y</i> ₂₃	tolerable	none	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$
$\tau_{\perp,\mathcal{E}}, \rho_{X,\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/Q$
$B_{X,\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
$T_{m,\mathcal{E}}$	negligible	serious	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
<i>y</i> 23, <i>E</i>	negligible	none	$\sim 1/Q$	$\sim \sqrt{y_{23}}/Q$
$\tau_{\perp,\mathcal{R}}$, $\rho_{X,\mathcal{R}}$	none	serious	$\sim 1/Q$	$\sim 1/Q$
$T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$	none	tolerable	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
У 23, R	none	intermediate	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$

NB: there may be surprises after more detailed study, *e.g.* matching to NLO...

Grey entries are definitely subject to uncertainty

Note complementarity between observables

Summary of observables

Event-shape	Impact of $\eta_{\rm max}$	Resummation breakdown	Underlying Event	Jet hadronisation
$ au_{\perp,g}$	tolerable	none	$\sim \eta_{\sf max}/\mathit{Q}$	$\sim 1/Q$
$T_{m,g}$	tolerable	none	$\sim \eta_{\sf max}/\mathit{Q}$	$\sim 1/(\sqrt{\alpha_s}Q)$
<i>y</i> 23	tolerable	none	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$
$\tau_{\perp,\mathcal{E}}, \rho_{X,\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/Q$
$B_{X,\mathcal{E}}$	negligible	none	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
$T_{m,\mathcal{E}}$	negligible	serious	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
<i>y</i> 23, <i>E</i>	negligible	none	$\sim 1/Q$	$\sim \sqrt{y_{23}}/Q$
$\tau_{\perp,\mathcal{R}}, \rho_{X,\mathcal{R}}$	none	serious	$\sim 1/Q$	$\sim 1/Q$
$T_{m,\mathcal{R}}, B_{X,\mathcal{R}}$	none	tolerable	$\sim 1/Q$	$\sim 1/(\sqrt{\alpha_s}Q)$
<i>У</i> 23, <i>R</i>	none	intermediate	$\sim \sqrt{y_{23}}/Q$	$\sim \sqrt{y_{23}}/Q$

NB: there may be surprises after more detailed study, *e.g.* matching to NLO...

Grey entries are definitely subject to uncertainty

Note complementarity between observables

- Essential that multijet event shapes also be studied in DIS and e^+e^- .
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for *poor-man's* matching, all channels $(gg \rightarrow gg, qq \rightarrow qq, ...)$ mixed together.
- To be 'sensible', matching must be done *channel-by-channel*.
- Requires flavour information in fixed-order codes but seldom there...

Please, PLEASE, **PLEASE**, could authors of fixed-order codes include information on *flavours* of partons, not just momenta

<u>Further info:</u> hep-ph/0407287 and http://qcd-caesar.org

- Essential that multijet event shapes also be studied in DIS and e^+e^- .
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for *poor-man's* matching, all channels $(gg \rightarrow gg, qq \rightarrow qq, ...)$ mixed together.
- To be 'sensible', matching must be done *channel-by-channel*.
- Requires flavour information in fixed-order codes but seldom there. . .

Please, PLEASE, PLEASE, could authors of fixed-order codes include information on *flavours* of partons, not just momenta

Further info: hep-ph/0407287 and http://qcd-caesar.org

- Essential that multijet event shapes also be studied in DIS and e^+e^- .
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for *poor-man's* matching, all channels $(gg \rightarrow gg, qq \rightarrow qq, ...)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel.
- Requires flavour information in fixed-order codes but seldom there. . .

Please, PLEASE, PLEASE, could authors of fixed-order codes include information on *flavours* of partons, not just momenta

Further info: hep-ph/0407287 and http://qcd-caesar.org

- Essential that multijet event shapes also be studied in DIS and e^+e^- .
- Measurements recently published by LEP and in progress at HERA.
- Theoretical comparisons in pipeline.

Matching to NLO

- technology exists (NLOJET++) for *poor-man's* matching, all channels $(gg \rightarrow gg, qq \rightarrow qq, ...)$ mixed together.
- To be 'sensible', matching must be done channel-by-channel.
- Requires flavour information in fixed-order codes but seldom there. . .

Please, PLEASE, PLEASE, could authors of fixed-order codes include information on *flavours* of partons, not just momenta

<u>Further info:</u> hep-ph/0407287 and http://qcd-caesar.org