Hopes for LHC jets from a theory perspective

Gavin Salam LPTHE (Paris)

Physics at TeV Colliders workshop Les Houches, 18 June 2007

<u>Minimal</u>

- Hope #1: Reproducibility
- Hope #2: Infrared Collinear Safety

A great shame not to have

Hope #3: Flexibility

Jet Algorithm Parameters Recomb. Scheme

http://www.lpthe.jussieu.fr/LesHouches07Wiki/index.php/Jets_nomenclature

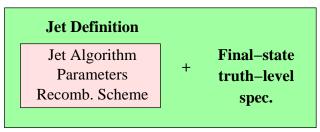
- Naming of choices should be unambiguous (wasn't for Tevatron Run II).
- If one changes the definition, say so clearly (in talks) and give all details (in papers).

Jet Definition

Jet Algorithm Parameters Recomb. Scheme

http://www.lpthe.jussieu.fr/LesHouches07Wiki/index.php/Jets_nomenclature

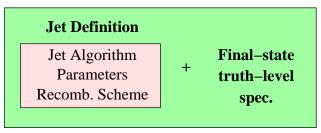
- ▶ Naming of choices should be unambiguous (wasn't for Tevatron Run II).
- If one changes the definition, say so clearly (in talks) and give all details (in papers).


Jet Definition

Jet Algorithm Parameters Recomb. Scheme Final–state truth–level spec.

http://www.lpthe.jussieu.fr/LesHouches07Wiki/index.php/Jets_nomenclature

- Naming of choices should be unambiguous (wasn't for Tevatron Run II).
- If one changes the definition, say so clearly (in talks) and give all details (in papers).



http://www.lpthe.jussieu.fr/LesHouches07Wiki/index.php/Jets_nomenclature

- ▶ Naming of choices should be unambiguous (wasn't for Tevatron Run II).
- If one changes the definition, say so clearly (in talks) and give all details (in papers).

http://www.lpthe.jussieu.fr/LesHouches07Wiki/index.php/Jets_nomenclature

- Naming of choices should be unambiguous (wasn't for Tevatron Run II).
- If one changes the definition, say so clearly (in talks) and give all details (in papers).

Snowmass Accord (1990):

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Property 4 \equiv **Infrared and Collinear (IRC) Safety.** It helps ensure:

- ▶ Non-perturbative effects are suppressed by powers of Λ_{QCD}/p_t
- Each order of perturbation theory is smaller than previous (at high p_t)

Snowmass Accord (1990):

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions ·

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Property 4 \equiv **Infrared and Collinear (IRC) Safety.** It helps ensure:

- Non-perturbative effects are suppressed by powers of Λ_{QCD}/p_t
- Each order of perturbation theory is smaller than previous (at high p_t)

Giving up on IRC safety \equiv renouncing optimal use of \sim 10 years' work on NLO from a community of \sim 30 – 50 theorists. \sim 20 million euros See also FAQ at end

Process	Last meaningful order		
FIDLESS	Iterative cone	MidPoint	
Inclusive jets	LO	NLO [NNLO being worked on]	
W/Z + 1 jet	LO	NLO	
3 jets	none	LO [NLO in nlojet++]	
W/Z + 2 jets	none	LO [NLO in MCFM]	
1-jet masses in $2j + X$	none	none [LO in madgraph etc.]	

Problem:

- Long tradition of use of IRC unsafe jet algs in pp
- Previous recommendations to use IRC safe algs (Snowmass, Tevatron Run II, ...) not always followed How can we change this?

Hadron-level effects not always obvious

Giving up on IRC safety \equiv renouncing optimal use of \sim 10 years' work on NLO from a community of \sim 30 – 50 theorists. \sim 20 million euros See also FAQ at end

Process	Last meaningful order		
FIUCESS	Iterative cone	MidPoint	
Inclusive jets	LO	NLO [NNLO being worked on]	
W/Z + 1 jet	LO	NLO	
3 jets	none	LO [NLO in nlojet++]	
W/Z + 2 jets	none	LO [NLO in MCFM]	
1-jet masses in $2j + X$	none	none [LO in madgraph etc.]	

Problem:

- Long tradition of use of IRC unsafe jet algs in pp
- Previous recommendations to use IRC safe algs (Snowmass, Tevatron Run II, ...) not always followed How can we change this?

Hadron-level effects not always obvious

There is no single best jet definition.

Performance depends on

- number of hard partons in event (more jets \rightarrow smaller R)
- p_t scale (higher $p_t \rightarrow \text{larger } R$)
- amount of pileup (more pileup \rightarrow smaller R)

Different definitions have different systematics

- Large R: more underlying event
- Small R: more "hadronisation"

Neither predicted rigorously

New, better jet-algorithms may be invented in future

 Qu: what is tradeoff between flexibility and accuracy of experimental calibration?

 Can accuracte calibrations really hold over whole experimental range anyway?

There is no single best jet definition.

Performance depends on

- number of hard partons in event (more jets \rightarrow smaller R)
- p_t scale (higher $p_t \rightarrow \text{larger } R$)
- amount of pileup (more pileup \rightarrow smaller R)

Different definitions have different systematics

- Large R: more underlying event
- Small R: more "hadronisation"

Neither predicted rigorously

New, better jet-algorithms may be invented in future

 Qu: what is tradeoff between flexibility and accuracy of experimental calibration?

 Can accuracte calibrations really hold over whole experimental range anyway?

whole experimental range anyway?

There is no single best jet definition.

Performance depends on

- number of hard partons in event (more jets \rightarrow smaller R)
- p_t scale (higher $p_t \rightarrow \text{larger } R$)
- amount of pileup (more pileup \rightarrow smaller R)

Different definitions have different systematics

- Large R: more underlying event
- Small R: more "hadronisation"

Neither predicted rigorously

New, better jet-algorithms may be invented in future

 Qu: what is tradeoff between flexibility and accuracy of experimental calibration?

 Can accuracte calibrations really hold over whole experimental range anyway?

There is no single best jet definition.

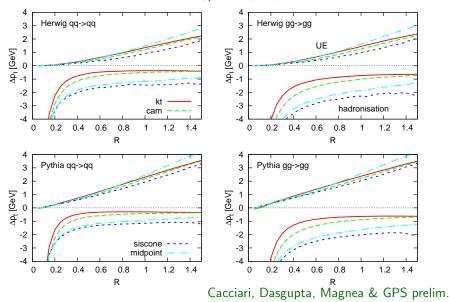
Performance depends on

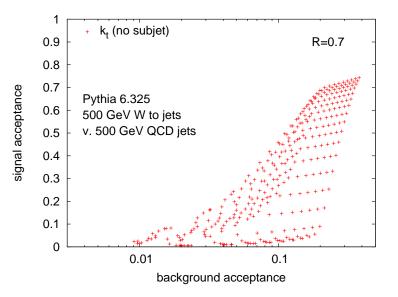
- number of hard partons in event (more jets \rightarrow smaller R)
- p_t scale (higher $p_t \rightarrow \text{larger } R$)
- amount of pileup (more pileup \rightarrow smaller R)

Different definitions have different systematics

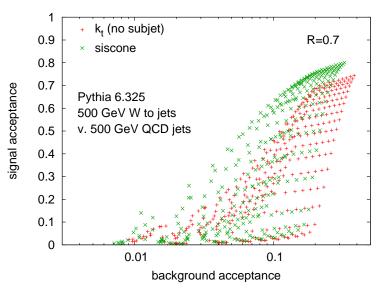
- Large R: more underlying event
- Small R: more "hadronisation"

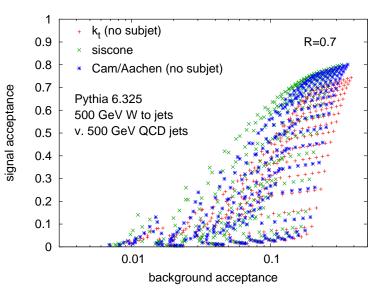
Neither predicted rigorously

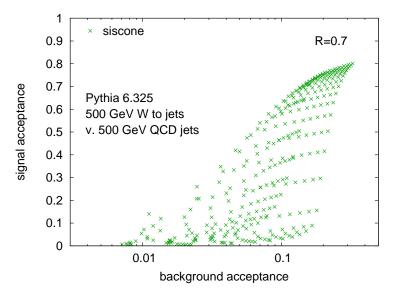

New, better jet-algorithms may be invented in future

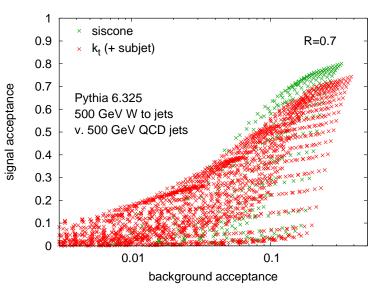

 Qu: what is tradeoff between flexibility and accuracy of experimental calibration?

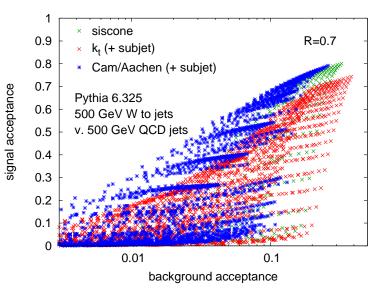
 Can accuracte calibrations really hold over whole experimental range anyway?


NP effects v. R


Tevatron: $55 < p_t < 70 \text{ GeV}$ (bin 04)






Boosted W

EXTRA SLIDES

1. I tried replacing [JetClu → Midpoint], effect was small, so maybe IR safety doesn't matter?

a) Effect can be small in one place (e.g. inclusive jet spectra), but big elsewhere; b) It still breaks partonic calculations (so theorists will use your competitors' results instead of yours)

2. Now that we have MC@NLO we don't need parton-level theory and all its infinities

MC@NLO is a powerful tool, but still misses many processes (and will do for a while): 2j, 3j, V + j, H + j, V + 2j, H + 2j, $Q\bar{Q} + j$, NLO *t*-decay in single top, NLO *t*-decay in $t\bar{t}$, many SUSY ones...

3. I'm searching for XYZ & only ever use data and Pythia — there, at hadron level, [JetClu]'s answer is well defined

It's well defined but not robust: a 1 GeV particle can change your 200 GeV jets. a) Do you really want your analysis to be that random and b) do you really trust Pythia's modeling of 1 GeV particles?

1. I tried replacing [JetClu → Midpoint], effect was small, so maybe IR safety doesn't matter?

a) Effect can be small in one place (e.g. inclusive jet spectra), but big elsewhere; b) It still breaks partonic calculations (so theorists will use your competitors' results instead of yours)

2. Now that we have MC@NLO we don't need parton-level theory and all its infinities

MC@NLO is a powerful tool, but still misses many processes (and will do for a while): 2j, 3j, V + j, H + j, V + 2j, H + 2j, $Q\bar{Q} + j$, NLO *t*-decay in single top, NLO *t*-decay in $t\bar{t}$, many SUSY ones...

3. I'm searching for XYZ & only ever use data and Pythia — there, at hadron level, [JetClu]'s answer is well defined

It's well defined but not robust: a 1 GeV particle can change your 200 GeV jets. a) Do you really want your analysis to be that random and b) do you really trust Pythia's modeling of 1 GeV particles?

1. I tried replacing [JetClu → Midpoint], effect was small, so maybe IR safety doesn't matter?

a) Effect can be small in one place (e.g. inclusive jet spectra), but big elsewhere; b) It still breaks partonic calculations (so theorists will use your competitors' results instead of yours)

2. Now that we have MC@NLO we don't need parton-level theory and all its infinities

MC@NLO is a powerful tool, but still misses many processes (and will do for a while): 2j, 3j, V + j, H + j, V + 2j, H + 2j, $Q\bar{Q} + j$, NLO *t*-decay in single top, NLO *t*-decay in $t\bar{t}$, many SUSY ones...

3. I'm searching for XYZ & only ever use data and Pythia — there, at hadron level, [JetClu]'s answer is well defined

It's well defined but not robust: a 1 GeV particle can change your 200 GeV jets. a) Do you really want your analysis to be that random and b) do you really trust Pythia's modeling of 1 GeV particles?