Jet physics at colliders

Gavin P. Salam
LPTHE, UPMC Paris 6 & CNRS

HERA-LHC Workshop
26 May 2008
A jet definition is a systematic procedure that projects away the multiparticle dynamics, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a physical single hard quark or gluon: with good definitions their properties (multiplicity, energies, [flavour]) are

- finite at any order of perturbation theory
- insensitive to the parton → hadron transition

NB: finiteness ←→ set of jets depends on jet def.
A jet definition is a systematic procedure that projects away the multiparticle dynamics, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a physical single hard quark or gluon: with good definitions their properties (multiplicity, energies, [flavour]) are

- finite at any order of perturbation theory
- insensitive to the parton → hadron transition

NB: finiteness ↔ set of jets depends on jet def.
A jet definition is a systematic procedure that projects away the multiparticle dynamics, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a physical single hard quark or gluon: with good definitions their properties (multiplicity, energies, flavour) are

- finite at any order of perturbation theory
- insensitive to the parton → hadron transition

NB: finiteness ↔ set of jets depends on jet def.
Jet (definitions) provide central link between expt., “theory” and theory
And jets are an input to almost all analyses
Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses
1. Infrared and Collinear unsafe jet algorithms have been with us for a long time

It’s time to relegate them to where they belong

20th century history
1. Infrared and Collinear unsafe jet algorithms have been with us for a long time.
It’s time to relegate them to where they belong.

20th century history
Jet-finding has been painless at HERA, but not at Tevatron. **WHY?**

I don’t know the true answer, but here are some guesses

<table>
<thead>
<tr>
<th>HERA</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherited JADE-type algorithms</td>
<td>Inherited pp cone algs</td>
</tr>
<tr>
<td>Problematic/complex from the start</td>
<td></td>
</tr>
<tr>
<td>Much QCD, some searches</td>
<td>Many searches, some QCD</td>
</tr>
<tr>
<td>Jet-finding had to be decent</td>
<td>Jet-finding relevance is more subtle</td>
</tr>
<tr>
<td>Complexity \sim that of LEP</td>
<td>Complexity \gg that of LEP</td>
</tr>
<tr>
<td>Moderate multiplicites</td>
<td>Multiplicites higher</td>
</tr>
<tr>
<td>UE small, $dp_t/d\eta \sim 0.5 - 1$ GeV</td>
<td>UE large, $dp_t/d\eta \sim 2.5 - 5$ GeV</td>
</tr>
<tr>
<td>e^+e^--inspired solutions work</td>
<td>e^+e^--inspired solutions have issues</td>
</tr>
</tbody>
</table>

NB: LHC more like Tevatron than HERA
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type</th>
<th>IRC status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>inclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td>widespread: QCD-th, HERA</td>
</tr>
<tr>
<td>Cambridge/Aachen</td>
<td>$SR_{p=0}$</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Run II Seedless cone</td>
<td>SC-SM</td>
<td>OK</td>
<td>slow: $N2^N$!!</td>
</tr>
<tr>
<td>CDF JetClu</td>
<td>IC_{r-SM}</td>
<td>IR$^{2+1}$</td>
<td>for top physics, searches</td>
</tr>
<tr>
<td>CDF MidPoint cone</td>
<td>IC_{mp-SM}</td>
<td>IR$^{3+1}$</td>
<td>\sim Tev Run II recommendn</td>
</tr>
<tr>
<td>CDF MidPoint searchcone</td>
<td>$IC_{se,mp-SM}$</td>
<td>IR$^{2+1}$</td>
<td></td>
</tr>
<tr>
<td>D0 Run II cone</td>
<td>IC_{mp-SM}</td>
<td>IR$^{3+1}$</td>
<td>Tev Run II + cut on cone p_t</td>
</tr>
<tr>
<td>ATLAS Cone</td>
<td>$IC-SM$</td>
<td>IR$^{2+1}$</td>
<td></td>
</tr>
<tr>
<td>PxCone</td>
<td>IC_{mp-SD}</td>
<td>IR$^{3+1}$</td>
<td>has cut on cone p_t</td>
</tr>
<tr>
<td>CMS Iterative Cone</td>
<td>$IC-PR$</td>
<td>Coll$^{3+1}$</td>
<td></td>
</tr>
<tr>
<td>PyCell/CellJet (from Pythia)</td>
<td>$FC-PR$</td>
<td>Coll$^{3+1}$</td>
<td>widespread in BSM theory</td>
</tr>
<tr>
<td>GetJet (from ISAJET)</td>
<td>$FC-PR$</td>
<td>Coll$^{3+1}$</td>
<td>likewise</td>
</tr>
</tbody>
</table>

$SR = \text{seq.rec.};\ IC = \text{it.cone};\ FC = \text{fixed cone};$

$SM = \text{split–merge};\ SD = \text{split–drop};\ PR = \text{progressive removal}$

IR_{n+1}: for n nearby hard partons, 1 soft emitted gluon can change hard jets

$Coll_{n+1}$: for n nearby hard partons, 1 collinear splitting can change hard jets
What's out there?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type</th>
<th>IRC status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>inclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td>widespread: QCD-th, HERA</td>
</tr>
<tr>
<td>Cambridge/Aachen</td>
<td>$SR_{p=0}$</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Run II Seedless cone</td>
<td>SC-SM</td>
<td>OK</td>
<td>slow: $N2^N$!!</td>
</tr>
<tr>
<td>CDF JetClu</td>
<td>IC_r-SM</td>
<td>IR$_{2+1}$</td>
<td>for top physics, searches</td>
</tr>
<tr>
<td>CDF MidPoint cone</td>
<td>IC_{mp}-SM</td>
<td>IR$_{3+1}$</td>
<td>\sim Tev Run II recommendn</td>
</tr>
<tr>
<td>CDF MidPoint searchcone</td>
<td>$IC_{se,mp}$-SM</td>
<td>IR$_{2+1}$</td>
<td></td>
</tr>
<tr>
<td>D0 Run II cone</td>
<td>IC_{mp}-SM</td>
<td>IR$_{3+1}$</td>
<td>Tev Run II + cut on cone p_t</td>
</tr>
<tr>
<td>ATLAS Cone</td>
<td>IC-SM</td>
<td>IR$_{2+1}$</td>
<td></td>
</tr>
<tr>
<td>PxCone</td>
<td>IC_{mp}-SD</td>
<td>IR$_{3+1}$</td>
<td>has cut on cone p_t,</td>
</tr>
<tr>
<td>CMS Iterative Cone</td>
<td>IC-PR</td>
<td>Coll$_{3+1}$</td>
<td></td>
</tr>
<tr>
<td>PyCell/CellJet (from Pythia)</td>
<td>FC-PR</td>
<td>Coll$_{3+1}$</td>
<td>widespread in BSM theory</td>
</tr>
<tr>
<td>GetJet (from ISAJET)</td>
<td>FC-PR</td>
<td>Coll$_{3+1}$</td>
<td>likewise</td>
</tr>
</tbody>
</table>

SR = seq.rec.; **IC** = it.cone; **FC** = fixed cone;
SM = split–merge; **SD** = split–drop; **PR** = progressive removal

IR$_{n+1}$: for n nearby hard partons, 1 soft emitted gluon can change hard jets

Coll$_{n+1}$: for n nearby hard partons, 1 collinear splitting can change hard jets
Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

- If you’re looking for an invariant mass peak, it’s not 100% crucial

 IRC unsafety \(\sim R \) is ill-defined

 A huge mass peak will stick out regardless

Well, actually my signal’s a little more complex than that...

- If you’re looking for an excess over background you need confidence in backgrounds

 E.g. some SUSY signals

 - Check \(W+1 \) jet, \(W+2 \)-jets data against NLO in control region
 - Check \(W+n \) jets data against LO in control region
 - Extrapolate into measured region

- IRC unsafety means NLO senseless for simple topologies, \(LO \) senseless for complex topologies

 Breaks consistency of whole

 Wastes \(\sim 50,000,000 \) $/£/CHF/€

But I like my cone algorithm, it’s fast, has good resolution, etc.

- Not an irrelevant point

 \(\rightarrow \) has motivated significant work
I do searches, not QCD. Why should I care about IRC safety?

- If you’re looking for an invariant mass peak, it’s not 100% crucial
 IRC unsafety \(\sim R \) is ill-defined
 A huge mass peak will stick out regardless

Well, actually my signal’s a little more complex than that. . .

- If you’re looking for an excess over background you need confidence in backgrounds
 - Check W+1 jet, W+2-jets data against NLO in control region
 - Check W+n jets data against LO in control region
 - Extrapolate into measured region

- IRC unsafety means NLO senseless for simple topologies, LO senseless for complex topologies

 Wastes \(\sim \) 50,000,000$\slash\pounds\slash\text{CHF}\slash\text{€}

But I like my cone algorithm, it’s fast, has good resolution, etc.

- Not an irrelevant point
 → has motivated significant work
Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

If you're looking for an invariant mass peak, it's not 100% crucial. IRC unsafety $\approx R$ is ill-defined. A huge mass peak will stick out regardless.

The complex than that... Of course, if you're looking for a signal over background you need confidence in your background estimation. E.g. some SUSY signals. Check $W + n$ jets data against NLO in control region. Check $W + 1 \text{ jet}$, $W + 2 \text{-jets}$ data against LO in control region. Extrapolate into measured region.

IRC unsafety means NLO senseless for simple topologies, LO senseless for complex topologies. Breaks consistency of whole.

Wastes $\sim 50,000,000$ $\text{\$}/\text{\£}/\text{\CHF}/\text{\€}$.

But I like my cone algorithm, it’s fast, has good resolution, etc. Not an irrelevant point → has motivated significant work.
Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

- If you're looking for an invariant mass peak, it's not 100% crucial
 - IRC unsafety $\sim R$ is ill-defined
 - Large mass peak will stick out regardless
- If you're looking for an excess over background you need confidence in
 - Background you need confidence in
 - E.g. some SUSY signals
 - Check W^+n jets data against NLO in control region
 - Control region
 - Extrapolate into measured region
- IRC unsafety means NLO senseless for simple topologies, LO senseless for
 - Breaks consistency of whole
 - Wastes $\sim 50,000,000$$/£/CHF/€

But I like my cone algorithm, it's fast, has good resolution, etc.

- Not an irrelevant point
 - has motivated significant work
Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

- If you’re looking for an invariant mass peak, it’s not 100% crucial
 IRC unsafety \(\sim R \) is ill-defined
 Large mass peak will stick out regardless

- The complex than that...

- If you’re looking for an excess over background you need confidence in
 E.g. some SUSY signals
 - Check \(W^+n \text{jets} \) data against NLO in control region
 - Check \(W^+1 \text{jet}, W^+2\text{jets} \) data against LO in control region
 - Extrapolate into measured region

- IRC unsafety means NLO senseless for simple topologies, \(LO \) senseless for complex topologies, breaks consistency of whole
 Wastes \(\sim 50,000,000 \) $/\pounds/CHF/$

But I like my cone algorithm, it’s fast, has good resolution, etc.

- Not an irrelevant point \(\rightarrow \) has motivated significant work
CDF hep-ex/0512062 & hep-ex/0701051 inclusive-jet measurements show that basic behaviour of k_t algorithm is as good as that of cone.

Crucial difference relative to HERA is use of $R < 1$ (NB $R \equiv D$)

Why? Because of different scale of UE

Lesson adopted by LHC experiments in past couple of years
#2: fixing available algs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type</th>
<th>IRC status</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td>$N^3 \rightarrow N \ln N$</td>
</tr>
<tr>
<td>inclusive k_t</td>
<td>$SR_{p=1}$</td>
<td>OK</td>
<td>$N^3 \rightarrow N \ln N$</td>
</tr>
<tr>
<td>Cambridge/Aachen</td>
<td>$SR_{p=0}$</td>
<td>OK</td>
<td>$N^3 \rightarrow N \ln N$</td>
</tr>
<tr>
<td>Run II Seedless cone</td>
<td>SC-SM</td>
<td>OK</td>
<td>\rightarrow SISCone</td>
</tr>
<tr>
<td>CDF JetClu</td>
<td>IC$_r$-SM</td>
<td>IR$_{2+1}$</td>
<td>\rightarrow SISCone</td>
</tr>
<tr>
<td>CDF MidPoint cone</td>
<td>IC$_{mp}$-SM</td>
<td>IR$_{3+1}$</td>
<td>\rightarrow SISCone</td>
</tr>
<tr>
<td>CDF MidPoint searchcone</td>
<td>IC$_{se,mp}$-SM</td>
<td>IR$_{2+1}$</td>
<td>\rightarrow SISCone</td>
</tr>
<tr>
<td>D0 Run II cone</td>
<td>IC$_{mp}$-SM</td>
<td>IR$_{3+1}$</td>
<td>\rightarrow SISCone [with p_t cut?]</td>
</tr>
<tr>
<td>ATLAS Cone</td>
<td>IC-SM</td>
<td>IR$_{2+1}$</td>
<td>\rightarrow SISCone</td>
</tr>
<tr>
<td>PxCone</td>
<td>IC$_{mp}$-SD</td>
<td>IR$_{3+1}$</td>
<td>[little used]</td>
</tr>
<tr>
<td>CMS Iterative Cone</td>
<td>IC-PR</td>
<td>Coll$_{3+1}$</td>
<td>\rightarrow anti-k_t</td>
</tr>
<tr>
<td>PyCell/CellJet (from Pythia)</td>
<td>FC-PR</td>
<td>Coll$_{3+1}$</td>
<td>\rightarrow anti-k_t</td>
</tr>
<tr>
<td>GetJet (from ISAJET)</td>
<td>FC-PR</td>
<td>Coll$_{3+1}$</td>
<td>\rightarrow anti-k_t</td>
</tr>
</tbody>
</table>

SR = seq.rec.; IC = it.cone; FC = fixed cone;
SM = split–merge; SD = split–drop; PR = progressive removal
A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

\[d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \Delta R_{ij}^2 / R^2 \quad d_{iB} = k_{ti}^{2p} \]

<table>
<thead>
<tr>
<th>Alg. name</th>
<th>Comment</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_t)</td>
<td>Hierarchical in rel. (k_t)</td>
<td>(N \ln N) exp.</td>
</tr>
<tr>
<td>CDOSTW '91-93; ES '93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge/Aachen</td>
<td>Hierarchical in angle</td>
<td>(N \ln N)</td>
</tr>
<tr>
<td>Dok, Leder, Moretti, Webber '97</td>
<td>Scan multiple (R) at once</td>
<td></td>
</tr>
<tr>
<td>Wengler, Wobisch '98</td>
<td>(\leftrightarrow) QCD angular ordering</td>
<td></td>
</tr>
<tr>
<td>(p = -1)</td>
<td></td>
<td>(N^{3/2})</td>
</tr>
<tr>
<td>(\text{anti-}k_t)</td>
<td>Hierarchy meaningless.</td>
<td></td>
</tr>
<tr>
<td>Cacciari, GPS, Soyez '08</td>
<td>Behaves like IC-PR</td>
<td></td>
</tr>
<tr>
<td>(\sim) reverse-(k_t)</td>
<td>Delsart, Loch et al.</td>
<td></td>
</tr>
<tr>
<td>SC-SM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISCone</td>
<td>Replacement for IC-SM</td>
<td>(N^2 \ln N) exp.</td>
</tr>
<tr>
<td>GPS Soyez '07 + Tevatron run II '00</td>
<td>notably “MidPoint” cones</td>
<td></td>
</tr>
</tbody>
</table>

Compromise between having a limited set of algs. and a good range of complementary properties

See talk by G. Soyez about the newer algs., SISCone & anti-\(k_t \)
anti-k_t v. Cone (ICPR) jets
2.

Let’s ask *useful* questions about jets

- When a jet is 1 parton
- When a jet is 2, 3 partons
- When a jet is 0 partons
Traditional use of jets: as a stand-in for a single parton

Basic questions:

- Which jet algorithms work best?
- What value of jet angular radius R is best?
- How does answer depend on the momentum scale? LHC ranges from 25 GeV to 5 TeV
- How does answer depend on pileup?
- What logic behind all of this?
How to establish jet-defn quality?

Partons are not physical objects
divergent, meaningless @ NLO, etc.
Parton-jet matching is \textit{not} the way to go

\textbf{Instead:} use physical decays (imaginary narrow Z', H) to investigate question rigorously.

Cacciari et al.; Büge et al., LH'07

How do you measure quality?

- Look at invariant mass peak
- Do not fit a Gaussian!
- \textbf{Instead} measure minimal width containing 40\% (say) of invariant mass peak

See talk by J. Rojo in final-states session
Partons are not physical objects divergent, meaningless @ NLO, etc. Parton-jet matching is not the way to go

Instead: use physical decays (imaginary narrow Z’, H) to investigate question rigorously.

How do you measure quality?

- **Look at invariant mass peak**
- **Do not fit a Gaussian!**
- **Instead** measure minimal width containing 40% (say) of invariant mass peak

See talk by J. Rojo in final-states session
How to establish jet-definition quality?

Partons are not physical objects divergent, meaningless @ NLO, etc. Parton-jet matching is not the way to go

Instead:

- Look at invariant mass peak
- Do not fit a Gaussian!
- Instead, measure minimal width containing 40% (say) of invariant mass peak

Cacciari et al.; Büge et al., LH’07

See talk by J. Rojo in final-states session
How to establish jet-defn quality?

Partons are not physical objects, divergent, meaningless @ NLO, etc. Parton-jet matching is not the way to go

Instead:
use physical decays (imaginary narrow Z', H) to investigate

Cacciari et al.; Büge et al., LH'07

How do you measure quality?

- Look at invariant mass peak
- Do not fit a Gaussian!
- Instead measure minimal width containing 40% (say) of invariant mass peak

See talk by J. Rojo in final-states session
Partons are not physical objects

Instead: use physical decays (imaginary narrow Z', H) to investigate question rigorously.

Cacciari et al.; Büge et al., LH'07

How do you measure quality?

- Look at invariant mass peak
- Do not fit a Gaussian!
- Instead measure minimal width containing 40% (say) of invariant mass peak

See talk by J. Rojo in final-states session
How to establish jet-defn quality?

Partons are not physical objects divergent, meaningless @ NLO, etc.

Parton-jet matching is \textit{not} the way to go

\textbf{Instead:} use physical decays (imaginary narrow Z', H) to investigate question rigorously.

\textbf{How do you measure quality?}

- Look at invariant mass peak
- Do not fit a Gaussian!
- \textbf{Instead} measure minimal width containing 40\% (say) of invariant mass peak

\begin{itemize}
 \item $M_{Z'} = 100$ GeV
 \item $R = 0.7$
\end{itemize}

\textbf{See talk by J. Rojo in final-states session}
Partons are not physical objects divergent, meaningless @ NLO, etc.
Parton-jet matching is *not* the way to go

Instead: use physical decays (imaginary narrow Z', H) to investigate question rigorously.

How do you measure quality?

- Look at invariant mass peak
- Do not fit a Gaussian!
- **Instead** measure minimal width containing 40% (say) of invariant mass peak

See talk by J. Rojo in final-states session
What’s the “best” jet-def?

Jet definition \equiv jet-alg + choice of parameters

Try all options

- R dependence is crucial
- Non-trivial interplay with hard scale $\text{high-}p_t \rightarrow \text{large } R$
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

See talks by L. Magnea and M. Dasgupta

Pythia 6.4 + DWT tune + FastJet
Cacciari, Rojo, GPS & Soyez ’08
What’s the “best” jet-def?

Jet definition ≡ jet-alg + choice of parameters

Try all options

- R dependence is crucial
- Non-trivial interplay with hard scale \quad high-$p_t \rightarrow$ large R
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

Pythia 6.4 + DWT tune + FastJet

Cacciari, Rojo, GPS & Soyez ‘08

See talks by L. Magnea and M. Dasgupta
Jet definition \equiv jet-alg + choice of parameters

Try all options

- R dependence is crucial
- Non-trivial interplay with hard scale \rightarrow large R
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

Pythia 6.4 + DWT tune + FastJet
Büge, Heinrich, Klein & Rabbertz '08

See talks by L. Magnea and M. Dasgupta
What’s the “best” jet-def?

Jet definition \equiv jet-alg + choice of parameters

Try all options

Crude analytical estimates
Dasgupta, Magnea & GPS '07

- R dependence is crucial
- Non-trivial interplay with hard scale gluons, high-p_t \rightarrow large R
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

See talks by L. Magnea and M. Dasgupta
Jet definition \equiv jet-alg + choice of parameters

Try all options

- R dependence is crucial
- Non-trivial interplay with hard scale gluons, high-$p_t \rightarrow$ large R
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

Crude analytical estimates
Dasgupta, Magnea & GPS '07

See talks by L. Magnea and M. Dasgupta
What’s the “best” jet-def?

Jet definition ≡ jet-alg + choice of parameters

Try all options

- R dependence is crucial
- Non-trivial interplay with hard scale gluons, high-$p_t \rightarrow$ large R
- Qualitative understanding based on analytical arguments

Knowledge of R-dep of PT, Hadr, UE effects is key to good choice of jet def.

Crude analytical estimates
Dasgupta, Magnea & GPS '07

See talks by L. Magnea and M. Dasgupta
R is a free parameter — a bit like “focus” in a camera.

Measuring several R-values helps inform our understanding of non-perturbative effects & contributes to a habit of **flexible jet finding**.

![Graphs showing jet production and R-dependence](image)

Powerful cross check on theoretical ideas & MCs;
Please: more like this, also with larger range of R!
Pushing jets to their limit:
when a W, Z, H or a top \rightarrow a single jet

Not unusual at LHC: $m_W, m_t \ll 14$ TeV
Illustrate LHC challenges with a recently widely discussed class of problems:

Can you identify hadronically decaying EW bosons when they’re produced at high p_t?

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Significant discussion over years: heavy new things decay to EW states

- Seymour '94 [Higgs $\rightarrow WW \rightarrow \nu \ell$jets]
- Butterworth, Cox & Forshaw '02 [$WW \rightarrow WW \rightarrow \nu \ell$jets]
- Butterworth, Ellis & Raklev '07 [SUSY decay chains $\rightarrow W, H$]
- Skiba & Tucker-Smith '07 [vector quarks]
- Contino & Servant '08 [top partners]
- ...
Using jets @ LHC

1 jet $\gtrsim 2$ partons

Illustrate LHC challenges with a recently widely discussed class of problems:

Can you identify hadronically decaying EW bosons when they're produced at high p_t?

![Diagram of boosted X decaying into single jet](image)

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Significant discussion over years: **heavy new things decay to EW states**

- Seymour '94 [Higgs $\rightarrow WW \rightarrow \nu\ell$jets]
- Butterworth, Cox & Forshaw '02 [$WW \rightarrow WW \rightarrow \nu\ell$jets]
- Butterworth, Ellis & Raklev '07 [SUSY decay chains $\rightarrow W, H$]
- Skiba & Tucker-Smith '07 [vector quarks]
- Contino & Servant '08 [top partners]
- ...
EW bosons at @ high p_t

Illustrate LHC challenges with a recently widely discussed class of problems:

Can you identify hadronically decaying EW bosons when they’re produced at high p_t?

$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Significant discussion over years: **heavy new things decay to EW states**

- Seymour '94 [Higgs \rightarrow WW \rightarrow $\nu \ell$ jets]
- Butterworth, Cox & Forshaw '02 [WW \rightarrow WW \rightarrow $\nu \ell$ jets]
- Butterworth, Ellis & Raklev '07 [SUSY decay chains \rightarrow W, H]
- Skiba & Tucker-Smith '07 [vector quarks]
- Contino & Servant '08 [top partners]
- ...
Brooijmans ’08 ATL-PHYS-CONF-2008-008, based on k_t algorithm

Use subjet relative transverse-momentum scale (”y-scale”) & correlation with jet mass to pick out top quarks from background

top quarks $p_t \sim 1$ TeV

normal jets
Brooijmans '08 ATL-PHYS-CONF-2008-008, based on k_t algorithm

Use subjet relative transverse-momentum scale ("y-scale") & correlation with jet mass to pick out top quarks from background

top quarks $p_t \sim 1$ TeV

Efficiencies

Normal jets

Top quarks
Using jets @ LHC

$pp \rightarrow ZH \rightarrow \nu\bar{\nu}b\bar{b}$, @14 TeV, $m_H = 115$ GeV

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS ’08

Possible new (light) Higgs discovery channel
Using jets @ LHC

$pp \rightarrow ZH \rightarrow \nu\bar{\nu}b\bar{b}$, @14 TeV, $m_H = 115$ GeV

Possible new (light) Higgs discovery channel

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS ’08
Using jets @ LHC

\[pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}, \ @14 \text{ TeV, } m_H = 115 \text{ GeV} \]

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS '08

Possible new (light) Higgs discovery channel
Using jets @ LHC

$pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV

[SIGNAL]

Z_{bb} BACKGROUND

Possible new (light) Higgs discovery channel

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS ’08

arbitrary norm.
Using jets @ LHC

\[pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}, \@ 14 \text{ TeV}, \ m_H = 115 \text{ GeV} \]

Possible new (light) Higgs discovery channel

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS '08
Using jets @ LHC

1 jet \geq 2 partons

$pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]
Butterworth, Davison, Rubin & GPS '08

Possible new (light) Higgs discovery channel
Using jets @ LHC

\(pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}, \; \@ 14 \text{ TeV}, \; m_{H} = 115 \text{ GeV} \)

 возможный новый (легкий) конечный канал обнаружения Хиггса

Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2

Butterworth, Davison, Rubin & GPS '08

Предполагаемый новый (легкий) канал обнаружения Хиггса
Using jets @ LHC

1 jet \gtrsim 2 partons

$pp \rightarrow ZH \rightarrow \nu\bar{\nu}b\bar{b}$, @14 TeV, $m_H = 115$ GeV

SIGNAL

Final filtered result, $p_t=227.257$ m=117.211

[Herwig 6.5 + Jimmy 4.31 + FastJet Cam/Aa R=1.2]

Butterworth, Davison, Rubin & GPS '08

Much to be learnt still about extracting boosted W/H/Z/top from bkgd; NB HERA has extensive experience with subjets.
Jets without hard partons:

Most jet algorithms give you \(\sim 50 \rightarrow 100 \) “jets,” mostly not hard.

provide window on UE and min-bias
Usual approach to UE

Marchesini-Webber idea:
look at transverse region to measure underlying event

Topological selection
The jets are classified as belonging to the noise on the ground of their position

So far mostly average quantities
But full tuning of UE models needs point-to-point fluctuations & correlations, as well as event-to-event fluctuations
And difficult to use in complex events, e.g. top
Using jets @ LHC
1 jet \approx 0 \text{ partons}

Making use of all jets

Approximate linear relation between P_t and area for minimum bias jets.

Can be used on an event-by-event basis to correct the hard jets.
E.g. take dijet events with $p_t > 50$ GeV, extract ρ from the soft jets. Look at the distribution of ρ across events:

Result for ρ consistent in topological and jet-based methods;
But also get event-by-event dist.
Jet-based method works in complex events too (e.g. $t\bar{t}$)
E.g. select quiet events for clean studies

See talk by M. Cacciari for explanations and background
E.g. take dijet events with $p_t > 50$ GeV, extract ρ from the soft jets. Look at distribution of ρ across events:

Result for ρ consistent in topological and jet-based methods;

But also get event-by-event dist.

Jet-based method works in complex events too (e.g. $t\bar{t}$)

E.g. select quiet events for clean studies

See talk by M. Cacciari for explanations and background
Conclusions
Unlocking the power of jets at LHC means going beyond stale discussions of whether we really need IRC safe algorithms. For each IRC unsafe alg., there’s a good safe alternative. HERA offers a good example in its approach to jets.

The questions we face on jets cover LHC’s whole dynamic range:

- From ~ 1 GeV to multi-TeV
- The scales mix: UE with pileup with EW with TeV
- Understanding of low scales, substructure \leftrightarrow HERA

The key to focusing with clarity on LHC events will be **flexibility**. Powerful ideas that rely on flexibility are here; more will come. LHC experiments’ ongoing efforts to build in flexibility are essential.

Much more material & discussion in parallel session!
EXTRAS
Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \infty \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \ln p_t/\Lambda \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^3$$ BOTH WASTED

Among consequences of IR unsafety:

<table>
<thead>
<tr>
<th>Last meaningful order</th>
<th>JetClu, ATLAS cone [IC-SM]</th>
<th>MidPoint [IC_{mp-SM}]</th>
<th>CMS it. cone [IC-PR]</th>
<th>Known at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO (→ NNLO)</td>
</tr>
<tr>
<td>$W/Z + 1$ jet</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO</td>
</tr>
<tr>
<td>3 jets</td>
<td>none</td>
<td>LO</td>
<td>LO</td>
<td>NLO [nlojet++]</td>
</tr>
<tr>
<td>$W/Z + 2$ jets</td>
<td>none</td>
<td>LO</td>
<td>LO</td>
<td>NLO [MCFM]</td>
</tr>
<tr>
<td>m_{jet} in $2j + X$</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>LO</td>
</tr>
</tbody>
</table>

NB: $30 − 50M investment in NLO

Multi-jet contexts much more sensitive: **ubiquitous at LHC**

And LHC will rely on QCD for background double-checks, extraction of cross sections, extraction of parameters
Real life does not have infinities, but pert. infinity leaves a real-life trace

\[\alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \infty \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \ln p_t/\Lambda \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^3 \]

BOTH WASTED

Among consequences of IR unsafety:

<table>
<thead>
<tr>
<th>Last meaningful order</th>
<th>JetClu, ATLAS [IC-SM]\</th>
<th>MidPoint [IC_{mp-SM}]</th>
<th>CMS it. cone [IC-PR]</th>
<th>Known at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO (→ NNLO)</td>
</tr>
<tr>
<td>(W/Z + 1) jet</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO</td>
</tr>
<tr>
<td>3 jets</td>
<td>none</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>(W/Z + 2) jets</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>[nlojet++]</td>
</tr>
<tr>
<td>(m_{jet}) in (2j + X)</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>[MCFM]</td>
</tr>
</tbody>
</table>

NB: $30 – 50M investment in NLO

Multi-jet contexts much more sensitive: **ubiquitous at LHC**

And LHC will rely on QCD for background double-checks, extraction of cross sections, extraction of parameters
Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \infty \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^4 \times \ln \frac{p_t}{\Lambda} \rightarrow \alpha_s^2 + \alpha_s^3 + \alpha_s^3$$

BOTH WASTED

Among consequences of IR unsafety:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO (→ NNLO)</td>
</tr>
<tr>
<td>W/Z + 1 jet</td>
<td>LO</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO</td>
</tr>
<tr>
<td>3 jets</td>
<td>none</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>W/Z + 2 jets</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>nlojet++</td>
</tr>
<tr>
<td>m_{jet} in $2j + X$</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>MCFM</td>
</tr>
</tbody>
</table>

NB: $30 – 50M investment in NLO

Multi-jet contexts much more sensitive: **ubiquitous at LHC**

And LHC will rely on QCD for background double-checks

extraction of cross sections, extraction of parameters
Many cone algs have two main steps:

- **Find some/all stable cones**
 \[
 \equiv \text{cone pointing in same direction as the momentum of its contents}
 \]

- **Resolve cases of overlapping stable cones**
 By running a ‘split–merge’ procedure [Blazey et al. ‘00 (Run II jet physics)]
Many cone algs have two main steps:

- **Find some/all stable cones**
 \[\equiv\] cone pointing in same direction as the momentum of its contents

- **Resolve cases of overlapping stable cones**
 By running a ‘split–merge’ procedure [Blazey et al. '00 (Run II jet physics)]
Many cone algs have two main steps:

- **Find some/all stable cones**
 \[\equiv \text{cone pointing in same direction as the momentum of its contents} \]

- **Resolve cases of overlapping stable cones**
 By running a ‘split–merge’ procedure [Blazey et al. ’00 (Run II jet physics)]
Many cone algs have two main steps:

- Find some/all stable cones
 \(\equiv\) cone pointing in same direction as the momentum of its contents

- Resolve cases of overlapping stable cones
 By running a ‘split–merge’ procedure [Blazey et al. ’00 (Run II jet physics)]
Many cone algos have two main steps:

- Find some/all stable cones
 - cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

 By running a ‘split–merge’ procedure [Blazey et al. ’00 (Run II jet physics)]
Many cone algs have two main steps:

- Find some/all stable cones
 - cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones
 By running a ‘split–merge’ procedure [Blazey et al. ’00 (Run II jet physics)]

Qu: How do you find the stable cones?

Until recently used iterative methods:

- use each particle as a starting direction for cone; use sum of contents as new starting direction; repeat.

Iterative Cone with Split Merge (IC-SM)

- e.g. Tevatron cones (JetClu, midpoint)
- ATLAS cone
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
 By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
 - By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
 By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone

 By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
 By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
- Call it a jet; remove its particles from the event; repeat

By iterating from hardest seed particle
Iterative Cone [with progressive removal]

Procedure:

- **Find one stable cone**
 - By iterating from hardest seed particle
- **Call it a jet; remove its particles from the event; repeat**
Iterative Cone [with progressive removal]

Procedure:
- Find one stable cone
- Call it a jet; remove its particles from the event; repeat

By iterating from hardest seed particle
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
- Call it a jet; remove its particles from the event; repeat

By iterating from hardest seed particle
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
- Call it a jet; remove its particles from the event; repeat

By iterating from hardest seed particle
Iterative Cone [with progressive removal]

Procedure:

- Find one stable cone
 By iterating from hardest seed particle
- Call it a jet; remove its particles from the event; repeat
Procedure:

- **Find one stable cone**
 - By iterating from hardest seed particle
- **Call it a jet; remove its particles from the event; repeat**

Iterative Cone with Progressive Removal (IC-PR)

- e.g. CMS it. cone, [Pythia Cone, GetJet], …
- **NB: not same type of algorithm as Atlas Cone, MidPoint, SIScone**
Jet contours – visualised

Different cone types

- k_t, $R=1$
- Cam/Aachen, $R=1$
- SISCon, $R=1$, $f=0.5$
- anti-k_t, $R=1$
One last reason sometimes quoted for using IRC unsafe algs:

“Our trigger uses the XYZ cone, and we want to have the same algorithm in the trigger and the physics analyses”

And our trigger people are very conservative and will never change algorithm

A possible response:

- Low-level and high level triggers often use different algs anyway
- Algs like anti-k_t are definitely fast enough (1ms [20ms] at low [high] lumi) to fit comfortably within the time per event, $O(1\text{s})$, in the HLT
- anti-k_t and plain (trigger) cones should give similar jets: you can trigger if jets from either pass the cuts — increase in bandwidth should be negligible and if you really want your old trigger cone, you’ve still got it.
Status in 2005

Single package, **FastJet**, to access all developments, natively (k_t, Cam/Aachen) or as plugins (SISCone): Cacciari, GPS & Soyez ’05–07

http://www.lpthe.jussieu.fr/~salam/fastjet/
Status in 2007

Single package, **FastJet**, to access all developments, natively (k_t, Cam/Aachen) or as plugins (SISCone): Cacciari, GPS & Soyez ’05–07

http://www.lpthe.jussieu.fr/~salam/fastjet/
E.g.: WH/ZH search channel @ LHC

- Signal is $W \to \ell \nu, H \to b\bar{b}$.
- Backgrounds include $Wb\bar{b}$, $t\bar{t} \to \ell \nu b\bar{b}j$, . . .

Difficulties, e.g.

- $gg \to t\bar{t}$ has $\ell \nu b\bar{b}$ with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape

Try a long shot?

- Go to high p_t ($p_{tH}, p_{tV} > 200$ GeV)
- Lose 95% of signal, but more efficient?
- Maybe kill $t\bar{t}$ & gain clarity?
E.g.: WH/ZH search channel @ LHC

- **Signal is** $W \rightarrow \ell\nu, H \rightarrow b\bar{b}$.
 Studied e.g. in ATLAS TDR

- **Backgrounds include** $Wb\bar{b}$, $t\bar{t} \rightarrow \ell\nu b\bar{b}jj$, ...

Difficulties, e.g.

- $gg \rightarrow t\bar{t}$ has $\ell\nu b\bar{b}$ with **same intrinsic mass scale**, but much higher partonic luminosity

- Need exquisite control of bkgd shape

Try a long shot?

- Go to high p_t ($p_{tH}, p_{tV} > 200$ GeV)
- Lose 95% of signal, but more efficient?
- Maybe kill $t\bar{t}$ & gain clarity?
Signal is $W \rightarrow \ell \nu, H \rightarrow b\bar{b}$. Studied e.g. in ATLAS TDR

Backgrounds include $Wb\bar{b}, t\bar{t} \rightarrow \ell \nu b\bar{b}jj, \ldots$

Difficulties, e.g.

- $gg \rightarrow t\bar{t}$ has $\ell \nu b\bar{b}$ with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape

Try a long shot?

- Go to high p_t ($p_{tH}, p_{tV} > 200$ GeV)
- Lose 95% of signal, but more efficient?
- Maybe kill $t\bar{t}$ & gain clarity?
Searching for high-p_t HW/HZ?

High-p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen?

Butterworth, Davison, Rubin & GPS '08

Cluster with Cambridge/Aachen

1. Find a high-p_t massive jet J
2. Undo last stage of clustering (\equiv reduce R)
3. If $m_{\text{subjets}} \lesssim 0.67m_J$ & subj p_t’s not asym. & each b-tagged \rightarrow Higgs candidate
4. Else, repeat from 2 with heavier subjet

Then on the Higgs-candidate: *filter* away UE/pileup by reducing $R \rightarrow R_{\text{filt}}$, take *three hardest subjets* (keep LO gluon radn) + require b-tags on two hardest.
Searching for high-p_t HW/HZ?

High-p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen?

Butterworth, Davison, Rubin & GPS '08

Cluster with Cambridge/Aachen

1. Find a high-p_t massive jet J
2. Undo last stage of clustering (≡ reduce R)
3. If $m_{subjets} \lesssim 0.67m_J$ & subjet p_t’s not asym. & each b-tagged → Higgs candidate
4. Else, repeat from 2 with heavier subjet

Then on the Higgs-candidate: *filter* away UE/pileup by reducing $R \rightarrow R_{filt}$, take *three hardest subjets* (keep LO gluon rad”$)+$ require b-tags on two hardest.
Searching for high-p_t HW/HZ?

High-p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen?

Butterworth, Davison, Rubin & GPS ’08

Cluster with Cambridge/Aachen

1. Find a high-p_t massive jet J
2. Undo last stage of clustering (\equiv reduce R)
3. If $m_{subjets} \lesssim 0.67 m_J$ & subject p_t’s not asym. & each b-tagged \to Higgs candidate
4. Else, repeat from 2 with heavier subjet

Then on the Higgs-candidate: filter away UE/pileup by reducing $R \to R_{filt}$, take three hardest subjets (keep LO gluon rad”) + require b-tags on two hardest.
combine HZ and HW, $p_t > 200$ GeV

Leptonic channel

- $p_t V, p_t H > 200$ GeV
- $|\eta_H| < 2.5$
- $[p_t, \ell > 30$ GeV, $|\eta_\ell| < 2.5]$
- No extra ℓ, b's with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 18 GeV window

Leptonic channel

$Z \rightarrow \mu^+ \mu^-, e^+ e^-$

- $80 < m_{\ell^+ \ell^-} < 100$ GeV

At 5.9σ for 30 fb$^{-1}$ for $m_H = 115$ GeV this looks like a possible new channel for light Higgs discovery. Deserves serious exp. study!
combine HZ and HW, $p_t > 200$ GeV

Missing E_T channel

- $p_{tV}, p_{tH} > 200$ GeV
- $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30$ GeV, $|\eta_{\ell}| < 2.5]$
- No extra ℓ, b’s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 18 GeV window

Common cuts

- $S/\sqrt{B} = 4.0$ in 112-128 GeV

Extra Higgs

- $Z \rightarrow \nu \bar{\nu}, W \rightarrow \nu[\ell]$

- $E_T > 200$ GeV

At 5.9σ for 30 fb$^{-1}$ for $m_H = 115$ GeV this looks like a possible new channel for light Higgs discovery. Deserves serious exp. study!
combine HZ and HW, $p_t > 200$ GeV

Common cuts
- $p_{tV}, p_{tH} > 200$ GeV
- $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30$ GeV, $|\eta_\ell| < 2.5]$
- No extra ℓ, b’s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 18 GeV window

Semi-leptonic channel
- $W \rightarrow \nu\ell$
 - $E_T > 30$ GeV (\& consistent W.)
 - no extra jets $|\eta| < 3, p_t > 30$

At 5.9\(\sigma\) for 30 fb\(^{-1}\) for $m_H = 115$ GeV this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**
combine HZ and HW, $p_t > 200$ GeV

Common cuts

- $p_T V, p_T H > 200$ GeV
- $|\eta_H| < 2.5$
- $[p_T, \ell > 30$ GeV, $|\eta_\ell| < 2.5$]
- No extra ℓ, b's with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 18 GeV window

3 channels combined

At 5.9σ for 30 fb$^{-1}$ for $m_H = 115$ GeV this looks like a possible new channel for light Higgs discovery. Deserves serious exp. study!
combine HZ and HW, $p_t > 200$ GeV

At 5.9σ for 30 fb$^{-1}$ for $m_H = 115$ GeV this looks like a possible new channel for light Higgs discovery. **Deserves serious exp. study!**