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LHC searches for hadronically-decaying new particles are challenging:

◮ Huge QCD backgrounds

◮ Limited mass resolution (detector & QCD effects)

◮ Complications like combinatorics, e.g. too many jets

◮ Especially true for EW-scale new particles

New strategy emerging in past 2 years: boosted particle searches

◮ Heavy particles reveal themselves as jet substructure

◮ E.g. top/W/H from decay of high mass particle

◮ Or directly Higgs (etc.) production at high pt

This talk

◮ 70% on one major search channel: pp → HV with H → bb̄
Butterworth, Davison, Rubin & GPS ’09

◮ 30% on other applications of these ideas many groups, including

Butterworth, Ellis, Raklev & GPS ’09; Plehn, GPS & Spannowsky ’09
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Intro Higgs production at LHC
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duction channels:
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loop
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Intro Higgs decay

Higgs decay branching ratios
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Intro Higgs mass constraints
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Mass constraints come
from

◮ LEP exclusion

◮ Tevatron exclusion

◮ EW precision fits

Strong preference for low-mass Higgs, one that decays mainly to bb̄
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Intro LHC search propspects

Low-mass Higgs search
(115 . mh . 130 GeV) com-
plex because dominant decay channel,
H → bb, often swamped by back-
grounds.

Various production & decay processes

◮ gg → H → γγ feasible

◮ WW → H → ττ feasible

◮ gg → H → ZZ ∗ → 4ℓ feasible

◮ gg → tt̄H,H → bb̄ v. hard

◮ qq̄ → WH,ZH,H → bb̄ v. hard
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VH, H → bb̄

What does a “very hard” search channel look like?
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VH, H → bb̄ WH/ZH search channel @ LHC

◮ Signal is W → ℓν, H → bb̄. Studied e.g. in ATLAS TDR
◮ Backgrounds include Wbb̄, tt̄ → ℓνbb̄jj , . . .

Difficulties, e.g.

◮ Poor acceptance (∼ 12%)
Easily lose 1 of 4 decay products

◮ pt cuts introduce intrinsic bkgd mass scale;
◮ gg → tt̄ → ℓνbb̄[jj ] has similar scale
◮ small S/B
◮ Need exquisite control of bkgd shape
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Conclusion (ATLAS TDR):

“The extraction of a signal from H → bb̄ decays in
the WH channel will be very difficult at the LHC,
even under the most optimistic assumptions [...]” e,µ

b

ν
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VH, H → bb̄

LHC will (should...) span two orders of magnitude in pt :

mEW

2
←→ 50mEW

That’s why it’s being built

In much of that range, EW-scale particles are light

[a little like b-quarks at the Tevatron]

Can large phase-space be used to our advantage?
[At Tevatron, pt = 0 is not easiest place to look for B-hadrons. . . ]
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VH, H → bb̄ Study subset of WH/ZH with high pt

Take advantage of the fact that
√

s ≫ MH, mt, . . .

W

H

b
b

e,µ ν

Go to high pt :

✓ Higgs and W/Z more likely to be central

✓ high-pt Z → νν̄ becomes visible

✓ Fairly collimated decays: high-pt ℓ±, ν, b
Good detector acceptance

✓ Backgrounds lose cut-induced scale

✓ tt̄ kinematics cannot simulate bkgd
Gain clarity and S/B

✗ Cross section will drop dramatically
By a factor of 20 for ptH > 200 GeV

Will the benefits outweigh this?

And how do we ID high-pt hadronic Higgs decays?
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Boosted object finding Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt

: always resolve two jets R < 0.4

◮ R &
3m

pt

: resolve one jet in 75% of cases (1
8 < z < 7

8) R & 0.6
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Boosted object finding Finding a boosted Higgs?

How do we find a boosted Higgs inside a single jet?
Special case of general (unanswered) question: how do we best do jet-finding?

Various people have looked at boosted objects over the years
◮ Seymour ’93 [heavy Higgs →WW → νℓjets]

◮ Butterworth, Cox & Forshaw ’02 [WW →WW → νℓjets ]

◮ Agashe et al. ’06 [KK excitation of gluon → tt̄]

◮ Butterworth, Ellis & Raklev ’07 [SUSY decay chains →W , H ]

◮ Skiba & Tucker-Smith ’07 [vector quarks]

◮ Lillie, Randall & Wang ’07 [KK excitation of gluon → tt̄]

◮ · · ·

ETC.
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Boosted object finding Boosted ID strategies

q q
Select on the jet mass with one large (cone)
jet Can be subject to large bkgds

[high-pt jets have significant masses]

q q

Choose a small jet size (R) so as to resolve
two jets Easier to reject background

if you actually see substructure

[NB: must manually put in “right” radius]

q q Take a large jet and split it in two
Let jet algorithm establish correct division
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Boosted object finding

To understand what it means to split a jet, let’s

take a detour, and look at how jets are built up
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Boosted object finding Sequential recombination

kt algorithm:

Find smallest of

dij = min(k2
ti , k

2
tj )∆R2

ij/R
2, diB = k2

ti

If dij recombine; if diB , i is a jet
Example clustering with kt algo-
rithm, R = 1.0

φ assumed 0 for all towers
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Boosted object finding Past methods

Use kt jet-algorithm’s hierarchy to
split the jets

Use kt alg.’s distance measure (rel.
trans. mom.) to cut out QCD bkgd:

dkt

ij = min(p2
ti , p

2
tj )∆R2

ij

Y-splitter only partially

correlated with mass
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Boosted object finding 3 QCD principles help guide our analysis

◮ QCD radiation from a boosted Higgs decay is limited by

angular ordering

◮ Higgs decay shares energy symmetrically, QCD
background events with same mass share energy

asymmetrically

◮ QCD radiation from Higgs decay products is point-like,
noise (UE, pileup) is diffuse
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Boosted object finding #1: Our tool

The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2

ij + ∆φ2
ij between all pairs of objects i , j ;

Recombine the closest pair;
Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet
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The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2

ij + ∆φ2
ij between all pairs of objects i , j ;

Recombine the closest pair;
Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet

kt algorithm Cam/Aachen algorithm

Allows you to “dial” the correct R to

keep perturbative radiation, but throw out UE
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Boosted object finding #2: The jet analysis

b

g

b

j

Start with high-pt jet

1. Undo last stage of clustering (≡ reduce R): J → J1, J2

2. If max(m1,m2) . 0.67m, call this a mass drop [else goto 1]
Automatically detects correct R ∼ Rbb to catch angular-ordered radn.

3. Require y12 =
min(p2

t1,p
2
t2)

m2
12

∆R2
12 ≃

min(z1,z2)
max(z1,z2)

> 0.09 [else goto 1]

dimensionless rejection of asymmetric QCD branching

4. Require each subjet to have b-tag [else reject event]
Correlate flavour & momentum structure
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Boosted object finding #3: jet filtering

Rbb

Rbb

mass drop

b

g

b

R

UE

At moderate pt , Rbb is quite large; UE & pileup degrade mass resolution
δM ∼ R4ΛUE

pt

M
[Dasgupta, Magnea & GPS ’07]

Filter the jet

◮ Reconsider region of interest at smaller Rfilt = min(0.3,Rbb̄/2)

◮ Take 3 hardest subjets b, b̄ and leading order gluon radiation
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Boosted object finding #3: jet filtering

Rfilt

filter

Rbb

Rbb

mass drop

b

g

b

R

UE

At moderate pt , Rbb is quite large; UE & pileup degrade mass resolution
δM ∼ R4ΛUE

pt

M
[Dasgupta, Magnea & GPS ’07]

Filter the jet

◮ Reconsider region of interest at smaller Rfilt = min(0.3,Rbb̄/2)

◮ Take 3 hardest subjets b, b̄ and leading order gluon radiation
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, C/A, R=1.2

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Fill it in, → show jets more clearly

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, m = 150 GeV

SIGNAL
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 150 GeV, max(m1,m2)
m

= 0.92 → repeat
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 139 GeV, max(m1,m2)
m

= 0.37 → mass drop
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2

pt1
≃ 0.7→ OK + 2 b-tags (anti-QCD)

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.



Jets, G. Salam, LPTHE (p. 21)

Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3

SIGNAL
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Zbb BACKGROUND
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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Boosted object finding Compare with “standard” algorithms

Check mass spectra in HZ channel, H → bb̄, Z → ℓ+ℓ−

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→HZ, H→b-jets

100% b-tagged

(a) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→Zj(b in event)

b-tagged

(b) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→Zj

no b-tagging

(c) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

Cambridge/Aachen (C/A) with mass-drop and filtering (MD/F) works best
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VH Results The full analysis (scaled to 30 fb−1)

Consider HW and HZ signals: H → bb̄, W → ℓν, Z → ℓ+ℓ− and Z → νν̄,3 channels: ℓ± + /ET ; ℓ+ℓ−; /ET

Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηHiggs−jet | < 2.5

◮ ℓ = e, µ, pt,ℓ > 30 GeV, |ηℓ| < 2.5

◮ No extra ℓ, b’s with |η| < 2.5

Channel-specific cuts:

See next slides

Assumptions

◮ Real/fake b-tag rates: 0.6/0.02 should be fairly safe

◮ S/
√

B from 16 GeV window ATLAS jet-mass resln ∼ half this?

Tools: Herwig 6.510, Jimmy 4.31 (tuned), hadron-level → FastJet 2.3
Backgrounds: VV , Vj , jj , tt̄, single-top, with > 30 fb−1 (except jj)
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VH Results combine HZ and HW, pt > 200 GeV

Leptonic channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.6/0.02

◮ S/
√

B from 16 GeV window

Leptonic channel
Z → µ+µ−, e+e−

◮ 80 < mℓ+ℓ− < 100 GeV

At 4.5σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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VH Results combine HZ and HW, pt > 200 GeV

Missing ET channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.6/0.02

◮ S/
√

B from 16 GeV window

Missing-Et channel
Z → νν̄, W → ν[ℓ]

◮ /ET > 200 GeV

At 4.5σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!



Jets, G. Salam, LPTHE (p. 24)

VH Results combine HZ and HW, pt > 200 GeV

Semi-leptonic channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.6/0.02

◮ S/
√

B from 16 GeV window

Semi-leptonic channel
W → νℓ

◮ /ET > 30 GeV (& consistent W .)

◮ no extra jets |η| < 3, pt > 30

At 4.5σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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VH Results combine HZ and HW, pt > 200 GeV

3 channels combined Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.6/0.02

◮ S/
√

B from 16 GeV window

3 channels combined
Note excellent VZ , Z → bb̄

peak for calibration

NB: qq̄ is mostly tt̄

At 4.5σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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VH Results Rough impact of going to high-pt

How can we be doing so well despite losing factor 20 in X-sct?

Signal Background

Eliminate tt̄, etc. − ×1/3 [very approx.]
pt > 200 GeV ×1/20 ×1/60 [bkgds: Wbb̄,Zbb̄]
improved acceptance ×4 ×4
twice better resolution − ×1/2
add Z → νν̄ ×1.5 ×1.5

total ×0.3 ×0.017

much better S/B; better S/
√

B

[exact numbers depend on analysis details]
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VH Results Impact of b-tagging, Higgs mass
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(b)

Most scenarios above 3σ

For it to be a significant discovery channel requires decent b-tagging,
lowish mass Higgs [and good experimental resolution]

In nearly all cases, suitable for extracting bb̄H, WWH, ZZH couplings
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VH Results

Higgs couplings
Higgs coupling measurements

You only know it’s the SM Higgs if couplings agree with SM expectations.

Detailed study of all observable LHC Higgs production/decay channels
carried out by Lafaye, Plehn, Rauch, Zerwas, Duhrssen ’09

Without VH, H → bb̄

With VH, H → bb̄

Without direct H → bb̄ measurement, errors on couplings increase by ∼ 100%
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VH Results

ATLAS study

Does any of this hold with a real detector?

ATLAS had WW scattering studies with the kt algorithm
that suggested that general techniques were realistic.

But kinematic region was different (pt > 500 GeV).

And Higgs also has b-tagging of subjets, . . .



Jets, G. Salam, LPTHE (p. 29)

VH Results

ATLAS study
ATLAS analysis

As of August 2009: ATLAS have preliminary public analysis of this channel
ATL-PHYS-PUB-2009-088

What changes?

◮ Inclusion of detector simulation mixture of full and validated ATLFAST-II

◮ Study of triggers All OK

◮ New issue: importance of fake b tags from charm quarks

◮ But b-tagging itself reaches 70% eff, 1% fake-rate for light partons

◮ New background: Wt production with t → bW , W → cs, giving bc as a
Higgs candidate.

◮ Larger mass windows, 24− 32 GeV rather than 16 GeV for signal,
reflecting full detector resolution

◮ Various changes in details of cuts

◮ ATLAS numbers shown for mH = 120 GeV (previous plots: mH = 115 GeV)
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VH Results

ATLAS study
ATLAS results

Leptonic channel

What changes compared to
particle-level analysis?

∼ 1.5σ as compared to 2.1σ
Expected given larger

mass window
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VH Results

ATLAS study
ATLAS results

Missing ET channel

What changes compared to
particle-level analysis?

∼ 1.5σ as compared to 3σ
Suffers: some events redistributed

to semi-leptonic channel
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VH Results

ATLAS study
ATLAS results

Semi-leptonic channel

What changes compared to
particle-level analysis?

∼ 3σ as compared to 3σ
Benefits: some events redistributed

from missing ET channel
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VH Results

ATLAS study
ATLAS combined results

Likelihood-based analysis of all three channels together gives signal
significance of

3.7σ for 30 fb−1

To be compared with 4.2σ in hadron-level analysis for mH = 120 GeV

K-factors not included: don’t affect significance (∼ 1.5 for VH, 2− 2.5 for Vbb)

With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8σ)

Comparison to other channels at ATLAS (mH = 120, 30 fb−1):

gg → H → γγ WW → H → ττ gg → H → ZZ ∗

4.2σ 4.9σ 2.6σ

Extracted from 0901.0512



Jets, G. Salam, LPTHE (p. 32)

VH Results

ATLAS study
Prospects?

ATLAS: “Future improvements can be expected in this analysis:”

◮ b-tagging might be calibrated [for this] kinematic region

◮ jet calibration [...] hopefully improving the mass resolution

◮ background can be extracted directly from the data

◮ multivariate techniques

CMS is looking at this channel

◮ Biggest difference wrt ATLAS could be jet mass resolution
But CMS have plenty of good ideas that might

compensate for worse hadronic calorimeter

Combination of different kinematic regions

◮ E.g. in original analysis, pt > 300 GeV (only 1% of VH, but very clear
signal) was almost as good as pt > 300 GeV (5% of VH).

◮ Treating different pt ranges independently may have benefits.
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tt̄

What about other boosted objects?

e.g. Boosted top

[hadronic decays]
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tt̄ X → tt̄ resonances of varying difficulty

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 500 times tt̄
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tt̄

Boosted top
Tagging boosted top-quarks

High-pt top production often envisaged in New Physics processes.
∼ high-pt EW boson, but: top has 3-body decay and is coloured.

7 papers on top tagging in ’08-’09 (at least): jet mass + something extra.

Questions

◮ What efficiency for tagging top?
◮ What rate of fake tags for normal jets?

Rough results for top quark with pt ∼ 1 TeV
“Extra” eff. fake

[from T&W] just jet mass 50% 10%
Brooijmans ’08 3,4 kt subjets, dcut 45% 5%
Thaler & Wang ’08 2,3 kt subjets, zcut + various 40% 5%
Kaplan et al. ’08 3,4 C/A subjets, zcut + θh 40% 1%
Almeida et al. ’08 predict mass distn, use jet-shape – –
Ellis et al. ’09 C/A pruning 10% 0.05%
ATLAS ’09 3,4 kt subjets, dcut MC likelihood 90% 15%
Plehn et al. ’09 C/A mass drops, θh [busy evs, pt ∼ 250] 40% 2.5%
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tt̄

Boosted top
Efficiency v. pt
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tt̄

Boosted top
Efficiency v. pt

without detector segmentation
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ttH

tt̄H

boosted top and Higgs together?

(NB: inclusive ttH deemed unviable in past years by ATLAS & CMS)
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ttH Resurrecting tt̄H?

pp → tt̄H

t → bℓ(/ET )

t → jetjjj (boosted)

H → jetbb̄ (boosted)

Ask for just two boosted particles
in order to maintain some cross-
section

Plehn, GPS & Spannowsky ’09

Main ingredients

◮ one lepton pt > 15 GeV, |y | < 2.5

◮ ≥ 2 C/A (R = 1.5) jets with pT > 200 GeV, |y | < 2.5

◮ Mass-drop based substructure ID for top With filtering to reduce UE

Allow for extraneous subjets since busy environment

require 65 < mW < 95 GeV, 150 < mt < 200 GeV

◮ Similar substructure on procedure on other hard jets: any pair of
b-tagged subjets within the same hard jet is a Higgs candidate

◮ After eliminating constituents from tagged hadronic top and H, require
one extra b-jet (C/A, R=0.6, pt > 40 GeV).
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ttH Signal, backgrounds, tools

ttH: Madgraph + Herwig++ 2.3.1 ; Herwig 6.510

ttbb: Madgraph + Herwig++; Alpgen + Herwig 6.5

ttj(j): Herwig 6.5 tt̄ events (jets from shower)
But we check that its ttbb component is consistent with the ME ttbb simulation

And for final result it’s negligible anyway

Wjj : Madgraph (Wjj) + Herwig++ (for internal structure in j ’s)
turns out to be negligible

ttZ : Madgraph + Herwig++

NLO K-factors: 1.3 for ttH, 2.2 for ttbb; we don’t know what to do for ttj(j)Beenakker et al ’01; Dawson et al ’03

Bredenstein et al ’09; Bevilacqua et al ’09

UE: Herwig++ default; Jimmy 4.31 for Herwig (quite noisy old ATLAS tune)

Particle-level analysis; b-tagging: 0.7/0.01 in subjets (cf ATLAS note),
0.6/0.02 otherwise. Checked 10% fake rate from charm (small effect).

Jet clustering: FastJet 2.4
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ttH ttH subjet analysis

Decomposition of jet into subjets

◮ Break j into j1, j2, mj1 > mj2

◮ If mass drop, i.e. max(mj1,mj2) < 0.9mj (or 0.8), recurse on j1, j2,
otherwise recurse just on j1

◮ Stop when mj < 30 GeV

Top tagging

◮ Look for all pairs of subjets consistent with mW and an additional third
subjet consistent with mt + cut on helicity angle, θh

θh cut as in Kaplan et al ’08

◮ Take solution most consistent with mW and mt

Higgs tagging

◮ Take all pairs of b-tagged subjets

Filtering

◮ Apply to W , top and H mass reconstructions
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ttH Different stages of analysis

Cross sections in fb (including NLO K-factors for signal, tt̄bb̄t t̄bb̄t t̄bb̄ & tt̄Ztt̄Ztt̄Z)

signal tt̄Z tt̄bb̄ tt̄+jets

events after acceptance ℓ+2j cuts 24.9 7.3 229 5200
events with one top tag 10.6 3.1 84.2 1821
events with mjj = 110− 130 GeV 3.0 0.47 15.1 145
corresponding to subjet pairings 3.3 0.50 16.5 151

subjet pairings two subjet b tags 1.0 0.08 2.7 1.7
including a third b tag 0.48 0.03 1.26 0.07
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ttH tt̄H results

S [ fb] B [ fb] S/B S/
√

B (100 fb−1)

mH = 115 GeV 0.57 1.39 1/2.4 4.8
120 GeV 0.48 1.36 1/2.8 4.1
130 GeV 0.29 1.21 1/4.2 2.6

Numbers of events in 20 GeV window centred on Higgs mass, including K -factors

Using 0.7/0.01 for b-tag rate/fake within subjet (cf. ATLAS ’09)

and 0.6/0.02 for b-tag rate/fake in “normal” jet
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ttH tt̄H results

S [ fb] B [ fb] S/B S/
√

B (100 fb−1)

mH = 115 GeV 0.57 1.39 1/2.4 4.8
120 GeV 0.48 1.36 1/2.8 4.1
130 GeV 0.29 1.21 1/4.2 2.6

Numbers of events in 20 GeV window centred on Higgs mass, including K -factors

Using 0.7/0.01 for b-tag rate/fake within subjet (cf. ATLAS ’09)

and 0.6/0.02 for b-tag rate/fake in “normal” jet

Doesn’t recover tt̄H
as a discovery

channel, but promising
for coupling

measurements

Next step: see what

ATLAS & CMS say
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Neutralinos

Boosted new-physics objects?
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Neutralinos R-parity violating SUSY

As a final example, a search for neutralinos in R-parity violating
supersymmetry.

Normal SPS1A type SUSY scenario, except that neutralino is not LSP, but
instead decays, χ̃0

1 → qqq.
Jet combinatorics makes this a tough channel for discovery

◮ Produce pairs of squarks, mq̃ ∼ 500 GeV.

◮ Each squark decays to quark + neutralino,
mχ̃0

1
∼ 100 GeV

◮ Neutralino is somewhat boosted → jet
with substructure

Butterworth, Ellis, Raklev & GPS ’09
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Neutralinos Analytics (back-of-the-enveolope)

Subjet decomposition procedures are not just trial and error.

Mass distribution for undecomposed jet:

1

N

dN

dm
∼ 2Cαs lnRpt/m

m
e−Cαs ln2 Rpt/m+···

Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within
C/A jet that satisfies a symmetry cut (z > zmin):

1

N

dN

dm
∼ C ′αs(m)

m
e−C ′αs lnRpt/m+···

∼ C ′αs(Rpt)

m

[
1 + (2b0 − C ′)

︸ ︷︷ ︸

partial cancellation

αs lnRpt/m +O
(
α2

s ln2
)]

Procedure gives nearly flat distribution in mdN/dm

Neutralino procedure involves 2 hard substructures, but ideas are similar
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Neutralinos RPV SUSY, SPS1a, 1 fb−1
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Out comes the squark!
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Closing

Conclusions
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Closing Conclusions

Higgs discovery

◮ High-pt limit recovers WH and ZH (H → bb̄) channel at LHC
◮ So far, only viable channel that can see H → bb̄ decay
◮ First in-depth experimental study from ATLAS has promising results

Work continues in ATLAS. Also being examined by CMS

◮ Related methods look promising for observation of tt̄H, H → bb̄

New Physics searches

◮ Can be used for ID of high-pt top from decaying multi-TeV resonances
Kaplan et al. 40%/1% eff./fake rate ∼ moderate-pt b-tag performance!

◮ Can be used for ID of EW-scale new particles, e.g. neutralino

General

◮ Boosted EW-scale particles can be found in jets
◮ Cambridge/Aachen alg. is very powerful (flexible, etc.) tool for this

Being used in many different ways

QCD resummation formulae help tell you why certain methods work well
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Extras

EXTRAS
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Extras Jet-alg comparison

Cross section for signal and the Z+jets background in the leptonic Z
channel for 200 < pTZ/GeV < 600 and 110 < mJ/GeV < 125, with
perfect b-tagging; shown for our jet definition (C/A MD-F), and other
standard ones close to their optimal R values.

Jet definition σS/fb σB/fb S/
√

B · fb
C/A, R = 1.2, MD-F 0.57 0.51 0.80
kt , R = 1.0, ycut 0.19 0.74 0.22
SISCone, R = 0.8 0.49 1.33 0.42
anti-kt , R = 0.8 0.22 1.06 0.21
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Extras K -factors

Analysis shown without K factors. What impact do they have?
Determined with MCFM, MC@NLO

◮ Signal: K ∼ 1.6

◮ Vbb backgrounds: K ∼ 2− 2.5

◮ tt̄ backgrounds: K ∼ 2 for total; not checked for high-pt part

Conclusion: S/
√

B should not be severely affected by NLO contributions
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Extras Raise pt cut to 300 GeV (70%/1% b-tagging
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Extras

Boosted top

Boosted top extras
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Extras

Boosted top
Using (coloured!) boosted top-quarks

If you want to use the tagged top (e.g. for tt̄ invariant mass) QCD tells you:

the jet you use to tag a top quark 6= the jet you use to get its pt

t

b
jet for
top−tag

jet for
top p t

Within inner cone ∼ 2mt

pt
(dead cone)

you have the top-quark decay prod-
ucts, but no radiation from top

ideal for reconstructing top mass

Outside dead cone, you have radia-
tion from top quark

essential for top pt

Cacciari, Rojo, GPS & Soyez ’08
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Extras

Boosted top
Impact of using small cone angle

Use small cone
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Figure actually from 0810.1304 (Cacciari, Rojo, GPS & Soyez)

for light qq̄ resonance — but tt̄ will be similar

How you look at your event matters: http://quality.fastjet.fr/

http://quality.fastjet.fr/


Jets, G. Salam, LPTHE (p. 56)

Extras

Neutralinos

Neutralino extras



Jets, G. Salam, LPTHE (p. 57)

Extras

Neutralinos
RPV SUSY: significance v. mass scale

◮ All points use 1 fb−1

◮ as mχ increases, mq̃ goes from
530 GeV to 815 GeV

◮ Same cuts as for main SPS1A
analysis

no particular optimisation
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