Jets in Higgs Analysis

Conveners: Daniele del Re (CMS), Bruce Mellado (ATLAS), Gavin Salam (theory) & Frank Tackmann (theory) CERN, LPTHE/CNRS (Paris) & Princeton University

7th meeting of the LHC Higgs Cross Section WG CERN, 5–6 December 2012 Jets play many roles in Higgs searches:

They may come from Higgs decay $(H \rightarrow b\bar{b})$

They may help distinguish different Higgs-production mechanisms (VBF v. gluon-fusion)

They may help distinguish signal from background, e.g. jet bins in $H \rightarrow WW$ v. $t\bar{t} \rightarrow WWb\bar{b}$

This working group's aims:

Identify where further theory progress needed on jet-related topics. Provide advice and/or prescriptions for uncertainties and central predictions, where possible

12 October:

https://indico.cern.ch/conferenceDisplay.py?confId=211870

- Presentation of experimental needs
- ▶ Analytical theory predictions for $gg \rightarrow H$ in 0-jet, 1-jet & VBF bins

29 November:

https://indico.cern.ch/conferenceDisplay.py?confId=218887

▶ Predictions from latest MC tools for $gg \rightarrow H$ with VBF-type selection

Jet issues in Higgs physics

chaired by Daniele Del Re (Universita e INFN, Roma I (IT)), Gavin Phillip Salam (CERN), Frank Tackmann (DESY), Bruce Mellado Garcia (University of Wisconsin (US))

Friday, October 12, 2012 from 15:00 to 18:00 (Europe/Zurich) at CERN (4-3-006 - TH Conference Room)

Video Services EVO Meeting Fri 12/10 from 14:30 to 19:00 : Phone Bridge ID:5934100. More Info

Friday, October 12, 2012

15:00 - <u>15:15</u>	CMS Report 15'			
	Speaker: Pasquale Musella (CERN)			
	Material: Slides 🔁			
15:25 - 15:40	ATLAS Report 15'			
	Speaker: Elisabetta Pianori (University of Warwick (UK))			
	Material: Slides 📆			
15:50 - 16:05	Theory uncertainties in Higgs+2 jets 15'			
	Speaker: Shireen Gangal			
	Material: Slides 📆			
16:15 - 16:35	Discussion on key questions/needs re Higgs+2jets to the MC subgroup 20'			
16:35 - 16:50	Resummation for jet-veto in Higgs $+ 0$ jets 15'			
	Speaker: Pier Francesco Monni (ITP, UZH Zuerich)			
	Material: Slides 📆			
17:00 - 17:15	Resummation for jet-veto in Higgs + 0 jets 15'			
	Speaker: Thomas Becher (University of Bern)			
	Material: Slides 📆			
17:25 - 17:40	Resummation for jet-veto in Higgs + 1 jet 15'			
	Speaker: Liu Xiaohui			
	Material: Slides 🔁			

Jet issues in Higgs physics

chaired by Daniele Del Re (Universita e INFN, Roma I (IT)), Gavin Phillip Salam (CERN), Frank Tackmann (DESY), Bruce Mellado Garcia (University of Wisconsin (US))

Thursday, 29 November 2012 from 09:00 to 13:00 (Europe/Zurich) at CERN (40-R-D10)

Video Services Vidyo public room : Jet_issues_in_Higgs_physics More Info | Join Now! | Connect 40-R-D10

Thursday, 29 November 2012

09:00 - 09:30	H+njets with HEJ 30'	
	Speaker: Jeppe Rosenkrantz Andersen (IPPP, University of Durham (UK))	
	Material: Slides 📆 💌	
09:30 - 10:00	H+njets with MINLO 30'	
	Speaker: Paolo Nason	
	Material: Slides 🔁	
10:00 - 10:30	H+njets with aMC@NLO 30'	
	Speaker: Stefano Frixione (CERN)	
	Material: Slides 📆	
10:30 - 11:00	H+njets with Sherpa 30'	
	Speaker: Marek Schoenherr (University of Durham)	
	Material: Slides 🂏	

Manage -

Experimental cuts

Cuts for $\mathsf{H}\to\mathsf{WW}$

H→WW	ATLAS	CMS
2 jets	none	two jets $p_T > 30$ GeV and $ \eta < 4.7$ $\Delta n_{jj} > 3.5$, $m_{jj} > 500$ GeV, central- jet veto (CJV) of 30 GeV anti b tagging
1 jet	1 jet with p _T > 25(30) GeV for η < 2.5 (2.5 < η < 4.5) anti b tagging	one jet with p _T > 30 GeV and η < 4.7 anti b tagging
0 jet	no jet with p _T > 25(30) GeV for η < 2.5 (2.5 < η < 4.5)	no jet with $p_T > 30$ GeV and $ \eta < 4.7$ anti b tagging

Cuts for ${\rm H} \to \tau \tau$

Η→ττ	ATLAS		CMS	
2 jet	GeV	VBF : p _{Tjet 2} > 25 GeV, Δη _{jj} > 3, m _{jj} > 400 GeV, anti-b tag	2 jets p _T > 30 GeV and n < 4.7	leptonic : Δη _{ij} > 3.5, m _{ij} > 500 GeV, CJV (30 GeV)
	one jet with pt > 40 GeV	$\label{eq:viscous} \begin{array}{l} \textbf{VH: } 30 GeV < m_{jj} < 160 GeV, \\ p_{Tjet2} > 25 GeV, \ \Delta\eta_{jj} < 2, \ anti-btag \\ (+ \ boosted \ sel \ veto) \end{array}$		hadronic: $\Delta \eta_{ij} > 2.5$, $m_{jj} > 250$ GeV, $p_{TH} > 110$ GeV
1 : - + -		boosted : $p_{Trr} > 100 \text{ GeV}$ (+ VBF sel veto)	leptonic : one jet with $p_T > 30 \text{GeV}$, $ \eta < 4.7$ and anti-b tag	
1 jets		1-jet : veto of the other three, $m_{\tau\tau j}$ > 225 GeV	hadronic : one jet withp _T >30GeV, $ \eta < 4.7$ and anti-b tag + $p_{TH} > 140$ GeV	
0 jet	none			/ith p⊤>30GeV, η <4.7 Ily for normalization purposes

Н→үү	ATLAS	CMS		
2 jets	two jets, p _{Tjet} > 25 GeV, Δη > 2.8, m _{jj} > 400 GeV, Δφ _{2j,2γ} > 2.6	Δη>3, Δφ _{2j,2v} >2.6, Z<2.5 (*)	tight: pt _{jet1,2} > 30GeV, m _{jj} > 500GeV	
			loose: not tight + pt_{jet1} > 30 GeV, pt_{jet2} > 20 GeV, m_{jj} > 250 GeV	
everything else	veto on 2jets + categories based on photon kinematics and properties			

(*) Z = the difference between the average pseudorapidity of the two jets and the pseudorapidity of the diphoton system is required to be less than 2.5

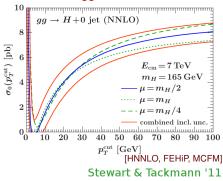
NB: $\Delta \phi_{2j,2\gamma}$ cut acts a bit like a jet veto

Theory for 0-jet bin important for $gg \rightarrow H \rightarrow WW$

- 0-jet requirement suppresses $tar{t}
 ightarrow WWbar{b}$ bkgd by \sim factor 100
- ▶ To extract couplings, must know fraction of $gg \rightarrow H$ that survives veto i.e. has no significant ISR radiation
- ▶ But jet veto scale $\sim 25 30 \text{ GeV} \ll m_H \longrightarrow \text{large logarithms}$

$$1-6rac{lpha_{
m s}}{\pi}\ln^2 M_H/p_{t,veto}+\dots$$

cause problems for fixed-order perturbation theory


What are genuine uncertainties in fixed-order calculations?

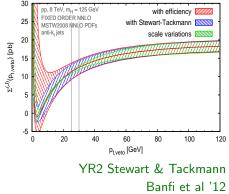
Total cross section series: $\sigma_{tot} \simeq \sigma_{LO}(1 + 10\alpha_s + 36\alpha_s^2 + \cdots)$ Vetoed cross section series: $\sigma_{veto} \simeq \sigma_{LO}(1 + 4\alpha_s + 8\alpha_s^2 + \cdots)$

Better-looking perturbative series gives spuriously low scale uncertainties

Stewart–Tackmann '11: write $\sigma_{veto@NNLO} = \sigma_{tot@NNLO} - \sigma_{1-jet@NLO}$ Treat uncertainties in total and 1-jet as uncorrelated.

New procedure. Worthwhile cross-checking with other procedures.

Higgs + 0 Jets


What are genuine uncertainties in fixed-order calculations?

Total cross section series: $\sigma_{tot} \simeq \sigma_{LO}(1 + 10\alpha_s + 36\alpha_s^2 + \cdots)$ Vetoed cross section series: $\sigma_{veto} \simeq \sigma_{LO}(1 + 4\alpha_s + 8\alpha_s^2 + \cdots)$

Better-looking perturbative series gives spuriously low scale uncertainties

Stewart–Tackmann '11: write $\sigma_{veto@NNLO} = \sigma_{tot@NNLO} - \sigma_{1-jet@NLO}$ Treat uncertainties in total and 1-jet as uncorrelated.

New procedure. Worthwhile cross-checking with other procedures.

Higgs + 0 Jets

Alternative view: two physical effects

- large K-factor in σ_{tot}
- ► Sudakov suppression (veto efficiency = ε = σ_{veto}/σ_{tot})

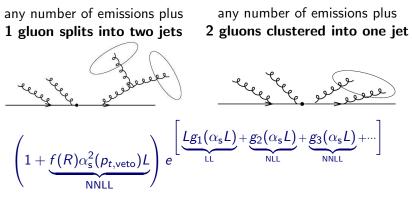
Treat veto efficiency and total crosssection uncertainties as uncorrelated.

Summing logs of $m_H/p_{t,veto}$

Part of issue with jet veto is large logarithms at all orders:

$$\alpha_{\rm s}^n \ln^{2n} \frac{m_H}{p_{t,\rm veto}}$$

NLL resummation is remarkably simple: pure Sudakov form factor (no jets = no radiation)


veto efficiency
$$\epsilon(p_t) = \exp\left[\underbrace{Lg_1(\alpha_s L)}_{LL} + \underbrace{g_2(\alpha_s L)}_{NLL} + \cdots\right] \qquad L \equiv \ln\frac{m_H}{p_t}$$

resummation functions g_1 and $g_2 \equiv$ those inside Fourier Transform of Higgs p_t resumⁿ Banfi, GPS & Zanderighi '12

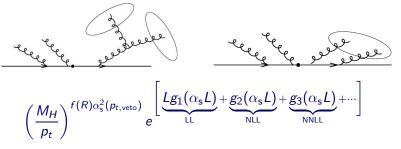
Essentially known since "CAESAR" automated resummation work '03

Resumming jet veto at NNLL

Story is almost the same at NNLL, i.e. pure Sudakov, plus quasi fixed-order correction

4 articles on the subject:

Banfi, GPS & Zanderighi, arXiv:1203.5773; + Monni, arXiv:1206.4998 Becher & Neubert, arXiv:1205.3806


Tackmann, Walsh & Zuberi, arXiv:1206.4312

[Results build on Higgs pt resumⁿ of Bozzi et al '03-, Becher & Neubert '10]

Resumming jet veto at NNLL

Story is almost the same at NNLL, i.e. pure Sudakov, plus quasi fixed-order correction

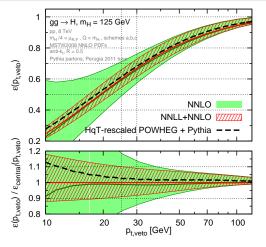
any number of emissions plus 1 gluon splits into two jets any number of emissions plus 2 gluons clustered into one jet

4 articles on the subject:

Banfi, GPS & Zanderighi, arXiv:1203.5773; + Monni, arXiv:1206.4998 Becher & Neubert, arXiv:1205.3806 Tackmann, Walsh & Zuberi, arXiv:1206.4312 [Results build on Higgs p_t resumⁿ of Bozzi et al '03-, Becher & Neubert '10]

Current situation:

The 3 groups agree on the NNLL result

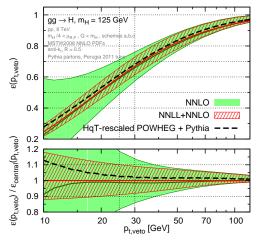

BN argue for an all-orders factorization formula (\simeq recipe beyond NNLL) TWZ argue there are still issues there

One group (BMSZ) has published full NNLL+NNLO numerical predictions. Two groups (BN+Rothen, TWZ+Stewart) have prelim. numerics [BN numerics shown at last meeting differ from NNLL by constant]

Plan for YR3:

Document the degree of agreement between the groups Maybe compare final numerical results

Jet veto efficiency NNLL+NNLO results (BMSZ)


NNLL+NNLO compared to NNLO and POWHEG+Pythia (latter tuned/reweighted to HqT) good agreement!

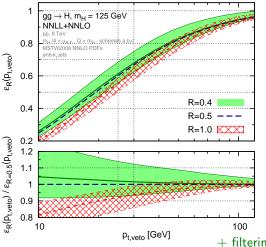
NNLL reduces uncertainties from $\sim 15\% \rightarrow \sim 9\%$

 $\begin{array}{l} \mbox{[0-jet $/ \geq 1$-jet correlations} \\ \mbox{available too]} \end{array}$

public code at http://jetvheto.hepforge.org

Jet veto efficiency NNLL+NNLO results (BMSZ)

NNLL+NNLO compared to NNLO and POWHEG+Pythia (latter tuned/reweighted to HqT) good agreement!


NNLL reduces uncertainties from $\sim 15\% \rightarrow \sim 9\%$

 $\begin{array}{l} \mbox{[0-jet $/ \geq 1$-jet correlations} \\ \mbox{available too]} \end{array}$

public code at http://jetvheto.hepforge.org

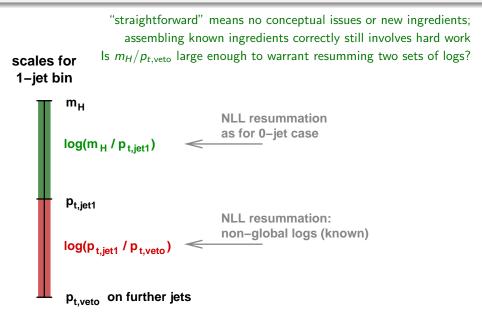
Interim prescription:

- Use these NNLL+NNLO uncertainties in WW 0-jet
- Check central values \simeq your MC

There are all-order terms like $\alpha_s^{n+1} L \ln^n \frac{1}{R}$.

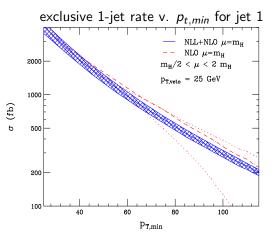
If R is too small these become large.

In practice, choosing $R \sim 1$ reduces uncertainties


Should we resum In R terms? Tackmann, Walsh & Zuberi '12

Should experiments switch to larger R for utmost accuracy? filtering to control UE/pileup dependence

Theory of (exactly) 1-jet bin


[for WW channel; $\tau \tau$ more complex?]

NLL is within straightforward reach for (exclusive) 1-jet bin

Progress on 1-jet bin

Liu & Petriello '12

- "Resum logarithms $\ln Q/p_{t,veto}$ [...] where $Q \sim m_H \sim p_{t,jet}$ "
- ► minimal "NLL_Σ" rather full NLL

 $\begin{aligned} \alpha_{\rm s}^n {\cal L}^{2n} &+ \alpha_{\rm s}^n {\cal L}^{2n-1} \text{ instead of} \\ & \exp(\alpha_{\rm s}^n {\cal L}^{n+1} + \alpha_{\rm s}^n {\cal L}^n) \\ & \text{ no non-global logs} \end{aligned}$

e.g. full NNLL+NNLO $\sim N^4 L L_{\Sigma}$

 A step towards full understanding of 1-jet bin

gluon fusion (ggF) as "background" to VBF 2-jet selection

The Contamination of ggF in VBF (ATLAS)

- Current event selection applies moderate cuts on topological variables. Unlikely that cuts will become much tighter because of loss of signal rate
- □ Typical contamination from ggF+2j is ~30%

Contamination gets reduced to about 25% with CJV

□ Theory error/systematics on ggF+2j large now:

Source	Error (%)
QCD scale uncertainty	25 (30 with cjv)
Underlying event	30
JES	19

Leading total systematic of ~45% on ggF+2j -> 13% on the extraction of VBF signal (leading systematic)

described by Stefano Frixione in his review

The jets group very recently "commissioned" a comparison of them \to understanding the ggF contamination to VBF.

- aMC@NLO with Frederix-Frixione ("FxFx") merging of H+0/1/2-jet NLO+shower samples.
 Interfaced with Herwig 6.5
- Sherpa with their merging of H+0/1-jet NLO+shower samples plus H+(2/)3-jet LO+shower samples
 Interfaced with Sherpa shower
- MINLO/POWHEG: either H+0, H+1 or H+2-jet NLO+shower samples. Interfaced with Pythia 6.4 (p_t-ordered), Perugia 0 tune
- HEJ: high-energy (large-rapidity) approximation for multiple gluon emissions and virtual corrections + exact H+2/3 ME Most of these tools are fresh off the press Comparison studies done in a short amount of time Take following slides as indicative of work in progress rather than final word

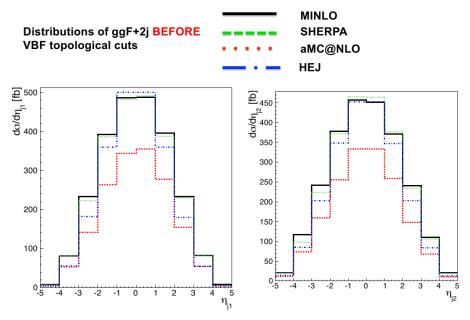
Cuts and histograms for comparison study

Simulation & cuts:

- ▶ 8 TeV pp collisions, Higgs production by gluon fusion
- Jet-finding with anti- k_t , R = 0.4
- \blacktriangleright At least two jets with $|\eta_j| <$ 5, $p_{tj} > 25~{\rm GeV}$
- ► VBF cuts: Δy_{jj} > 2.8, m_{jj} > 400 GeV, tagging jets defined as two highest p_t jets; 3rd jet considered if p_{tj} > 20 GeV.

Histograms:

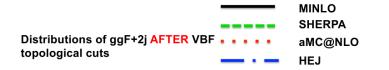
- 1. *p*_{tj1}: 25...200 GeV, 25 GeV steps
- 2. p_{tj2} : 25...150 GeV 25 GeV steps
- 3. y_{j1} : $-5 \dots 5$ in steps of 1
- 4. y_{j2} : $-5 \dots 5$ in steps of 1
- 5. $|\Delta y_{jj}|$: 0...8, in steps of 1

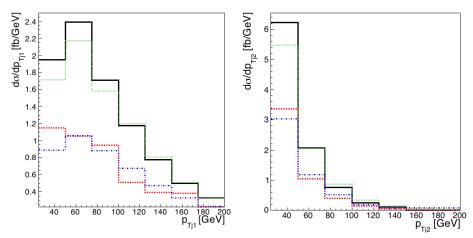

- 6. m_{jj}: 0...800 GeV, 40 GeV steps
- 7. $\Delta \phi_{jj}$: 0... π , 10 bins
- 8. *p*_{tj3}: 20...100, 10 GeV steps
- 9. y_{j3} : -5...5, steps of 1

 $\begin{bmatrix} 10. \quad \Delta \phi_{jj,\gamma\gamma} \end{bmatrix}$

Comparison plots: Sherpa (20 GeV matching); MC@NLO (30 GeV matching); MINLO: Hjj sample; all at parton level, without MPI (UE)

Gavin Salam (CERN)

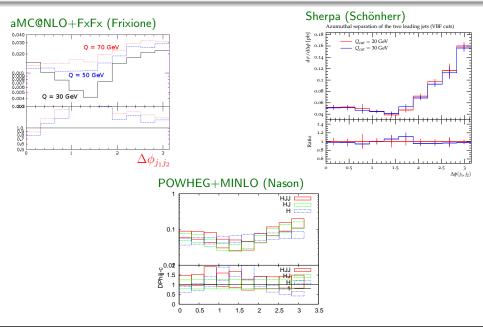

Jets in Higgs Searches



MINLO, Sherpa & HEJ all agree at central jet rapidities; aMC@NLO 25-30% lower

Gavin Salam (CERN)

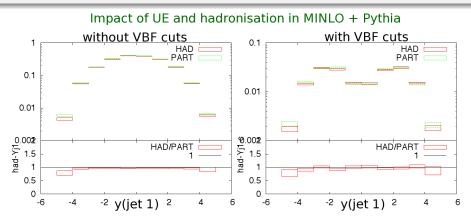
Jets in Higgs Searches



factor 2 difference between aMC@NLO and Sherpa/MINLO, smaller differences between MINLO, Sherpa

recall Sherpa is H+2@LO, aMC@NLO & MINLO are H+2@NLO

Dependence on matching scale or sample choice

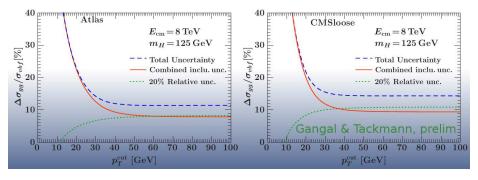


	σ_{tot}	$\sigma_{2\text{-jets}}$	$\sigma_{\rm VBF\ cuts}$
aMC@NLO FxFx ($m_Q = 30$ GeV)	13.9 pb	1.65 pb	0.125 pb
Sherpa ($Q_{cut} = 20 \; GeV$)	15.2 pb	2.38 pb	0.225 pb
MINLO Hjj	17.8 pb	2.39 pb	0.234 pb
HEJ		2.20 pb	0.127 pb

The various differences need understanding

Study needs supplementing with pure NLO H+2 results (e.g. MCFM) Probably worth examining change of shower in aMC@NLO and MINLO

Impact of UE — is it really 30%?


my quick & dirty study: Pythia, scaled to NNLO $\sigma_{ m tot}$, VBF cuts ightarrow UE $\lesssim 10\%$

	partons, no UE	hadrons, no UE	hadrons + UE
Py 6 DW (virt. ord. shower)		0.243 pb	0.259 pb
Py 6 P2011 (p_t ord. shower) Py 8 4C (p_t ord. shower)) 0.300 pb 0.320 pb	0.292 pb 0.310 pb	0.318 pb 0.330 pb

Gavin Salam (CERN)

Does a 3rd-jet veto help disentangle VBF and gluon-fusion?

Normal wisdom says use of a jet veto reduces gluon-fusion "background". But (at least in fixed order), it may increase uncertainty on how much gluon-fusion you have.

Preliminary conclusion shown by Gangal & Tackmann: in fixed-order calculations, a 3rd (central?) jet veto does not help. Consequence of ST procedure: uncertainty never lower than for inclusive selection Related dijet resummations: Forshaw, Seymour & collaborators Some analyses make use of Multi Variate Analyses (MVAs) How do we treat theory uncertainties in those cases?

To help make progress with this kind of question:

Can you identify what the MVA is doing?

E.g. show main kinematic distributions after MVA cuts (e.g. $\Delta \phi_{\gamma\gamma,jj}$), so that it is clear which regions are being affected.

Can MVA be forbidden from going into poorly controlled regions? [Bernlochner, Gangal, Gillberg & Tackmann] Significant theory progress on 0-jet bin; Different groups converging in their understanding Ideally have statement of where we agree in YR3

First developments on the 1-jet bin

Gluon-fusion contamination of VBF is still an open subject, comparisons ongoing

A big thanks to all the participants (and my co-conveners), who have contributed figures, numbers, slides, comments!

EXTRAS

<u>ATLAS</u>

- ▶ 0 jet and 1 jet category based on Jets reconstructed with the anti-k_t algorithm, R = 0.4. Jet p_T > 25(30) GeV for |η| < 2.5 (2.5 < |η| < 4.5).</p>
- ► For 1-jet category, anti-b tagging applied.
- no 2-jet category any more

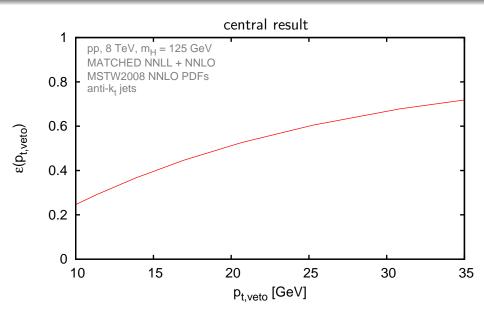
<u>CMS</u>

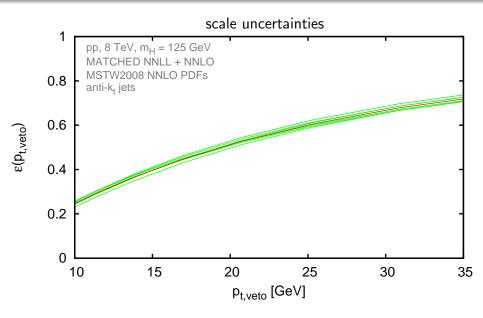
- ▶ Jets reconstructed with the anti- k_T algorithm, R = 0.5. Jet $p_T > 30$ GeV, $|\eta| < 4.7$
- 0-jet and 1-jet according to above
- ▶ 2-jets: $\Delta \eta >$ 3.5, $m_{jj} >$ 500 GeV, central-jet veto (CJV) of 30 GeV

ATLAS — 4 categories: VBF, boosted, VH, 1-jet

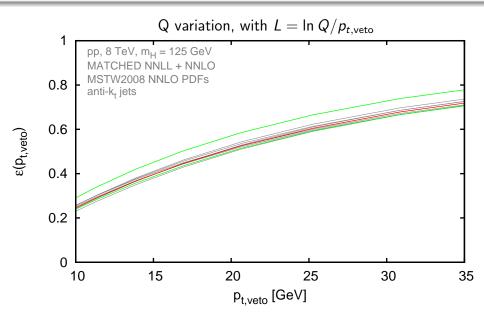
- for all, at least one jet with $p_t > 40 \text{ GeV}$
- 1 VBF: $p_{t,jet\,2} > 25$ GeV, $\Delta \eta_{jj} > 3$, $m_{jj} > 400$ GeV, anti-b tag
- 2 boosted: $p_{T,\tau\tau} > 100 \text{ GeV} (+ \text{ VBF sel veto})$
- 3 VH: 30 GeV $< m_{jj} <$ 160 GeV, $p_{t,jet 2} >$ 25 GeV, $\Delta \eta_{jj} <$ 2, anti-b tag (+ boosted sel veto)
- 4 1-jet: veto of the other three, $m_{ au au j} > 225 \text{ GeV}$

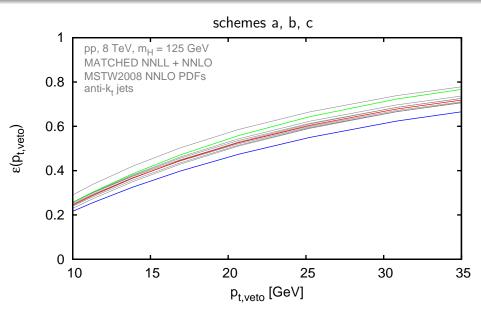
 $\underline{\mathsf{CMS}}$ — jets defined as $p_{\mathcal{T}} >$ 30 GeV, $|\eta| <$ 4.7

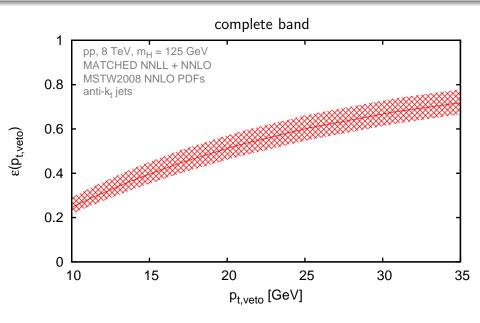

- ▶ leptonic 0 & 1-jet: anti-b tag for 1-jet; 0-jet used just for normalisation
- hadronic 1-jet: as above + p_{TH} > 140 GeV
- ▶ leptonic 2-jet: $\Delta \eta > 3.5$, $m_{jj} > 500$ GeV, CJV (30 GeV)
- ▶ hadronic 2-jet: $\Delta \eta > 2.5$, $m_{jj} > 250$ GeV, $p_{TH} > 110$ GeV


<u>ATLAS</u>

- ► VBF: two jets, $p_{t,jet} > 25 \text{ GeV}$, $\Delta \eta > 2.8$, $m_{jj} > 400 \text{ GeV}$, $\Delta \phi_{2j,2\gamma} > 2.6$ NB: $\Delta \phi_{2j,2\gamma}$ cut a bit like a 3rd jet veto
- CMS 2 categories in 2-jet bin
- ▶ tight: $p_{t,\text{jet }1,2} > 30 \text{ GeV}$, $m_{jj} > 500 \text{ GeV}$, $\Delta \eta > 3$
- ▶ loose: not tight + $p_{t,jet 1} > 30$ GeV, $p_{t,jet 2} > 20$ GeV, $m_{jj} > 250$ GeV, $\Delta \eta > 3$
- For both: Δφ_{2j,2γ} > 2.6, the difference between the average pseudorapidity of the two jets and the pseudorapidity of the diphoton system is required to be less than 2.5


$\frac{[Extras]}{\lfloor Jet-veto reconfigure}$ reconstruction of the second seco


$\frac{[Extras]}{\lfloor Jet-veto reconfigure}$ reconstruction of the second seco

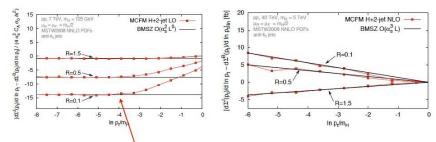

$\frac{[Extras]}{[Jet-veto reconfigure}$ ent uncertainty contributions at NNLO + NNLL

$\frac{[Extras]}{[Jet-veto reconfigure}$ ent uncertainty contributions at NNLO + NNLL

$\frac{[Extras]}{[Jet-veto reconfighted]}$ ent uncertainty contributions at NNLO + NNLL

There are two widely-used definitions of "NLL", "NNLL", etc.: [+ minor variants; no good naming convention]

• "minimal" : $\Sigma = \sum_{n} \underbrace{\alpha_{s}^{n} L^{2n}}_{LL_{\Sigma}} + \underbrace{\alpha_{s}^{n} L^{2n-1}}_{NLL_{\Sigma}} + \underbrace{\alpha_{s}^{n} L^{2n-2}}_{NNLL_{\Sigma}} + \cdots$ for $L \sim 1/\sqrt{\alpha_{s}}$, $N^{p}LL_{\Sigma}$ uncertainty is $\mathcal{O}\left(\alpha_{s}^{(p+1)/2}\right)$ • "full": $\Sigma = \exp\left[\sum_{n} \underbrace{\alpha_{s}^{n} L^{n+1}}_{LL} + \underbrace{\alpha_{s}^{n} L^{n}}_{NLL} + \underbrace{\alpha_{s}^{n} L^{n-1}}_{NNLL} + \cdots\right]$ for $L \sim 1/\alpha_{s}$, $N^{p}LL$ uncertainty is $\mathcal{O}\left(\alpha_{s}^{p}\right)$

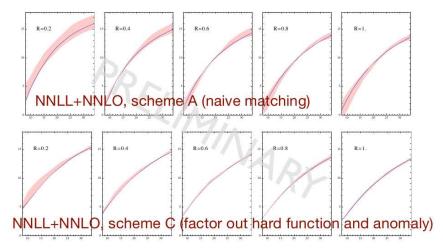

As an example, "full" NNLL (+ NNLO) \sim "minimal" N^4LL_{Σ}

[Extras]

└ [Jet-veto resummations]

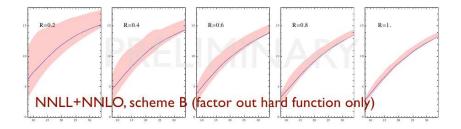
Check against MCFM

[Campbell, Ellis, Williams '10]



• Difference between log distributions in $p_{t,Higgs}$ and $p_{t,veto}$ at order $\mathcal{O}(\alpha_s^2)$ against MCFM's H+2j@LO

$$\Delta\left(\frac{d\Sigma_2(p_t)}{d\ln p_t}\right) \sim \alpha_s^2 L^0$$


• Difference between log-distributions in $p_{t,Higgs}$ and $p_{t,veto}$ at order $\mathcal{O}(\alpha_s^3)$ against MCFM's H+2j@NLO

$$\Delta\left(\frac{d\Sigma_3(p_t)}{d\ln p_t}\right) \sim \alpha_s^3 L^2 + \alpha_s^3 L + \alpha_s^3 L^0$$

- Small scale dependence in A, very small scale uncertainty in scheme C
- Cancellation of scale dependence between resummed result and matching correction.

Becher

- Large scale uncertainty at small *R*, in contrast to the other schemes.
- Given the differences among schemes, it is not straightforward to assign theoretical uncertainty at low *R*

Becher

with VBF cuts:

 $\sigma = .225^{+0.074}_{-0.055} (\mu_{R/F})^{+0.010}_{-0.005} (\mu_Q)^{+0.003}_{-0.009} (Q_{\rm cut})^{+0.000}_{-0.013} ({\rm Nmax}) \pm 0.004 ({\rm stats}) pb$