Higgs and Beyond at Colliders Gavin P. Salam, CERN (→ Oxford)

Rudolf Peierls Symposium Oxford 5 & 6 July, 2018

image: <u>http://www.peterbrett.com/media/3053/pba_website_project_beecroft_banner01_2018.jpg</u>

"big answerable questions" and how we go about answering them

"big unanswered questions" about fundamental particles & their interactions (dark matter, matter-antimatter asymmetry, nature of dark energy, hierarchy of scales...)

V.

SONS 80 Ю В

Higgs boson existence long known to be consistent with older e⁺e⁻ collider data (cf. LEP, 1989–2000 + SLD).

Tested through the small effect of virtual Higgs bosons on high-precision *(per-mil)* measurements.

Could be interpreted as a weak Higgs mass constraint.

hep-ex/0509008

Higgs boson existence long known to be consistent with older e+e- collider data (cf. LEP, 1989-2000 + SLD).

Tested through the small effect of virtual Higgs bosons on high-precision (per-mil) measurements.

> Could be interpreted as a weak Higgs mass constraint.

ATLAS and CMS collaborations at CERN's Large Hadron Collider (LHC):

2012 discovery of a Higgs-like boson

plot shows more recent data

SONS

0

8

Ш

g

Success!

The Standard Model is complete

SONS

0

60

Ю

4

Ū

Success!

The Standard Model is complete

Crisis!

No supersymmetry, no extra dimensions, there's nothing left for us to do . . .

The New York Eines

By DENNIS OVERBYE JUNE 19, 2017

|...| a cloud hanging over the physics community. [...]

What if there is nothing new to discover? That prospect is now

https://www.nytimes.com/2017/06/19/science/cern-large-hadron-collider-higgs-physics.html

what is the Standard Model?

particles

what is the Standard Model?

particles

interactions

Z = - FALFALFAL + iFDY + X: Jij X; \$+h.c. $+ D_{M} / - V(D)$

This equation neatly sums up our current understanding of fundamental particles and forces.

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

L= - FALFALFAL + iFDY + X: Jij X; \$+h.c. + D g (-V(d))

This equation neatly sums up our current understanding of fundamental particles and forces.

STANDARD MODEL — KNOWABLE UNKNOWNS

This is what you get when you buy one of those famous CERN T-shirts

"understanding" = knowledge ? "understanding" = assumption ?

L= -= FALFAN + iFDY + X: Jij X; Ø+h.c. $+ \left| D_{\mathcal{A}} \right|^{2} - V(\mathcal{O})$

e.g. $\psi D\psi \to \psi A_{\mu}\psi \to \text{fermion-fermion-gauge vertex}$ i.e. terms of \mathcal{L} map to particle interactions

NOTATION

 A_{μ} : gauge field ψ : fermion field ϕ : Higgs field $= \phi_0(\text{VEV}) + H(\text{Higgs})$

 $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ etc. $F_{\mu\nu} \sim [D_{\mu}, D_{\nu}]$

ナ Y: Jii Y, Ø +

This equation neatly sums up our current understanding of fundamental particles and forces.

GAUGE PART

e.g. qqγ, qqZ, qqg, evW, ggg, interactions — well established in ep, e⁺e[−], pp collisions, etc. **≡ KNOWLEDGE**

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

 $t \chi: \mathcal{Y}_{ij} \chi_{j} \phi$ $+ |D_{\mathcal{P}}(-V(\mathcal{O}))$

This equation neatly sums up our current understanding of fundamental particles and forces.

GAUGE PART

e.g. qqy, qqZ, qqg, evW, ggg, interactions — well established in ep, e⁺e⁻, pp collisions, etc. \equiv **KNOWLEDGE**

(also being studied at LHC — e.g. jets, DY/Z/W, V+jets, ttbar, etc.)

Many SM studies probe this part. In some respects dates back to 1860's, i.e. Maxwell's equations.

If you test another corner of this (as one should), don't be surprised if it works

This equation neatly sums up our current understanding of fundamental particles and forces.

Higgs sector

until 6 years ago none of these terms had ever been directly observed.

what terms are there in the Higgs sector?

Y: Jii Y

(HWW, HZZ): A gauge interaction, with scalars rather than fermions; much like other gauge interactions; indirectly probed in LEP EW precision tests

(Hbb, Htt, etc.): not a gauge interaction, and unlike anything we had probed before $(m \sim y)$

 $(-\mu^2 \phi^2 + \lambda \phi^4, \text{HHH})$ the keystone of the Higgs mechanism and Standard Model, familiar as QFT toy model, never probed in nature

Gavin Salam

what terms are there in the Higgs sector?

(HWW, HZZ): A gauge interaction, with scalars rather than fermions; much like other gauge interactions; indirectly probed in LEP EW precision tests

(Hbb, Htt, etc.): not a gauge interaction, and unlike anything we had probed before $(m \sim y)$

 $(-\mu^2 \phi^2 + \lambda \phi^4, \text{HHH})$ the keystone of the Higgs mechanism and Standard Model, familiar as QFT toy model, never probed in nature

Gavin Salam

what terms are there in the Higgs sector?

(HWW, HZZ): A gauge interaction, with scalars rather than fermions; much like other gauge interactions; indirectly probed in LEP EW precision tests

(Hbb, Htt, etc.): not a gauge interaction, and unlike anything we had probed before $(m \sim y)$

 $(-\mu^2 \phi^2 + \lambda \phi^4, HHH)$ the keystone of the Higgs mechanism and Standard Model, familiar as QFT toy model, never probed in nature

Gavin Salam

concentrate on Yukawa interaction hypothesis

Yukawa couplings ~ fermion mass

first fundamental interaction that we probe at the quantum level where interaction strength is not quantised (i.e. no underlying unit of charge across particles)

Why do Yukawa couplings matter? (1) Because, within SM conjecture, they're what give masses to all quarks

Up quarks (mass ~ 2.2 MeV) are lighter than down quarks (mass ~ 4.7 MeV)

proton **neutron** (up+down+down): 2.2 + **4.7** + 4.7 + ... = **939.6** MeV

> So protons are **lighter** than neutrons, \rightarrow protons are stable.

Which gives us the hydrogen atom, & chemistry and biology as we know it

(up+up+down): 2.2 + 2.2 + 4.7 + ... = 938.3 MeV

proton mass = 938.3 MeV

neutron mass = 939.6 MeVC

Why do Yukawa couplings matter? (2) Because, within SM conjecture, they're what give masses to all leptons

Bohr radius

electron mass determines size of all atoms

it sets energy levels of all chemical reactions

Gavin Salam

1st generation (us) has low mass because of weak interactions with Higgs field (and so with Higgs bosons): too weak to test today

1st generation (us) has low mass because of weak interactions with Higgs field (and so with Higgs bosons): too weak to test today 3rd generation (us) has high mass because of strong interactions with Higgs field (and so with Higgs bosons): can potentially be tested

Copyright CERN

ALICE

LHC 7 TeV + 7 TeV 27 km

 \sim

Copyright CERN

ALICE

LHC 7 TeV + 7 TeV 27 km

 \sim

ATLAS & CMS **@LHC**

~up to 2 billion collisions/second

(+ lower rates at LHCb and ALICE)

what underlying processes tell us about Yukawa interactions?

Higgs production: the dominant channel

Expected to happen once for every ~2 billion inelastic proton-proton collisions

LHC data consistent with that already at discovery in 2012

Higgs production: the dominant channel

Expected to happen once for every \sim 2 billion inelastic proton-proton collisions

LHC data consistent with that already at discovery in 2012

Higgs production: the ttH channel Higgs out If SM top-Yukawa hypothesis is correct, expect 1 Higgs for every 1600 top-quark pairs.

(rather than 1 Higgs for every 2 billion pp collisions)

events with top-quarks & Higgs simultaneously

ATLAS > 5-sigma ttH

events with top-quarks & Higgs simultaneously

ATLAS > 5-sigma ttH

Yukawa coupling:

1 in every 16 Higgs bosons \sim decays to $\tau^+\tau^-$

26

observation of $H \rightarrow \tau \tau$

a year ago: CMS >5-sigma H $\rightarrow \tau \tau$

35.9 fb⁻¹ (13 TeV)

a few weeks ago: ATLAS >5-sigma H $\rightarrow \tau \tau$

35.9 fb⁻¹ (13 TeV)

 $m_{\tau\tau}^{MMC}$ [GeV]

. . .

27

The $>5\sigma$ observations of ttH and H $\rightarrow \tau\tau$, independently by ATLAS and CMS, firmly establish the existence of a new kind of fundamental interaction, Yukawa interactions.

Yukawa interactions are important not merely because they had never before been directly observed, but also because they are hypothesized to be responsible for the stability of hydrogen, and for determining the size of atoms and the energy scales of chemical reactions.

The $>5\sigma$ observations of ttH and H $\rightarrow \tau\tau$, independently by ATLAS and CMS, firmly establish the existence of a new kind of fundamental interaction, Yukawa interactions.

Yukawa interactions are important not merely because they had never before been directly observed, but also because they are hypothesized to be responsible for the stability of hydrogen, and for determining the size of atoms and the energy scales of chemical reactions.

Is this any less important than the discovery of the Higgs boson itself? My opinion: no, because fundamental interactions are as important as fundamental particles

EFT approach

Well-defined theoretical approach Assumes New Physics states are heavy Write Effective Lagrangian with only light (SM) particles BSM effects can be incorporated as a momentum expansion

BSM effects SM particles

29

today: indirect + direct evidence SM value can be directly observed within next year or two

today: indirect + direct evidence SM value can be directly observed within next year or two

today: no evidence yet (1 in 4570 decays)

observable at the LHC within about 10 years.

D

NEW ANALAS AND PARAMINA IN A CAR A PARA

overall normalisation (related to Higgs width)

today: indirect + direct evidence SM value can be directly observed within next year or two

today: no evidence yet (1 in 4570 decays)

observable at the LHC within about 10 years.

2nd & 1st generation Yukawas

- the hierarchy of masses between generations remains a mystery (even if it's one that some people consign to the "hopeless" category)
- > Does not necessarily come from hierarchy of dimensionless Yukawa coefficients
- ► E.g. the Giudice-Lebedev mechanism (and follow-up work)

$$-\mathcal{L}_Y = Y_{ij}(\phi)\bar{\psi}_i\psi_j\phi + \text{h.c.}$$

- \blacktriangleright smallness of certain masses is consequence of vev²/M² suppression, not small c_{ij} \blacktriangleright measured Hqq interaction larger by factor (2n_{ii} + 1)
- ► cf. also various more recent discussions, e.g. by Bauer, Carena, Carmona

$$Y_{ij}(\phi) = c_{ij} \left(\frac{\phi^{\dagger}\phi}{M^2}\right)^{n_{ij}}$$

1801.00363

31

$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$

> probably needs a bigger collider

keystone of standard model

> so far φ^4 only ever seen in textbooks!

can be tested through triple-Higgs interaction

for much of Higgs sector, we know what to do to get answers. What about other "big" questions

Nature of dark m Fine-tuning (e.g. sup Matter-antimatter as

- Nature of dark matter (& dark energy)
- Fine-tuning (e.g. supersymmetry and similar)
- Matter-antimatter asymmetry of the universe
 - [...]

Finding dark matter and studying it will be the biggest challenge for the Large Hadron Collider's second run

https://www.pbs.org/newshour/science/largehadron-collider-gears-find-dark-matter-newparticles-second-run

-a large LHC experiment's spokesperson [2015]

Looking beyond the SM: searches for dark matter at LHC & elsewhere

Classic dark-matter candidate: a weaklyinteracting massive particle (WIMP, e.g. from supersymmetry).

Masses ~ GeV upwards

(search interpretations strongly model dependent)

LHC searches only a subset of dark matter phase-space

ATLAS SUSY Searches* - 95% CL Lower Limits

A	TLAS SUSY Seal	rches*	- 95%	6 C	L Lov	ver Limits			ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fh	Mass limit	$\sqrt{s}=7,8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$\begin{array}{l} \ddot{q} \ddot{q}, \ \ddot{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q} \ddot{q}, \ \ddot{q} \rightarrow q \tilde{\chi}_{1}^{0} \ (\text{compressed}) \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q \bar{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q \bar{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g} \ddot{g}, \ \ddot{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \ \text{NLSP}) \\ \text{GGM} \ (\text{bino} \ \text{NLSP}) \\ \text{GGM} \ (\text{higgsino-bino} \ \text{NLSP}) \\ \text{Gravitino} \ \text{LSP} \end{array}$	0 mono-jet 0 <i>ee</i> , μμ 3 <i>e</i> , μ 0 1-2 τ + 0-1 <i>č</i> 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2 jets 4 jets 7-11 jets - 2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 36.1 36.1 36.1 20.3	<i>q</i>	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 TeV 2.05 TeV	$\begin{split} &m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV}, m(1^{st} \mathrm{gen}, \tilde{\mathfrak{q}}) = m(2^{nd} \mathrm{gen}, \tilde{\mathfrak{q}}) \\ &m(\tilde{\mathfrak{q}}) - m(\tilde{\mathfrak{k}}_{1}^{0}) < 5 \mathrm{GeV} \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) < 200 \mathrm{GeV}, \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) < 200 \mathrm{GeV}, m(\tilde{\mathfrak{k}}^{+}) = 0.5 (m(\tilde{\mathfrak{k}}_{1}^{0}) + m(\tilde{g})) \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) < 300 \mathrm{GeV}, \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) = 0 \mathrm{GeV} \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) = 0 \mathrm{GeV} \\ &m(\tilde{\mathfrak{k}}_{1}^{0}) = 400 \mathrm{GeV} \\ \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080 1502.01518
d gen.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0 0 -1 <i>c</i> .μ	3b 3h	Yes Yes	36. 1 36.1	Ĩ K	1.92 TeV 1.97 TeV	m(𝔅 ⁰ ₁)<600 GeV m(𝔅 ⁰ ₁)<200 GeV	1711.01901 1711.01901
3rd gen. squarks 3 direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to t\tilde{\chi}_{1}^{\pm} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \to b\tilde{\chi}_{1}^{\pm} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \to b\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{2} \to \tilde{i}_{1} + Z \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \to \tilde{i}_{1} + h \end{split}$	0 2 e, μ (SS) 0-2 e, μ 0-2 e, μ (0 2 e, μ (Z) 3 e, μ (Z) 1-2 e, μ	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1			$\begin{split} & m(\tilde{x}_{1}^{0}) < 420 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) < 200 \mathrm{GeV}, m(\tilde{x}_{1}^{*}) = m(\tilde{x}_{1}^{0}) + 100 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) < 200 \mathrm{GeV}, m(\tilde{x}_{1}^{0}) = m(\tilde{x}_{1}^{0}) + 100 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) > 150 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) = 0 \mathrm{GeV} \\ & m(\tilde{x}_{1}^{0}) = 0 \mathrm{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$\begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \end{split}$	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ e,μ,γ 4 e,μ γĞ 1 e,μ + γ γĞ 2 γ	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	\tilde{t} 90-500 GeV $\tilde{\chi}_1^{\pm}$ 750 GeV $\tilde{\chi}_1^{\pm}$ 760 GeV $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{0}$ 1.13 Te $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{0}$ 580 GeV $\tilde{\chi}_{1,1}^{\pm}, \tilde{\chi}_2^{0}$ 635 GeV $\tilde{\chi}_{2,3}^{0}$ 635 GeV \tilde{W} 115-370 GeV \tilde{W} 1.06 TeV	\mathbf{W} m $(ilde{\mathcal{X}}_1^\pm)=$ n $(ilde{\mathcal{X}}_2^0)=$ n	$\begin{split} & m(\tilde{\chi}_{1}^{0}) \!=\! 0 \\ & m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0}))) \\ & m(\tilde{\chi}_{1}^{\pm}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{1}^{\pm}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{2}^{0}) \!+\! m(\tilde{\chi}_{1}^{0}))) \\ & c\tau \!<\! 1 mm \\ c\tau \!<\! 1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Direct $\tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 32.8 19.1 20.3 20.3		1.58 TeV 1.57 TeV 2.37	$\begin{split} & m(\tilde{\chi}_{1}^{\pm}) \cdot m(\tilde{\chi}_{1}^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \; ns \\ & m(\tilde{\chi}_{1}^{\pm}) \cdot m(\tilde{\chi}_{1}^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_{1}^{\pm}) < 15 \; ns \\ & m(\tilde{\chi}_{1}^{0}) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{\chi}_{1}^{0}) = 100 \; GeV, \; \tau > 10 \; ns \\ & TeV \tau(\tilde{g}) = 0.17 \; ns, \; m(\tilde{\chi}_{1}^{0}) = 100 \; GeV \\ & 10 < lan\beta < 50 \\ & 1 < \tau(\tilde{\chi}_{1}^{0}) < 3 \; ns, \; SPS8 \; model \\ & 7 < cr(\tilde{\chi}_{1}^{0}) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
ВРV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu, \mu\mu\nu$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\nu_{e}, e\tau\nu_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu,e\tau,\mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 <i>b</i> - -5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes ts- b- b- -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	\tilde{v}_{τ} \tilde{q} . \tilde{g} \tilde{q} . \tilde{g} 1.14 Te $\tilde{\chi}_{1}^{4}$ 450 GeV \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} 100-470 GeV 480-610 GeV \tilde{i}_{1} 100-470 GeV 480-610 GeV \tilde{i}_{1} 0.4-	1.9 TeV 1.45 TeV eV 1.875 TeV 2.1 TeV 1.65 TeV	$\begin{split} \lambda'_{311} = &0.11, \ \lambda_{132/133/233} = &0.07 \\ m(\tilde{q}) = &m(\tilde{g}), \ c\tau_{LSP} < 1 \ mm \\ m(\tilde{\chi}_1^0) > &400 \text{GeV}, \ \lambda_{12k} \neq 0 \ (k = 1, 2) \\ m(\tilde{\chi}_1^0) > &0.2 \times m(\tilde{\chi}_1^{\pm}), \ \lambda_{133} \neq 0 \\ m(\tilde{\chi}_1^0) = &1075 \ \text{GeV} \\ m(\tilde{\chi}_1^0) = &1 \ \text{TeV}, \ \lambda_{112} \neq 0 \\ m(\tilde{\ell}_1) = &1 \ \text{TeV}, \ \lambda_{323} \neq 0 \\ \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	õ 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
Only	a selection of the available mas	ss limits on i	new states	s or	1	0 ⁻¹ 1	I	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10⁻¹

Mass scale [TeV]

CMS Preliminary

8 TeV 13 TeV

flavour anomalies

the current place where there are hints of something happening

charged current

$$R(D^*) \equiv rac{\mathcal{B}(B^0
ightarrow D^{*-} au^+
u_ au)}{\mathcal{B}(B^0
ightarrow D^{*-} \mu^+
u_\mu)}$$

$R(D^*)$ and R(D) combination Combine LHCb's $R(D^*)$ results with results from B factories:

 $\Rightarrow R(D^*)$ and R(D) average $\sim 4 \sigma$ from SM (latest SM computation: JHEP 11 (2017) 061)

Humair @ LHCP'18

neutral current

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

R(K) and $R(K^*)$ results

All LHCb results below SM expectations:

► B factories have less precise but compatible results.

40

flavor	generic	minim	
$R_{K^{(*)}}$ tree	30 TeV	6 Te	
$R_{K^{(*)}}$ loop	few TeV	0.5 Te	
$R_{D^{(*)}}$ tree	\sim a TeV	0.3 Te	

lower deviation in $R_{D^{(*)}}$, in particular $R_D *$ more "natural".

- In general the main observable generating tensions is $R(D^{(*)})$, with EW precision tests and B_s -mixing.
- Still work has to be done to find a completely satisfying NP model for the B-anomalies.

nal εV eV

Linking the anomalies is intriuging however not straightforward,

Marzocca @ **LHCP '18**

how is all of this made quantitative?

UNDERLYING THEORY

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{N} \mathcal{V} \end{aligned}$ + $\chi_i \mathcal{Y}_{ij} \chi_j \phi + h.c.$ + Drg/2

EXPERIMENTAL DATA

how do you make quantitative connection?

UNDERLYING THEORY

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \mathcal{F} \end{aligned}$ + $\chi_i \mathcal{Y}_{ij} \chi_j \phi + h.c$ + |D, g|²-1

through a chain of experimental and theoretical links

[in particular Quantum Chromodynamics (QCD)]

EXPERIMENTAL DATA

how do you make quantitative connection?

What are the links? ATLAS and CMS (big LHC expts.) have written 850 articles since 2014 links = papers they cite

Pileup subtraction

Herwig 6 MC

NNLO ttbar

PDF4LHC (2011)

Muddress Pors

Cl(s) technique

MNDDF30 PDFS

Likelihood tests for hem physics

Sherba 1.1

Madgraph 5

to0++

Fastuer Manual

quantum chromodynamics (QCD) theory papers

experimental & statistics papers

Perugia tunes (2010)

knowing what goes into a collision i.e. proton structure [rich Oxford involvement]

1 proton-proton collision

~ 286 ± 5

gluon-gluon collision around the Higgs mass

Her

Diller

ANN

Herwigt MC

Perugia tunes (2010)

PDFS

IQ dNN

predicting full particle structure that comes out of a collision

organising event information ("jets") [Cacciari, GPS & Soyez, 2007–12]

organising event information ("jets") [Cacciari, GPS & Soyez, 2007–12]

heavy-ion collisions the highest-temperature plasmas in the laboratory

Flörchinger @ LHCP'18: "Little bangs in the laboratory"

Pb+Pb E_{cm}=5.5 TeV

H. Weber / UrQMD Frankfurt/M

t= 15.20 fm/c

Hot (5 \times 10¹²K), dense system, which evolves on timescales $\sim 0.3 - 10 \, fm/c$ $\sim 1 - 30 \times 10^{-24} \, s$

Pb+Pb E_{cm}=5.5 TeV

H. Weber / UrQMD Frankfurt/M

t= 15.20 fm/c

Hot (5 \times 10¹²K), dense system, which evolves on timescales $\sim 0.3 - 10 \, fm/c$ $\sim 1 - 30 \times 10^{-24} \, s$

a key probe of the medium: jet quenching

As a parton goes through the quark-gluon plasma, it loses energy. Amount (and pattern) of energy loss tells you about the medium.

Interpretation of existing data is still an open topic.

51

magnitude of effects? Look at jet recoiling against a Z boson

Jet loses 10-20% of its energy through interactions with the medium

jet

putting together heavy-ion physics and particle physics? heavy Standard Model particles as time-delayed probes

Hot ($\sim 5 \times 10^{12}K$), dense system, on timescales ~ $0.3 - 10 \, \text{fm/c} \sim 1 - 30 \times 10^{-24} \, \text{s}$

Apolonario, Milhano, GPS & Salgado,

putting together heavy-ion physics and particle physics? heavy Standard Model particles as time-delayed probes

Hot ($\sim 5 \times 10^{12}K$), dense system, on timescales ~ $0.3 - 10 \, \text{fm/c} \sim 1 - 30 \times 10^{-24} \, \text{s}$

Apolonario, Milhano, GPS & Salgado,

putting together heavy-ion physics and particle physics? heavy Standard Model particles as time-delayed probes

Hot (~ $5 \times 10^{12}K$), dense system, on timescales ~ $0.3 - 10 \, \text{fm/c} \sim 1 - 30 \times 10^{-24} \, \text{s}$ Apolonario, Milhano, GPS & Salgado,

The Higgs boson decays quickly into other particles that are measured in the detector.

top quark lifetime: ~0.25 fm/c W boson lifetime: ~0.1 fm/c Higgs boson lifetime: ~50 fm/c

Concentrate on top quarks: easy to detect, even with hadronic decay products

top-quark decay products start interacting with the medium after a **delay** delay can be tuned by selecting top-quark momentum (Lorentz dilation)

examine reconstructed mass of top \rightarrow W \rightarrow jets

W in vacuum ("unquenched")

W decay products travel through full quark-gluon plasma ("quenched")

reconstructed W mass [GeV]

top-quark momentum [GeV]

W in vacuum ("unquenched")

different characteristic medium lifetimes

 $\tau_{m} = 1.0 \text{ fm/c}$ $\tau_m = 5 \text{ fm/c}$ $\tau_m = 10 \text{ fm/c}$ $\tau_{m} = 2.5 \text{ fm/c}$

W decay products travel through full quark-gluon plasma ("quenched")

85	
	Offers access to new d
80	hottest matter produce
75	Ultimate sensitivities i ion collisions, or highe
70	Other groups examining
	a probe
65	(Berger, Gao, Jueid, Zh

top-quark momentum [yev]

W in vacuum ("unquenched")

- imension, time, in study of ed on earth.
- need large numbers of heavyer collider energies.
- ng potential of using Higgs as

ang 1804.06858, d'Enterria et al)

quark-gluon plasma (quenched)

conclusions

I personally expect supersymmetry to be discovered at the LHC

http://cerncourier.com/cws/article/cern/35456

-a Nobel prize-winning theorist [2008]

The New York Times

pinion

GRAY MATTER

A Crisis at the Edge of Physics

By Adam Frank and Marcelo Gleiser

June 5, 2015

dead end. It offers no path forward [...]"

"the standard model, despite the glory of its vindication, is also a

The New York Times

pinion

GRAY MATTER

A Crisis at the Edge of Physics

By Adam Frank and Marcelo Gleiser

June 5, 2015

"the standard model, despite the glory of its vindication, is also a dead end. It offers no path forward [...]"

I disagree. **Because the non**gauge part of the standard model is far from being fully explored.

2 Yukawas out of 9 We know nothing about the self coupling

it would be so much more exciting if we'd discovered new physics, right?

Beyond the Standard Model IV

John F Gunion Tao Han James Ohnemus

World Scientific

Back in 1995:

PLAN AND ADDRESS OF A ______

1. The Desert. A fun aspect of supersymmetry is that it allows us to obtain exact results about strongly interacting gauge theories. However in the MSSM we have nothing but boring perturbative physics to explore below the Planck scale and the interesting dynamics of supersymmetry breaking is hidden.

not everyone would agree

one musn't underestimate our ignorance about the Higgs sector nor the value of exploring and establishing it

e.g. accessing the triple-Higgs coupling, to establish to the Higgs-field potential, keystone of SM

62

meanwhile, the search for new physics continues

And finding other things to do with the particles we have

with much scope for inventing ingenious search techniques, identifying novel models that could be probed

BACKUP

some theorists

it's interesting if it's what everyone is thinking about right

now

both have a point (don't let one side dampen the other side's interest)

experimenter

it's interesting if it's never been measured before

I think Nature is smarter than physicists. We should have the courage to say: "Let Nature tell us what is going on."

http://cerncourier.com/cws/article/cern/35456

-Carlo Rubbia [2008]

EFT (expressive formulation of constraints) or not?

- If you've observed a given channel, and to EFT
- if you've not observed it, e.g. charm Yu more debatable

BSM effects

establish then use (lack of) any deviations to SM first (constrain) characterise new physics

> If you've observed a given channel, and it agrees roughly $(\pm 30\%)$ with SM, then go

► if you've not observed it, e.g. charm Yukawa, Higgs self coupling, then use of EFT is

SM particles

impact of recent ttH observation Current limits using LHC measurements

boson.

Figure 11.5: Feynman diagrams contributing to Higgs boson pair production through (a) a top- and b-quark loop and (b) through the self couplings of the Higgs

M [GeV]

- Suppose we had a choice between ► HL-LHC (14 TeV, 3ab⁻¹)
 - or going to higher c.o.m. energy but limited to 80fb⁻¹.
- How much energy would we need to equal the HL-LHC?

today's reach (13 TeV, 80fb ⁻¹)	HL-LHC reach (14 TeV 3ab ⁻¹)	energy neede for same read with 80fb ⁻¹
4.7 TeV SSM Z'	6.7 TeV	20 TeV
2 TeV weakly coupled Z'	3.7 TeV	37 TeV

estimated with <u>http://collider-reach.cern.ch</u>, Weiler & GPS

don't underestimate the value of luminosity

- Suppose we had a choice between ► HL-LHC (14 TeV, 3ab⁻¹)
 - or going to higher c.o.m. energy but limited to 80fb⁻¹.
- How much energy would we need to equal the HL-LHC?

today's reach (13 TeV, 80fb ⁻¹)	HL-LHC reach (14 TeV 3ab ⁻¹)	energy neede for same read with 80fb ⁻¹
4.7 TeV SSM Z'	6.7 TeV	20 TeV
2 TeV weakly coupled Z'	3.7 TeV	37 TeV
680 GeV chargino	~1.4 TeV	54 TeV

