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Tops: huge range of physics topics
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A rich environment: CMS 1803.08856 ( +jets) has 270 plots!tt̄ → ℓ
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https://arxiv.org/abs/1803-08856
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A rich environment: ATLAS 1908.07305 ( +jets) has 368 plots!tt̄ → ℓ
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https://arxiv.org/abs/1908.07305
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LHC is probing large transverse momenta: 15% stat. precision at 800-900 GeV 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2016-09/ http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-013/index.html
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Much more to come at HL-LHC
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Fig. 68: Cumulative differential distributions for HL-LHC at 14 TeV.

6 Top quark physics
Precision measurements of top quark properties present an important test of the SM. As the heaviest
particle in the SM, the top quark plays an important role for the electroweak symmetry breaking and
becomes a sensitive probe for physics beyond the SM.

6.1 Top quark cross section
6.1.1 The tt̄ production cross section: theoretical results31

This sub-section provides a quick reference for the kinematic reach of the main tt̄ differential distribu-
tions for both HL and HE-LHC. Figures 68 and 69 are given in terms of expected events for the proposed
ultimate luminosities for both colliders: 3 ab�1 for the HL-LHC running at 14 TeV and 15 ab�1 for the
27 TeV HE-LHC. The results are presented as plots of cumulative differential distributions and should
be interpreted as follows: the histograms show the numbers of expected events (for the luminosities
given above) above a given cut in any one of the four kinematic variables: mtt̄, pT,avt, yavt and ytt̄. Note
that the cut corresponds to the left edge of a bin. The predictions are based on the CT14 parton distri-
butions [199] with value of the top quark mass mt = 173.3 GeV which is close to the current world
average. The calculation is based on Ref. [583] and uses the dynamical scales of Ref. [213].

Figure 68 presents predictions for the four cumulative distributions specified above in the case
of the tt̄ production at the HL-LHC (14 TeV), computed in NNLO QCD. In conclusion the HL-LHC
allows detailed studies of top quark pair production with mtt̄ of up to about 7 TeV. Events with even
larger values of mtt̄ are kinematically accessible and one expects about 10 events with mtt̄ > 7 TeV.
Therefore, the region mtt̄ > 7 TeV provides a low SM background for, for example, searches for decays
of BSM heavy particles to tt̄ pairs. A detailed understanding of the SM background - at the level of one
expected event - will require a dedicated future effort due to the significant MC error in that region.

31Contributed by M. Czakon, A. Mitov, and A. Papanastasiou.
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~ 100,000 events with pt,top > 1 TeV
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This talk

1. Remind ourselves of what energetic top-pair production looks like at leading order 
(many results are trivial, but useful to keep in mind) 

2. Examine what changes at NLO  

3. Implications for LHC cross sections 

4. Where is this knowledge useful?  

5. Outlook 

Overall aim 
provide a scaffolding for thinking about energetic top-pair production
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1. Basics @ LO
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What do we mean by “energetic”? Many variables can be used to measure event hardness
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
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top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –
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LO distributions @ large pT
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them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.
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They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations
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The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –

identical 
@ LO

that we report below, it will be convenient to have the shorthand pT,t for the transverse

momentum of either of the top quarks.

The next set of observables provides measures of the hard scale of the event that at LO

include the top-quark mass and transverse momentum. The Htt̄
T variable is identical to the

HT of Czakon, Heymes and Mitov [23] and of Catani et al. [24]. The H
tt̄+jets
T observable

provides a democratic evaluation of the event hardness across all objects. At high scales is

very similar to the me↵ variable used in supersymmetry searches, which is the scalar sum

of the transverse momenta of all jets, leptons and missing momenta, see e.g. Ref. [25].2

The m
J,avg
T quantity is based on large-R jets, with the details of the jet finding discussed

in more detail below. It is not part of the standard set of tt̄ event-hardness measures,

but we include it here because it gives a faithful reflection of the hardness of the main

2 ! 2 scattering in the event, regardless of the precise role played by the top quarks in

that scattering.

At leading order, in the limit where pT,t grows much larger than the top-quark mass

(mtop), all three observables in this group become identical to the pT,t type observables of

the first group. Structurally, for pT,t � mtop but still significantly smaller than the collider

centre-of-mass energy
p
s, the LO cross section is given by

d�

dp
2
T,t

=
↵
2
s⇡

4p4T,t

⇥
cggLgg(4p

2
T,t/s) + cqq̄Lqq̄(4p

2
T,t/s)

⇤
(2.2)

Here the cgg and cqq̄ are numerical constants, of the order of 0.1, which depend on how

steeply the PDFs fall with increasing x. They are discussed in Appendix A.2, together with

our specific definition the partonic luminosities Lgg and Lqq̄. Since this is a LO calculation,

for simplicity we have left out explicit renormalisation and factorisation scale dependence.

The next observable in Table 1 is the invariant mass of the tt̄ system. For mtt̄ � mtop,

the LO distribution is

d�

dm
2
tt̄

=
↵
2
s⇡

m
4
tt̄

" 
1

3
ln

m
2
tt̄

m
2
top

�
7

12

!
Lgg(m

2
tt̄/s) +

8

27
Lqq̄(m

2
tt̄/s)

#
. (2.3)

Relative to the result for the pT,t distribution, Eq. (2.2), a key structural di↵erence here is

the presence of a factor ln
m2

tt̄
m2

top
multiplying the gluon–gluon luminosity. One can understand

the origin of this logarithm by considering fixed mtt̄ and examining the distribution of �ytt̄,

the di↵erence in rapidity between the top and anti-top. At large �ytt̄, the gluon-fusion

contribution is dominated by a t-channel top-quark exchange diagram and the cross section

becomes a constant, independent of �ytt̄. Integrating over �ytt̄ up to its kinematic limit,

�y
max
tt̄ = cosh�1

 
m

2
tt̄

2m2
top

� 1

!
= ln

m
2
tt̄

m
2
top

+O

 
m

2
top

m
2
tt̄

!
, (2.4)

then yields the logarithmic factor seen in Eq. (2.3), cf. Appendix A.1. The large-�ytt̄

enhancement of the gluon-fusion versus qq̄ contributions provides a potentially powerful

handle for separately constraining the qq̄ and gg luminosities in PDF fits.

2
The reason for not directly including me↵ in this paper is that it cannot be meaningfully used with top

partons, but only with top decay products.
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 at : coefficients that depend weakly on the slope of the PDFs 
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Figure 1: Illustration of classes of event topology for top production. Thick red lines

represent top (anti-)quarks, while thin black lines represent light partons (quarks or gluons).

Protons are depicted as entering from the left and right-hand sides.

tive expansion. In flavour excitation (FEX), a tt̄ pair can be produced by an initial state

splitting, with one of the pair undergoing a large momentum-transfer scattering with a

light parton. Gluon splitting (GSP) involves production of a tt̄ pair during jet fragmen-

tation. Both FEX and GSP start at next-to-leading order (NLO). Finally some events do

not readily fall into any of these categories, for example two high-transverse momentum

light-flavour jets plus a (relatively) soft additional gluon that splits to tt̄. These arise only

at NNLO and beyond.

Relative to LO, the FEX and GSP topologies involve a factor ↵s ln pT /mtop, where pT
is generally the transverse momentum of the hardest object in the event. The ln pT /mtop

factor that arises at the LHC is typically not large: e.g. for pT ⇠ 1 TeV, it is of the order

2, which would not be expected to compensate for the extra power of ↵s relative to LO,

and one might expect FEX and GSP to be small compared to FCR.5 As we shall see,

this intuition misses important considerations. To help understand this, Table 2 shows

the di↵erent factors that come into the calculation of the cross section for the FCR, FEX

and GSP topologies. We consider a 2 ! 2 hard scattering energy of 2 TeV and take the

case of 90 degree scattering in the centre of mass, which dominates high-pT production.

This corresponds to each outgoing object from the 2 ! 2 scattering having a transverse

momentum of 1 TeV and identical rapidity.

The first point that we highlight is that the underlying 2 ! 2 matrix elements for the

FCR process are an order of magnitude smaller than for FEX and GSP. To illustrate the

origin of this analytically in one simple case, consider 90� scattering in the limit pT � mtop,

and compare for example the squared matrix element relevant for the qiq̄i ! tt̄ channel of

FCR (cf. [34] or [35]),

1

g4

X

spin,colour

|Mqq̄!q0q̄0 |
2 =

CF

NC

t̂
2 + û

2

ŝ2
=

CF

NC
·
1

2
, (2.5)

to that involved in the qt ! qt channel of FEX,

1

g4

X

spin,colour

|Mqq0!qq0 |
2 =

CF

NC

ŝ
2 + û

2

t̂2
=

CF

NC
· 5 . (2.6)

5
At a 100 TeV pp collider, the logarithms can be larger, which might then at first sight explain the

observation in section 12.3 of Ref. [27] that GSP contributes significantly to high-pT top production.

– 6 –
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LO distributions @ large pT
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Hardness variable explanation
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p
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T transverse momentum of leptonic top candidate

p
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T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
T = m

top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
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tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –
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LO distributions @ large pT
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Hardness variable explanation
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Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�
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top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –
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LO distributions @ large mtt̄
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pT , but results would be essentially unchanged if we instead used pT . In the LO calculations
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The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m
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T

1
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top,had
T + p

top,lep
T )

1
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tt̄
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tt̄
T = m

top,had
T +m

top,lep
T
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tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations
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The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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that we report below, it will be convenient to have the shorthand pT,t for the transverse

momentum of either of the top quarks.

The next set of observables provides measures of the hard scale of the event that at LO

include the top-quark mass and transverse momentum. The Htt̄
T variable is identical to the

HT of Czakon, Heymes and Mitov [23] and of Catani et al. [24]. The H
tt̄+jets
T observable

provides a democratic evaluation of the event hardness across all objects. At high scales is

very similar to the me↵ variable used in supersymmetry searches, which is the scalar sum

of the transverse momenta of all jets, leptons and missing momenta, see e.g. Ref. [25].2

The m
J,avg
T quantity is based on large-R jets, with the details of the jet finding discussed

in more detail below. It is not part of the standard set of tt̄ event-hardness measures,

but we include it here because it gives a faithful reflection of the hardness of the main

2 ! 2 scattering in the event, regardless of the precise role played by the top quarks in

that scattering.

At leading order, in the limit where pT,t grows much larger than the top-quark mass

(mtop), all three observables in this group become identical to the pT,t type observables of

the first group. Structurally, for pT,t � mtop but still significantly smaller than the collider

centre-of-mass energy
p
s, the LO cross section is given by
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2
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cggLgg(4p

2
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2
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⇤
(2.2)

Here the cgg and cqq̄ are numerical constants, of the order of 0.1, which depend on how

steeply the PDFs fall with increasing x. They are discussed in Appendix A.2, together with

our specific definition the partonic luminosities Lgg and Lqq̄. Since this is a LO calculation,

for simplicity we have left out explicit renormalisation and factorisation scale dependence.

The next observable in Table 1 is the invariant mass of the tt̄ system. For mtt̄ � mtop,

the LO distribution is
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Relative to the result for the pT,t distribution, Eq. (2.2), a key structural di↵erence here is

the presence of a factor ln
m2

tt̄
m2

top
multiplying the gluon–gluon luminosity. One can understand

the origin of this logarithm by considering fixed mtt̄ and examining the distribution of �ytt̄,

the di↵erence in rapidity between the top and anti-top. At large �ytt̄, the gluon-fusion

contribution is dominated by a t-channel top-quark exchange diagram and the cross section

becomes a constant, independent of �ytt̄. Integrating over �ytt̄ up to its kinematic limit,
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� 1
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2
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, (2.4)

then yields the logarithmic factor seen in Eq. (2.3), cf. Appendix A.1. The large-�ytt̄

enhancement of the gluon-fusion versus qq̄ contributions provides a potentially powerful

handle for separately constraining the qq̄ and gg luminosities in PDF fits.

2
The reason for not directly including me↵ in this paper is that it cannot be meaningfully used with top

partons, but only with top decay products.
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log(mtt/mt) in glue-glue channel comes from enhancement at large rapidity separations
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Figure 10: Asymptotic leading-order forms for the �ytt̄ distribution at fixed large mtt̄,

as given in Eq. (A.1), applied to the case of
p
s = 13 TeV pp collisions and mtt̄ = 2 TeV.

The left-hand plot uses fixed renormalisation and factorisation scales, which is physically

inappropriate but illustrates the key analytical features of the structure of Eq. (A.1). The

right-hand plot uses a physically motivated scale choice, of the order of the momentum

transfers involved in the process.

physically motivated scale choice, µ2
R = µ

2
F = (Htt̄

T /2)
2 = m

2
tt̄/(2(1 + cosh�ytt̄)), is shown

in the right-hand plot.14 This choice has a major impact on the shape of the distribution,

with the plateaus in the gg-induced distribution acquiring a strong quasi-linear dependence

on �ytt̄. This dependence arises from the scaling violations in the coupling and PDF, a

consequence of lnµ2
' lnm2

tt̄ � �ytt̄. The precise slope depends on the x values being

probed in the PDF.

The significant di↵erence in �ytt̄ dependence for qq̄ and gg-induced production has

the potential to provide a valuable handle separately for the gluon and quark parton dis-

tributions.

We can also integrate over �ytt̄ to obtain the single-di↵erential distribution,

d�

dm
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=
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quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
m2

tt̄
m2

t
enhancement of the gluon-induced

contribution.

14
For more complex events, one may choose to generalise this to m

J,avg
T or H

tt̄+jets
T /2 of Table 1.
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The left-hand plot uses fixed renormalisation and factorisation scales, which is physically

inappropriate but illustrates the key analytical features of the structure of Eq. (A.1). The

right-hand plot uses a physically motivated scale choice, of the order of the momentum

transfers involved in the process.
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in the right-hand plot.14 This choice has a major impact on the shape of the distribution,

with the plateaus in the gg-induced distribution acquiring a strong quasi-linear dependence

on �ytt̄. This dependence arises from the scaling violations in the coupling and PDF, a

consequence of lnµ2
' lnm2

tt̄ � �ytt̄. The precise slope depends on the x values being

probed in the PDF.

The significant di↵erence in �ytt̄ dependence for qq̄ and gg-induced production has

the potential to provide a valuable handle separately for the gluon and quark parton dis-

tributions.

We can also integrate over �ytt̄ to obtain the single-di↵erential distribution,
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quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
m2

tt̄
m2
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enhancement of the gluon-induced

contribution.
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For more complex events, one may choose to generalise this to m

J,avg
T or H

tt̄+jets
T /2 of Table 1.
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 or jet transverse momentumtt̄
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
T = m

top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
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dp
top,lep
T

=
1

2
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+
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. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Figure 1: Illustration of classes of event topology for top production. Thick red lines

represent top (anti-)quarks, while thin black lines represent light partons (quarks or gluons).

Protons are depicted as entering from the left and right-hand sides.

tive expansion. In flavour excitation (FEX), a tt̄ pair can be produced by an initial state

splitting, with one of the pair undergoing a large momentum-transfer scattering with a

light parton. Gluon splitting (GSP) involves production of a tt̄ pair during jet fragmen-

tation. Both FEX and GSP start at next-to-leading order (NLO). Finally some events do

not readily fall into any of these categories, for example two high-transverse momentum

light-flavour jets plus a (relatively) soft additional gluon that splits to tt̄. These arise only

at NNLO and beyond.

Relative to LO, the FEX and GSP topologies involve a factor ↵s ln pT /mtop, where pT
is generally the transverse momentum of the hardest object in the event. The ln pT /mtop

factor that arises at the LHC is typically not large: e.g. for pT ⇠ 1 TeV, it is of the order

2, which would not be expected to compensate for the extra power of ↵s relative to LO,

and one might expect FEX and GSP to be small compared to FCR.5 As we shall see,

this intuition misses important considerations. To help understand this, Table 2 shows

the di↵erent factors that come into the calculation of the cross section for the FCR, FEX

and GSP topologies. We consider a 2 ! 2 hard scattering energy of 2 TeV and take the

case of 90 degree scattering in the centre of mass, which dominates high-pT production.

This corresponds to each outgoing object from the 2 ! 2 scattering having a transverse

momentum of 1 TeV and identical rapidity.

The first point that we highlight is that the underlying 2 ! 2 matrix elements for the

FCR process are an order of magnitude smaller than for FEX and GSP. To illustrate the

origin of this analytically in one simple case, consider 90� scattering in the limit pT � mtop,

and compare for example the squared matrix element relevant for the qiq̄i ! tt̄ channel of

FCR (cf. [34] or [35]),

1

g4

X

spin,colour

|Mqq̄!q0q̄0 |
2 =

CF

NC

t̂
2 + û

2

ŝ2
=

CF
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·
1

2
, (2.5)

to that involved in the qt ! qt channel of FEX,

1

g4

X

spin,colour

|Mqq0!qq0 |
2 =

CF

NC

ŝ
2 + û

2

t̂2
=

CF

NC
· 5 . (2.6)

5
At a 100 TeV pp collider, the logarithms can be larger, which might then at first sight explain the

observation in section 12.3 of Ref. [27] that GSP contributes significantly to high-pT top production.
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tive expansion. In flavour excitation (FEX), a tt̄ pair can be produced by an initial state

splitting, with one of the pair undergoing a large momentum-transfer scattering with a

light parton. Gluon splitting (GSP) involves production of a tt̄ pair during jet fragmen-

tation. Both FEX and GSP start at next-to-leading order (NLO). Finally some events do

not readily fall into any of these categories, for example two high-transverse momentum

light-flavour jets plus a (relatively) soft additional gluon that splits to tt̄. These arise only

at NNLO and beyond.

Relative to LO, the FEX and GSP topologies involve a factor ↵s ln pT /mtop, where pT
is generally the transverse momentum of the hardest object in the event. The ln pT /mtop

factor that arises at the LHC is typically not large: e.g. for pT ⇠ 1 TeV, it is of the order

2, which would not be expected to compensate for the extra power of ↵s relative to LO,

and one might expect FEX and GSP to be small compared to FCR.5 As we shall see,

this intuition misses important considerations. To help understand this, Table 2 shows

the di↵erent factors that come into the calculation of the cross section for the FCR, FEX

and GSP topologies. We consider a 2 ! 2 hard scattering energy of 2 TeV and take the

case of 90 degree scattering in the centre of mass, which dominates high-pT production.

This corresponds to each outgoing object from the 2 ! 2 scattering having a transverse

momentum of 1 TeV and identical rapidity.

The first point that we highlight is that the underlying 2 ! 2 matrix elements for the

FCR process are an order of magnitude smaller than for FEX and GSP. To illustrate the

origin of this analytically in one simple case, consider 90� scattering in the limit pT � mtop,

and compare for example the squared matrix element relevant for the qiq̄i ! tt̄ channel of

FCR (cf. [34] or [35]),
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2

ŝ2
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At a 100 TeV pp collider, the logarithms can be larger, which might then at first sight explain the

observation in section 12.3 of Ref. [27] that GSP contributes significantly to high-pT top production.
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What do we mean by “energetic”? Many variables can be used to measure event hardness
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Hardness variable explanation

p
top,had
T transverse momentum of hadronic top candidate

p
top,lep
T transverse momentum of leptonic top candidate

p
top,max
T pT of the top (anti-)quark with larger m2

T = p
2
T +m

2

p
top,min
T pT of the top (anti-)quark with smaller m2

T = p
2
T +m

2

p
top,avg
T

1
2(p

top,had
T + p

top,lep
T )

1
2H

tt̄
T with H

tt̄
T = m

top,had
T +m

top,lep
T

1
2H

tt̄+jets
T with H

tt̄+jets
T = m

top,had
T +m

top,lep
T +

P
i p

j6 t,i
T

m
J,avg
T average mT of the two highest mT large-R jets (J1, J2)

1
2m

tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Compare LO expectations to POWHEG+Pythia8 NLO results
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.
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Figure 4: Di↵erential cross sections as a function of a variety of scales used to characterise

the event hardness (V ), considering an illustrative subset of the scales from Table 1. Left-

hand plot: results summing over all topologies. Right-hand plot: results for just the FCR

topology.

an expected consequence of the LO log(mtt̄
/mtop) enhancement for the 1

2m
tt̄ distribution

quoted in Eq. (2.3). The other three observables are identical at LO, and free of any

log(mtt̄
/mtop) enhancement. Yet in Fig. 4 (left) H

tt̄+jets
T appears to be almost identical

to 1
2m

tt̄, and there is a clear hierarchy among H
tt̄+jets
T , mJ,avg

T and p
top,lep
T . If instead we

examine Fig. 4 (right), with just the FCR topologies, the pattern is closer to the picture

expected from LO: 1
2m

tt̄ is well above the other observables, with a relative enhancement
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       should all be similar & smaller 
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T
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Topologies at LO and NLO
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  —  so expect NLO topologies to be 10% correction 
(but we know that QCD@LHC is never that simple…)
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topology channel |ME|2 luminosity FS splitting product

FCR
gg ! tt̄ 0.15 0.16 1 0.024

qiq̄i ! tt̄ 0.22 0.13 1 0.028

FEX
tg ! tg 6.11 0.0039 1 0.024

t⌃ ! t⌃ 2.22 0.0170 1 0.038

gg ! gg(! tt̄) 30.4 0.16 Pg!tt̄ ' 0.004 0.020

GSP g⌃ ! g(! tt̄)⌃ 6.11 1.22 Pg!tt̄ ' 0.004 0.031

qq̄ ! gg(! tt̄) 1.04 0.13 Pg!tt̄ ' 0.004 0.001

Table 2: Factors contributing to the top-production cross section for a variety of partonic

scattering channels. In each case the 2 ! 2 squared matrix element (|ME|2, with a g
4 =

(4⇡↵s)2 factor stripped o↵ as in Eqs. (2.5), (2.6)) is given in the massless limit (valid

when pT � mt), for 90� scattering in the partonic centre-of-mass frame. The partonic

luminosities, defined as in Eq. (A.2), are given for a proton–proton centre of mass energy

of
p
s = 13 TeV and for producing a partonic system mass of

p
ŝ = 2 TeV. We set

the factorisation scale to µ = 1 TeV. ⌃ denotes a sum over all (non-top) quark and anti-

quark flavours. The luminosities have been evaluated with the PDF4LHC15 nnlo mc [28] set,

re-evolved in a six-flavour scheme with HOPPET [29] using NNLO splitting and threshold-

matching functions [30–33]. The final-state splitting probability Pg!tt̄ is obtained using

Eq. (2.9). The results in the final column are to be taken as order of magnitude estimates,

illustrating the commensurate sizes of di↵erent channels.

The Mandelstam invariants are ŝ = 4p2T and t̂ = û = �2p2T , and as a result the FEX

channel has a squared matrix element that is ten times larger than the FCR channel.

A second factor that is relevant is the partonic luminosity. For the FEX channels, the

incoming top is produced by an initial-state g ! tt̄ splitting, so ultimately the cross section

is driven by gg and g⌃ luminosities, where ⌃ is the sum of all light (anti-)flavours. The

top-quark luminosity then involves a factor ↵s ln pT /mtop, which gives a smaller luminosity

than either the gg or qiq̄i luminosities that were relevant for the FCR case. Ultimately the

larger matrix element compensates for the reduced luminosities and the FEX process has

a cross section that is comparable to that for FCR.

A similar set of features emerges also for the GSP case. Here the ↵s ln pT /mtop factor

appears for the final-state splitting rather than an initial state one. It is straightforward

to use massive splitting functions [36] to evaluate the leading-order probability Pg!tt̄ for

g ! tt̄ splitting with the tt̄ pair separated by distance �Rtt̄ < R, where �R
2
tt̄ = (yt �

yt̄)
2 + (�t � �t̄)

2 and yt and �t are respectively the rapidity and azimuth of the top. For a

gluon transverse momentum of pT , and with the conditions pTR � mtop and R ⌧ 1, the

result is

Pg!tt̄ =
↵sTR

2⇡

2

3

 
ln

p
2
T,tR

2

m
2
top

�
23

6

!
. (2.7)

In practice, the regime of pT = 1 TeV is not su�ciently asymptotic for this expression to

– 7 –
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Not the first time large FEX / GSP contributions are noticed, e.g.
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Fig. 152: Left: production rates for b jets (solid), and for jets containing a bb̄ pair within �R < 0.4
(dashes). Right: same, for top-quark jets (top treated as stable).

Fig. 153: Cross sections for top processes as a function of proton-proton collider energy. See text for
details.

12.4 Single top production
Like tt̄ pairs, production of single top at 100 TeV is also increased by large factors with respect to LHC.
However, since single top production is dominated by quark initiated t�channel production, the total
t + t̄ production cross section grows by about a factor 25 with respect to the LHC13, compared to the
growth of about 40 for the tt̄ cross-section (and of about 15 for its other major background, W+jets).

Fig. 153 shows the total production cross section for various channels as a function of the centre of
mass energy. tt̄ and single top results are computed at NLO QCD, while associated tZ and tH production
are computed at LO QCD53. For (N)LO predictions (N)LO evolution of ↵s and parton distributions were
employed. For all the results in this section we used the NNPDF3.0 parton set [17]. Apart from associated
Wt production, all results here are fully inclusive and are computed with µr = µf = mt = 172.5 GeV.
For Wt production, a b�jet veto of pb,t = 80 GeV is applied on additional b�jet radiation coming from
gg ! Wtb diagrams to separate this process from the tt̄ background, see [414] for details. As suggested
in [414], we used in this case a lower scale, µ = pb,t,veto = 80 GeV. Results for 13 TeV and 100 TeV are
also summarized in Tab. 5154.

53Predictions are obtained using HatHor [413] and MCFM [245–247].
54For the numbers in the table we computed t�channel production to NNLO QCD [415]. The difference with respect of

NLO is however irrelevant for the considerations here.
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Figure 2: Top: K-factor for inclusive b-jet spectrum as computed with MCFM [10], clus-
tering particles into jets using the kt jet-algorithm [9] with R=0.7, and selecting jets in the
central rapidity region (|y| < 0.7). Middle: scale dependence obtained by simultaneously
varying the renormalisation and factorisation scales by a factor two around pt, the trans-
verse momentum of the hardest jet in the event. Bottom: breakdown of the Herwig [11]
inclusive b-jet spectrum into the three major hard underlying channels cross sections (for
simplicity the small bb → bb is not shown).

Tevatron Run II (pp̄,
√
s = 1.96 TeV, left) and for the LHC (pp,

√
s = 14 TeV, right).1

The fact that the K-factor is considerably larger than one indicates that the perturbative
series is very poorly convergent, and implies that the NLO result cannot be an accurate
approximation to the full result. It is for this reason that the scale dependence (middle
panels) is large. One might think that a calculation with MC@NLO [12] should do better,
since it includes both NLO and all-order resummed logarithmically enhanced terms. This
turns out not to be the case, as can be seen from its persistently large scale dependence.2

Essentially, while MC@NLO contains a good matching between the NLO b-production
calculation and the b-quark fragmentation logarithms in Herwig, it does not match with

1Fig. 1 has been obtained using a midpoint type [6] cone algorithm, however given the recent discover-
ies [7, 8] of infrared safety issues in midpoint cone algorithms, we prefer to illustrate our arguments with
an inclusive kt-algorithm [9]. In practice, we expect most features of the figure to be insensitive to the
choice of algorithm, for example also with an infrared safe cone-type algorithm such as SISCone [8].

2Poor numerical convergence prevented us from presenting the scale dependence for MC@NLO at the
LHC. Note also that noK-factor has been shown for MC@NLO because the LO result is not unambiguously
defined.
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√
s = 1.96 TeV, left) and for the LHC (pp,

√
s = 14 TeV, right).1

The fact that the K-factor is considerably larger than one indicates that the perturbative
series is very poorly convergent, and implies that the NLO result cannot be an accurate
approximation to the full result. It is for this reason that the scale dependence (middle
panels) is large. One might think that a calculation with MC@NLO [12] should do better,
since it includes both NLO and all-order resummed logarithmically enhanced terms. This
turns out not to be the case, as can be seen from its persistently large scale dependence.2

Essentially, while MC@NLO contains a good matching between the NLO b-production
calculation and the b-quark fragmentation logarithms in Herwig, it does not match with

1Fig. 1 has been obtained using a midpoint type [6] cone algorithm, however given the recent discover-
ies [7, 8] of infrared safety issues in midpoint cone algorithms, we prefer to illustrate our arguments with
an inclusive kt-algorithm [9]. In practice, we expect most features of the figure to be insensitive to the
choice of algorithm, for example also with an infrared safe cone-type algorithm such as SISCone [8].

2Poor numerical convergence prevented us from presenting the scale dependence for MC@NLO at the
LHC. Note also that noK-factor has been shown for MC@NLO because the LO result is not unambiguously
defined.
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b-jet production at Tevatron

b-jet production at LHC

0704.2999, Banfi, GPS & Zanderighi

 jett

 jet (ΔR<0.4)tt̄

In those cases, it seemed natural to ascribe large FEX/GSP to log  enhancements 
What we now understand is importance of  enhancements of  t-channel ME2  

(e.g. ) v. s-channel ME2 (e.g. )

pT /mQ
× 10

qt → qt qq̄ → tt̄

https://arxiv.org/abs/1607.01831
https://arxiv.org/abs/0704.2999


3. Implications for LHC  
cross sections
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Interplay between hardness variable and channels
➤ LO (FCR) and NLO channels (FEX, GSP) were comparable when we chose similar 

underlying  scattering scales 

➤ The question we’ll ask is: for a given value of an observable, what is the underlying 
 scale.   

➤ High-  cross section drops rapidly with increasing  scale ( ) 
 
                   ,      

2 → 2

p2→2
T

pT 2 → 2 p2→2
T

σ(p2→2
T > X) ∼ X−p p ∼ 7
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Hardness variable explanation
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T transverse momentum of hadronic top candidate

p
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T transverse momentum of leptonic top candidate
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T pT of the top (anti-)quark with larger m2
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2
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tt̄ half invariant mass of ptt̄ = p
top,had + p

top,lep

p
tt̄
T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1

d�

dp
top,had
T

=
d�

dp
top,lep
T

=
1

2

 
d�

dp
top,max
T

+
d�

dp
top,min
T

!
. (2.1)

Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.

– 3 –

 
implies 

 

contributes fully 

ptop,max
T = 1 TeV
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T = 1 TeV

 
implies 

  

contributes fully
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T = 1 TeV
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T = 1 TeV

 
implies 

 

 suppressed by  
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T = 1 TeV
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T ∼ 1.5 TeV

σ (1/1.5)7
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i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Hardness variable explanation
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p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our
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Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Hardness variable FCR FEX GSP

p
top,had
T X X
p
top,lep
T X X

p
top,max
T X X
p
top,min
T X
p
top,avg
T X
1
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tt̄
T X

1
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tt̄+jets
T X X X

m
J,avg
T X X X

1
2m

tt̄ X
p
tt̄
T X X

p
j6 t,1
T X X

Table 3: Summary of the topologies expected to contribute dominantly to the distributions

of di↵erent hardness variables, when these are large relative to mtop. See text for details

and Table 1 for definitions of the hardness variables.

variable depends significantly on the choice of variable. A key principle to remember in the

discussion is that each of the topologies has a cross section that falls steeply as a function of

the underlying 2 ! 2 transverse momentum p
2!2
T , say as ⇠ 1/(p2!2

T )k with some positive

power k. Consider a specific value V of a given hardness variable. If p2!2
T is significantly

larger than V in some topology, its contribution to the bin around V will be suppressed

relative to another topology for which p
2!2
T is comparable to V . Equivalently, a topology

where V ends up being significantly smaller than p
2!2
T will be suppressed relative to a

topology where V is similar to p
2!2
T . On this basis we can work out which topologies will

be relevant for which hardness variable, and the conclusions are summarised in Table 3.

Specifically, we see that the first group of hardness variables in Tables 1 and 3, the

p
top
T set of variables, splits into two sub-groups. The first three variables p

top,had
T , ptop,lepT ,

p
top,max
T share the characteristic that they can be commensurate with p

2!2
T if at least one

of the two tops is hard. Therefore we expect the distributions of these variables to receive

significant contributions from the FCR and FEX topologies,8 but not from GSP (because

neither of the tops carries the full pT of the underlying hard process). In contrast, for

p
top,min
T and p

top,avg
T to be commensurate with p

2!2
T , both tops need to be hard, and so we

expect significant contributions mainly from FCR.

The next set of variables in Tables 1 and 3 also splits into two groups. The 1
2H

tt̄
T

variable is commensurate with p
2!2
T only if both tops are hard, i.e. we expect contributions

8
In the asymptotically dominant limit where the softer of the two tops has negligible pT compared to the

harder one, the FEX contribution for p
top,had
T and p

top,lep
T is half that for p

top,max
T . This will, however, not

be unambiguously visible later when we compare FEX to FCR: the LO property that the FCR distributions

of p
top,had
T , p

top,lep
T and p

top,max
T are identical is broken from NLO onwards, with the p

top,max
T distribution

being larger than the others.
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Hardness variable explanation
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T transverse component of ptt̄

p
j6 t,1
T transverse momentum of the leading small-R non-top jet

Table 1: Variables that may be used to characterise a hard kinematic scale in events with

a semi-leptonically decaying tt̄ pair. All observables within a given group are identical to

each other at leading order. The j6 t,i jets correspond to R = 0.4 non-top jets, while the Ji

jets corresponds to large-R jets (whose clustering inputs include the top quarks). Further

details about the jet finding are given in Sections 3 and 4.

2 Theoretical considerations

In this section we review various event-hardness measures, and discuss some basic expecta-

tions about their behaviour for events that involve large momentum-transfer and contain

a tt̄ pair.

2.1 Event hardness variables and their leading-order behaviour

We start by examining measures to characterise large momentum transfer in tt̄ events,

i.e. the event hardness, including a discussion of their leading-order distributions. A wide

variety of such measures is used in the literature and we provide an illustrative selection of

them in Table 1, organised into groups that are identical at LO, i.e. for events that consist

of just a single back-to-back tt̄ pair.

The first set of observables simply measures the top-quark transverse momentum.

They di↵er only in terms of which top-quark is used, which is why they are identical at LO

(order ↵2
s). We also have an all-order relation between some of the observables, specifically1
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Note that we have chosen to define the “max/min” based on the value of mT rather than

pT , but results would be essentially unchanged if we instead used pT . In the LO calculations

1
The rightmost expression of our Eq. (2.1) is referred to as d�/dpT,avt in Ref. [23]. This di↵ers from our

d�/dp
top,avg
T beyond LO.
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Basic analysis with top partons
➤ Take top-partons + normal R=0.4 jets, and cluster them using an R=1 jet algorithm*  

(gives large-  jets  in order of decreasing ) 

➤ Identify event topology as follows

R J1, J2, . . . mT

31

p

t

flavour creation flavour excitation gluon splitting other

t

p

Figure 1: Illustration of classes of event topology for top production. Thick red lines

represent top (anti-)quarks, while thin black lines represent light partons (quarks or gluons).

Protons are depicted as entering from the left and right-hand sides.

tive expansion. In flavour excitation (FEX), a tt̄ pair can be produced by an initial state

splitting, with one of the pair undergoing a large momentum-transfer scattering with a

light parton. Gluon splitting (GSP) involves production of a tt̄ pair during jet fragmen-

tation. Both FEX and GSP start at next-to-leading order (NLO). Finally some events do

not readily fall into any of these categories, for example two high-transverse momentum

light-flavour jets plus a (relatively) soft additional gluon that splits to tt̄. These arise only

at NNLO and beyond.

Relative to LO, the FEX and GSP topologies involve a factor ↵s ln pT /mtop, where pT
is generally the transverse momentum of the hardest object in the event. The ln pT /mtop

factor that arises at the LHC is typically not large: e.g. for pT ⇠ 1 TeV, it is of the order

2, which would not be expected to compensate for the extra power of ↵s relative to LO,

and one might expect FEX and GSP to be small compared to FCR.5 As we shall see,

this intuition misses important considerations. To help understand this, Table 2 shows

the di↵erent factors that come into the calculation of the cross section for the FCR, FEX

and GSP topologies. We consider a 2 ! 2 hard scattering energy of 2 TeV and take the

case of 90 degree scattering in the centre of mass, which dominates high-pT production.

This corresponds to each outgoing object from the 2 ! 2 scattering having a transverse

momentum of 1 TeV and identical rapidity.

The first point that we highlight is that the underlying 2 ! 2 matrix elements for the

FCR process are an order of magnitude smaller than for FEX and GSP. To illustrate the

origin of this analytically in one simple case, consider 90� scattering in the limit pT � mtop,

and compare for example the squared matrix element relevant for the qiq̄i ! tt̄ channel of

FCR (cf. [34] or [35]),

1

g4

X

spin,colour

|Mqq̄!q0q̄0 |
2 =

CF

NC

t̂
2 + û

2

ŝ2
=

CF

NC
·
1

2
, (2.5)

to that involved in the qt ! qt channel of FEX,

1

g4

X

spin,colour

|Mqq0!qq0 |
2 =

CF

NC

ŝ
2 + û

2

t̂2
=

CF

NC
· 5 . (2.6)

5
At a 100 TeV pp collider, the logarithms can be larger, which might then at first sight explain the

observation in section 12.3 of Ref. [27] that GSP contributes significantly to high-pT top production.
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Setup for testing 
➤ 13 TeV pp collisions 

➤ POWHEGBox v2, hvq process (NLO for ) 

➤ PDF4LHC15_nnlo_mc PDF sets  

➤ Showering with Pythia8, parton level 

➤ Reconstruct jets with the FastJet and the anti-  algorithm,  
➤  small-  jets, , from non-top partons 

➤ then  jets with the small-  jets and top-parton as inputs 

➤ Also: cross checks with POWHEGBox NLO  process (Alioli, Moch & Uwer 
1110.5251), finding good agreement for the channels that start at .

tt̄

kt

R = 0.4 R pT,j > 30 GeV

R = 1 R

tt̄j
α3

s
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https://arxiv.org/abs/1110.5251
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Fraction in each topology v. hardness scale
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Figure 2: Fractional contributions of the main top-production topologies (cf. Fig. 1), as

a function of the variable used to characterise the hardness of the event, cf. Table 1. The

expectations are those shown in Table 3.

cross sections that are commonly studied experimentally. Fig. 4 shows di↵erential cross

sections for a subset of observables, choosing at least one from each of the groupings of

Table 1. The left-hand plot shows the results without any topological classification. Among

the features in the plot that is surprising at first sight is that the p
tt̄
T distribution, which

starts at ↵3
s, is larger at high scales than the ptop,lepT distribution, which starts at ↵2

s. Based

on the analysis of Section 2, this is however not a surprise, because of large FEX and GSP

contributions to the p
tt̄
T distribution. If one considers only events with an FCR topology,

as done in the right-hand plot, the p
tt̄
T distribution ends up being substantially suppressed

relative to p
top,lep
T , restoring faith in an analysis based on perturbation theory.

Another feature that becomes clearer when isolating the FCR topology is the hierarchy

between 1
2m

tt̄ on one hand and H
tt̄+jets
T , mJ,avg

T and p
top,lep
T on the other. A hierarchy is
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sections for a subset of observables, choosing at least one from each of the groupings of

Table 1. The left-hand plot shows the results without any topological classification. Among

the features in the plot that is surprising at first sight is that the p
tt̄
T distribution, which

starts at ↵3
s, is larger at high scales than the ptop,lepT distribution, which starts at ↵2

s. Based

on the analysis of Section 2, this is however not a surprise, because of large FEX and GSP

contributions to the p
tt̄
T distribution. If one considers only events with an FCR topology,

as done in the right-hand plot, the p
tt̄
T distribution ends up being substantially suppressed

relative to p
top,lep
T , restoring faith in an analysis based on perturbation theory.

Another feature that becomes clearer when isolating the FCR topology is the hierarchy

between 1
2m

tt̄ on one hand and H
tt̄+jets
T , mJ,avg

T and p
top,lep
T on the other. A hierarchy is
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a function of the variable used to characterise the hardness of the event, cf. Table 1. The

expectations are those shown in Table 3.
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sections for a subset of observables, choosing at least one from each of the groupings of

Table 1. The left-hand plot shows the results without any topological classification. Among

the features in the plot that is surprising at first sight is that the p
tt̄
T distribution, which

starts at ↵3
s, is larger at high scales than the ptop,lepT distribution, which starts at ↵2

s. Based

on the analysis of Section 2, this is however not a surprise, because of large FEX and GSP

contributions to the p
tt̄
T distribution. If one considers only events with an FCR topology,

as done in the right-hand plot, the p
tt̄
T distribution ends up being substantially suppressed

relative to p
top,lep
T , restoring faith in an analysis based on perturbation theory.
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T and p
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.
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Figure 4: Di↵erential cross sections as a function of a variety of scales used to characterise

the event hardness (V ), considering an illustrative subset of the scales from Table 1. Left-

hand plot: results summing over all topologies. Right-hand plot: results for just the FCR

topology.

an expected consequence of the LO log(mtt̄
/mtop) enhancement for the 1

2m
tt̄ distribution

quoted in Eq. (2.3). The other three observables are identical at LO, and free of any

log(mtt̄
/mtop) enhancement. Yet in Fig. 4 (left) H

tt̄+jets
T appears to be almost identical

to 1
2m

tt̄, and there is a clear hierarchy among H
tt̄+jets
T , mJ,avg

T and p
top,lep
T . If instead we

examine Fig. 4 (right), with just the FCR topologies, the pattern is closer to the picture

expected from LO: 1
2m

tt̄ is well above the other observables, with a relative enhancement
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
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the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
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J,avg
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Figure 2: Fractional contributions of the main top-production topologies (cf. Fig. 1), as

a function of the variable used to characterise the hardness of the event, cf. Table 1. The

expectations are those shown in Table 3.

cross sections that are commonly studied experimentally. Fig. 4 shows di↵erential cross

sections for a subset of observables, choosing at least one from each of the groupings of

Table 1. The left-hand plot shows the results without any topological classification. Among

the features in the plot that is surprising at first sight is that the p
tt̄
T distribution, which

starts at ↵3
s, is larger at high scales than the ptop,lepT distribution, which starts at ↵2

s. Based

on the analysis of Section 2, this is however not a surprise, because of large FEX and GSP

contributions to the p
tt̄
T distribution. If one considers only events with an FCR topology,

as done in the right-hand plot, the p
tt̄
T distribution ends up being substantially suppressed

relative to p
top,lep
T , restoring faith in an analysis based on perturbation theory.

Another feature that becomes clearer when isolating the FCR topology is the hierarchy

between 1
2m

tt̄ on one hand and H
tt̄+jets
T , mJ,avg

T and p
top,lep
T on the other. A hierarchy is
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topology channel |ME|2 luminosity FS splitting product

FCR
gg ! tt̄ 0.15 0.16 1 0.024

qiq̄i ! tt̄ 0.22 0.13 1 0.028

FEX
tg ! tg 6.11 0.0039 1 0.024

t⌃ ! t⌃ 2.22 0.0170 1 0.038

gg ! gg(! tt̄) 30.4 0.16 Pg!tt̄ ' 0.004 0.020

GSP g⌃ ! g(! tt̄)⌃ 6.11 1.22 Pg!tt̄ ' 0.004 0.031

qq̄ ! gg(! tt̄) 1.04 0.13 Pg!tt̄ ' 0.004 0.001

Table 2: Factors contributing to the top-production cross section for a variety of partonic

scattering channels. In each case the 2 ! 2 squared matrix element (|ME|2, with a g
4 =

(4⇡↵s)2 factor stripped o↵ as in Eqs. (2.5), (2.6)) is given in the massless limit (valid

when pT � mt), for 90� scattering in the partonic centre-of-mass frame. The partonic

luminosities, defined as in Eq. (A.2), are given for a proton–proton centre of mass energy

of
p
s = 13 TeV and for producing a partonic system mass of

p
ŝ = 2 TeV. We set

the factorisation scale to µ = 1 TeV. ⌃ denotes a sum over all (non-top) quark and anti-

quark flavours. The luminosities have been evaluated with the PDF4LHC15 nnlo mc [28] set,

re-evolved in a six-flavour scheme with HOPPET [29] using NNLO splitting and threshold-

matching functions [30–33]. The final-state splitting probability Pg!tt̄ is obtained using

Eq. (2.9). The results in the final column are to be taken as order of magnitude estimates,

illustrating the commensurate sizes of di↵erent channels.

The Mandelstam invariants are ŝ = 4p2T and t̂ = û = �2p2T , and as a result the FEX

channel has a squared matrix element that is ten times larger than the FCR channel.

A second factor that is relevant is the partonic luminosity. For the FEX channels, the

incoming top is produced by an initial-state g ! tt̄ splitting, so ultimately the cross section

is driven by gg and g⌃ luminosities, where ⌃ is the sum of all light (anti-)flavours. The

top-quark luminosity then involves a factor ↵s ln pT /mtop, which gives a smaller luminosity

than either the gg or qiq̄i luminosities that were relevant for the FCR case. Ultimately the

larger matrix element compensates for the reduced luminosities and the FEX process has

a cross section that is comparable to that for FCR.

A similar set of features emerges also for the GSP case. Here the ↵s ln pT /mtop factor

appears for the final-state splitting rather than an initial state one. It is straightforward

to use massive splitting functions [36] to evaluate the leading-order probability Pg!tt̄ for

g ! tt̄ splitting with the tt̄ pair separated by distance �Rtt̄ < R, where �R
2
tt̄ = (yt �

yt̄)
2 + (�t � �t̄)

2 and yt and �t are respectively the rapidity and azimuth of the top. For a

gluon transverse momentum of pT , and with the conditions pTR � mtop and R ⌧ 1, the

result is

Pg!tt̄ =
↵sTR

2⇡

2

3

 
ln

p
2
T,tR

2

m
2
top

�
23

6

!
. (2.7)

In practice, the regime of pT = 1 TeV is not su�ciently asymptotic for this expression to
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of missing data).

pT

pT pT

FCR

FEX

GSP
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Algorithm 2 Event analysis algorithm at hadron (particle) level

Require: at least one lepton (we require it to have a transverse momentum of at least

25 GeV), missing transverse momentum and hadrons.

1: Cluster the hadronic part of the event with the anti-kt algorithm with R = 0.4 and

discard any jets below some pt threshold, pT,min, as one would normally (we take

pT,min = 30 GeV).

2: Optionally, e.g. if subject to finite detector acceptance, exclude jets and leptons with

an absolute rapidity beyond some ymax. The remaining set of jets is referred to as {j}

and the hadrons contained within that set of jets is {H}.

3: For each jet j, recluster its constituents with the exclusive longitudinally invariant

(R = 1) kt algorithm [61] with a suitable dcut (we use (20 GeV)2), thus mapping the

R = 0.4 jets {j} to a declustered set {jd}. One applies b-tagging to the {jd} (sub)jets

to aid with the subsequent top identification.

4: Use a resolved top-tagging approach to identify the hadronic and leptonic top-quark

candidates from the lepton(s) and from the jets {jd} obtained in step 3. Here, we will

adopt the algorithm outlined in Section 4.2.

5: Identify all particles from the set {H} that do not belong to either of the top-quark

candidates. Refer to this subset as {H6 t}. Cluster the {H6 t} with the original jet

definition (anti-kt, R = 0.4) and apply a transverse momentum threshold pT,min to

obtain the set of non-top R = 0.4 jets, {j6 t}, ordered in decreasing pT .

6: Apply step 3 of Algorithm 1 using {j6 t} and the reconstructed top and anti-top candi-

dates as the inputs.

The choice to proceed via the {j6 t} set in step 5 is motivated in particular if one wishes

to compare R = 0.4 jet observables with purely resolved measurements in the literature.

At very high pT , instead of the RJ = 1 anti-kT algorithm used in step 3 of Algorithm 1,

it might make more sense to adopt an algorithm such as flavour-kT [38, 68] and possibly

apply it directly to the hadrons {H6 t} and tops, i.e. to the set {H6 t, t, t̄}. The flavour-kt
algorithm suppresses the clustering of lone soft-quarks within a hard jet, a situation which

would contaminate the flavour of a hard jet.11

4.2 Top reconstruction

The top reconstruction that we use is a so-called “resolved” algorithm, i.e. one that takes

advantage of the fact that the top decay products should map to separate jets. The

declustering procedure in step 3 of Algorithm 2 helps ensure that this is true even for

high-pT tops.

11
These configurations should be assigned to the “other” category of Fig. 1, and this does not always

occur with the anti-kT algorithm. The e↵ects start only at order ↵
2
s ln pT /mtop relative to LO, and are

practically negligible at the pT values that we study here, hence our choice to retain the simplicity of the

anti-kT algorithm. The e↵ects are conceptually interesting when L = ln pT /mtop � 1, because higher-order

logarithms have a BFKL [69, 70] structure, as pointed out by Marchesini and Mueller [71].
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Figure 6: Tests of the e�ciency and purity of the top reconstruction and topology iden-

tification procedures. See text for details.

1. the event analysis algorithm of Section 4.1 and the top reconstruction algorithm of

Section 4.2 (using the final leptons and partons) should successfully identify hadronic

and leptonic top candidates;

2. additionally the reconstructed top candidates should predominantly contain the cor-

responding truth top decay products, specifically, the b quarks should be correctly

assigned in each candidate, and the two jets that make up the W candidate should

each have received at least 50% of their pT from genuine W decay products;

3. finally the event topology based on the reconstructed top quarks should also be FCR.

One sees that the e�ciency is about 10% for low values of mJ,avg
T , rising to 30% at large

m
J,avg
T , with the FEX and GSP e�ciencies being slightly lower than for FCR, which is to

be expected given that the FEX and GSP topologies are made more di�cult to reconstruct

by the lower transverse momenta and/or potential proximity of the top decay products.

We also verify the purity of the reconstruction, separating out the study of the purity

of the top reconstruction and of the topology identification. Fig. 6 (middle) shows the

former. For a given reconstructed topology, it shows the fraction of the events in the given

reconstructed m
J,avg
T bin for which the reconstructed top candidates predominantly contain

the corresponding truth top decay products (condition 2 above). The top purity is in the

range 50�80%, increasing with m
J,avg
T . Fig. 6 (right) shows the purity for the topology

identification. Here we consider all events reconstructed as being in a given topology, and

examine the fraction for which the truth topology is the same as the reconstructed one

(irrespective of the whether the top candidates match the truth ones). This purity rapidly

tends to 1 with increasing m
J,avg
T .

Overall, the results of Fig. 6 give us confidence that the reconstruction approach pro-

posed here can be successfully applied to realistic events.

4.4 Results

We close this article by repeating the main truth-level analyses of Section 3.2 on hadron-

level events (with multi-parton interactions switched on), and imposing a realistic detector

– 19 –
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Figure 5: Left: the distribution of |�ytt̄| in for events where the tt̄ pair is in a given bin

of either m
tt̄
/2 or p

top,avg
T . Right: the average of the two top transverse momenta versus

|�ytt̄| in the given bin of mtt̄
/2. We include all topologies in these results, keeping in mind

that FCR is always the dominant contribution here.

that increases towards larger 1
2m

tt̄. Meanwhile, Htt̄+jets
T , mJ,avg

T and p
top,lep
T all show similar

scaling at high momenta. Remaining variations between them are straightforward to un-

derstand: taking m
J,avg
T as the reference, the H

tt̄+jets
T variable includes contributions from

ISR radiation and so is larger, while p
top,lep
T is sensitive to the loss of radiation from top

fragmentation and so is smaller.

We have also checked the six other event-hardness scales from Table 1 and the patterns

observed are in line with the analysis given above.

Our final comment of this section concerns the observation that the V = m
tt̄
/2 distri-

bution is 12�14 times larger than the p
top,lep
T distribution. A significant ratio is expected

because of the log(mtt̄
/mtop) enhancement that is present in Eq. (2.3), associated the in-

tegral over �ytt̄ up to its kinematic boundary, Eq. (2.4). Fig. 5 (left) shows the �ytt̄

distribution in a bin of either the m
tt̄
/2 or p

top,avg
T hardness scale. In the lowest bin of

�ytt̄, the results are independent of the choice of hardness scale. However at larger �ytt̄,

the di↵erence between the two histograms is striking, with the m
tt̄
/2 case dominated by

values of �ytt̄ close to the kinematic limit, a consequence not just of the LO distribution

covering rapidities up to the kinematic boundary, but also of further apparent logarithmic

enhancements for large �ytt̄ at NLO and beyond (cf. Appendix B). It is important to be

aware that the events at large�ytt̄ involve low transverse momenta for the top quarks. This

is illustrated in Fig. 5 (right), which shows the average top-quark transverse momentum

as a function of �ytt̄ for the same bin of mtt̄
/2 as shown on the left. Close to the kine-

matic boundary of �ytt̄, where the cross section is largest, the top quarks have transverse

momenta of the order of mtop, which is to be expected given the basic kinematic relations

that hold at LO.
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Figure 8: Hadron level results with reconstructed tops, for di↵erential cross sections as a

function of a selection of scales used to characterise the event hardness (V ), for a subset of

such scales. Left-hand plot: results summing over all topologies. Right-hand plot: results

for just the FCR topology. This plot is to be compared to Fig. 4. The results here include

a rapidity acceptance cut of |y| < 2.5 for jets and muons.
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Figure 9: Comparison of the truth (partonic-top) �ytt̄ distribution with the distribution

obtained for fully reconstructed top quarks in hadron (particle) level events. The (truth

or reconstructed) tt̄ pair satisfies the constraint 800 < m
tt̄
/2 < 1000 GeV. The histograms

include all topologies.

structed analogue of Fig. 3 is close to the truth-level results.

Fig. 8 shows hadron-level di↵erential cross sections. Broadly speaking the results are

similar to those with truth tops in Fig. 4. There is an overall reduction in the cross sections,

which is to be expected given the 10�30% reconstruction e�ciencies shown in Fig. 6.
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➤ Events with large  mostly have large , 
and low  

➤ Integral over phase space gives large logs, e.g. 
 (Kirschner & Lipatov ’83)

mtt̄ Δytt̄
ptop

T

α2+n
s ln2n−1 mtt̄ /mtop

➤ Large  and low  hard to measure 
experimentally 

➤ It may make sense to measure  with an 
additional condition such as 

Δytt̄ ptop
T

mtt̄
|Δytt̄ | < 2



5. Outlook & conclusions

45



MSU seminar, March 2021Gavin P. Salam

Core messages

➤ At large momentum transfer, NLO top-production topologies (FEX, GSP) are 
comparable to LO topology (FCR), because a much larger underlying  
(with -channel gluons) ~ compensates for the extra factor of  

➤ Non-trivial interplay with choice of event hardness variable; NLO simulations 
calculations confirm simple picture of how this works 

➤ Awareness of this is potentially important in a range of applications of  physics 
(precision measurements, PDF fits, EFT fits, etc.) 

➤ At parton level, a simple algorithms tells you the classification for any given event 

➤ At particle level, design analyses to simultaneously be able to reconstructed high and 
low-  tops, and two tops in a single jet 

➤ Beware of exp. & th. complications in  distribution; maybe measure it with  cut

2 → 2 |ME |2

t αs

tt̄

pT

mtt̄ Δytt̄
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.

Figure 4: Di↵erential cross sections as a function of a variety of scales used to characterise

the event hardness (V ), considering an illustrative subset of the scales from Table 1. Left-

hand plot: results summing over all topologies. Right-hand plot: results for just the FCR

topology.

an expected consequence of the LO log(mtt̄
/mtop) enhancement for the 1

2m
tt̄ distribution

quoted in Eq. (2.3). The other three observables are identical at LO, and free of any

log(mtt̄
/mtop) enhancement. Yet in Fig. 4 (left) H

tt̄+jets
T appears to be almost identical

to 1
2m

tt̄, and there is a clear hierarchy among H
tt̄+jets
T , mJ,avg

T and p
top,lep
T . If instead we

examine Fig. 4 (right), with just the FCR topologies, the pattern is closer to the picture

expected from LO: 1
2m

tt̄ is well above the other observables, with a relative enhancement

– 14 –
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topology channel |ME|2 luminosity FS splitting product

FCR
gg ! tt̄ 0.15 0.16 1 0.024

qiq̄i ! tt̄ 0.22 0.13 1 0.028

FEX
tg ! tg 6.11 0.0039 1 0.024

t⌃ ! t⌃ 2.22 0.0170 1 0.038

gg ! gg(! tt̄) 30.4 0.16 Pg!tt̄ ' 0.004 0.020

GSP g⌃ ! g(! tt̄)⌃ 6.11 1.22 Pg!tt̄ ' 0.004 0.031

qq̄ ! gg(! tt̄) 1.04 0.13 Pg!tt̄ ' 0.004 0.001

Table 2: Factors contributing to the top-production cross section for a variety of partonic

scattering channels. In each case the 2 ! 2 squared matrix element (|ME|2, with a g
4 =

(4⇡↵s)2 factor stripped o↵ as in Eqs. (2.5), (2.6)) is given in the massless limit (valid

when pT � mt), for 90� scattering in the partonic centre-of-mass frame. The partonic

luminosities, defined as in Eq. (A.2), are given for a proton–proton centre of mass energy

of
p
s = 13 TeV and for producing a partonic system mass of

p
ŝ = 2 TeV. We set

the factorisation scale to µ = 1 TeV. ⌃ denotes a sum over all (non-top) quark and anti-

quark flavours. The luminosities have been evaluated with the PDF4LHC15 nnlo mc [28] set,

re-evolved in a six-flavour scheme with HOPPET [29] using NNLO splitting and threshold-

matching functions [30–33]. The final-state splitting probability Pg!tt̄ is obtained using

Eq. (2.9). The results in the final column are to be taken as order of magnitude estimates,

illustrating the commensurate sizes of di↵erent channels.

The Mandelstam invariants are ŝ = 4p2T and t̂ = û = �2p2T , and as a result the FEX

channel has a squared matrix element that is ten times larger than the FCR channel.

A second factor that is relevant is the partonic luminosity. For the FEX channels, the

incoming top is produced by an initial-state g ! tt̄ splitting, so ultimately the cross section

is driven by gg and g⌃ luminosities, where ⌃ is the sum of all light (anti-)flavours. The

top-quark luminosity then involves a factor ↵s ln pT /mtop, which gives a smaller luminosity

than either the gg or qiq̄i luminosities that were relevant for the FCR case. Ultimately the

larger matrix element compensates for the reduced luminosities and the FEX process has

a cross section that is comparable to that for FCR.

A similar set of features emerges also for the GSP case. Here the ↵s ln pT /mtop factor

appears for the final-state splitting rather than an initial state one. It is straightforward

to use massive splitting functions [36] to evaluate the leading-order probability Pg!tt̄ for

g ! tt̄ splitting with the tt̄ pair separated by distance �Rtt̄ < R, where �R
2
tt̄ = (yt �

yt̄)
2 + (�t � �t̄)

2 and yt and �t are respectively the rapidity and azimuth of the top. For a

gluon transverse momentum of pT , and with the conditions pTR � mtop and R ⌧ 1, the

result is

Pg!tt̄ =
↵sTR

2⇡

2

3

 
ln

p
2
T,tR

2

m
2
top

�
23

6

!
. (2.7)

In practice, the regime of pT = 1 TeV is not su�ciently asymptotic for this expression to
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hold, as one can see by substituting R = 1 and observing that the result is negative. To

obtain a more reliable estimate, we maintain the conditions pT � mtop and R ⌧ 1, but

relax the constraint on pTR/mtop. The resulting expression is a little cumbersome,6 but

the following parametrisation reproduces the correct result to better than 1% for all values

of pTR/mtop

Pg!tt̄ '
↵sTR

2⇡

1

3

ln(1 + e
4x�23/3 + e

2x
/10)

1� 0.101e�(x�2.2)2/2.3
, x = ln

pT,tR

mtop
. (2.9)

In other small-R calculations, corrections associated with finite values of R have often

been found to go as R2 with a small coe�cient [37]. At this stage, there is some freedom

in the R value that we choose in order to define the gluon-splitting. Insofar as we are

interested mainly in an order-of-magnitude estimate of g ! tt̄, we evaluate Eq. (2.9)

with R = 1, ignoring potential R2-suppressed corrections. Substituting pt = 1 TeV and

mtop = 173 GeV and ↵s(1 TeV) = 0.089, this yields the result for Pg!tt̄ shown in Table 2.

We see that, like FEX, the GSP topology is also comparable to the FCR one.

Were we to consider significantly harder events (e.g. at a 100 TeV collider) or b-

quarks instead of top quarks, the logarithmic factors would start to become large, further

enhancing the FEX and GSP contributions relative to FCR. This is consistent with earlier

findings of large relative FEX and GSP contributions to high-pT b-jet production [38].

The analysis shown in Table 2 is not intended to give precise predictions for the relative

sizes of di↵erent topologies. Nevertheless it shows that, despite their being suppressed by

a power of ↵s, the (NLO) FEX and GSP topologies are numerically comparable to the LO

FCR topology.7 By framing the discussion in terms of an asymptotic limit where pT �

mtop, we avoided providing a rigorous definition of the FCR, FEX and GSP topologies.

If one wishes to study actual events, whether in fixed-order QCD, or at particle-level in

experiments, a precise definition becomes necessary. This will be the topic of Section 3.

2.3 Interplay between topologies and hardness characterisation variable

Before turning to detailed topology definitions, we discuss the interplay between the topolo-

gies of Fig. 1 and the event hardness variables of Table 1. While all three main topologies

have comparable cross sections for comparable hardness of the underlying 2 ! 2 scattering,

their relative contributions to the di↵erential distribution of some specific event hardness

6
Starting from the massive splitting function, one introduces µ = mtop/(pT,t�R) (where �R is the

separation between the top and anti-top), performs the logarithmic integral over µ, and after rewriting the

expression in terms y, which is the solution of µ
2
= �y

2
/(1� y)

4
, integrates over z. One obtains

Pg!tt̄ =
↵sTR

2⇡

 
�
4
�
y
4 � 9y

3
+ 23y

2 � 9y + 1
�

3(y � 1)3
p

y2 � 6y + 1
tanh

�1

 
1� yp

y2 � 6y + 1

!
+

+
2
�
y
4
+ y

3
+ 3y

2
+ y + 1

�
log(y)

3(y � 1)3(y + 1)
� 23

9

!
(2.8)

and the solution to take for y is y = 1� i
2µ +

(1�i)
p

4µ�i

2
p
2µ

.

7
This finding is reminiscent of the observation of giant K-factors discussed for example in Ref. [39] for

vector-boson plus jet production, though the K-factors in the tt̄ case are less extreme.
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m
2
top

�
23

6

!
. (2.7)

In practice, the regime of pT = 1 TeV is not su�ciently asymptotic for this expression to

– 7 –

hold, as one can see by substituting R = 1 and observing that the result is negative. To

obtain a more reliable estimate, we maintain the conditions pT � mtop and R ⌧ 1, but

relax the constraint on pTR/mtop. The resulting expression is a little cumbersome,6 but

the following parametrisation reproduces the correct result to better than 1% for all values

of pTR/mtop

Pg!tt̄ '
↵sTR

2⇡

1

3

ln(1 + e
4x�23/3 + e

2x
/10)

1� 0.101e�(x�2.2)2/2.3
, x = ln

pT,tR

mtop
. (2.9)

In other small-R calculations, corrections associated with finite values of R have often

been found to go as R2 with a small coe�cient [37]. At this stage, there is some freedom

in the R value that we choose in order to define the gluon-splitting. Insofar as we are

interested mainly in an order-of-magnitude estimate of g ! tt̄, we evaluate Eq. (2.9)

with R = 1, ignoring potential R2-suppressed corrections. Substituting pt = 1 TeV and

mtop = 173 GeV and ↵s(1 TeV) = 0.089, this yields the result for Pg!tt̄ shown in Table 2.

We see that, like FEX, the GSP topology is also comparable to the FCR one.

Were we to consider significantly harder events (e.g. at a 100 TeV collider) or b-

quarks instead of top quarks, the logarithmic factors would start to become large, further

enhancing the FEX and GSP contributions relative to FCR. This is consistent with earlier

findings of large relative FEX and GSP contributions to high-pT b-jet production [38].

The analysis shown in Table 2 is not intended to give precise predictions for the relative

sizes of di↵erent topologies. Nevertheless it shows that, despite their being suppressed by

a power of ↵s, the (NLO) FEX and GSP topologies are numerically comparable to the LO

FCR topology.7 By framing the discussion in terms of an asymptotic limit where pT �

mtop, we avoided providing a rigorous definition of the FCR, FEX and GSP topologies.

If one wishes to study actual events, whether in fixed-order QCD, or at particle-level in

experiments, a precise definition becomes necessary. This will be the topic of Section 3.

2.3 Interplay between topologies and hardness characterisation variable

Before turning to detailed topology definitions, we discuss the interplay between the topolo-

gies of Fig. 1 and the event hardness variables of Table 1. While all three main topologies

have comparable cross sections for comparable hardness of the underlying 2 ! 2 scattering,

their relative contributions to the di↵erential distribution of some specific event hardness

6
Starting from the massive splitting function, one introduces µ = mtop/(pT,t�R) (where �R is the

separation between the top and anti-top), performs the logarithmic integral over µ, and after rewriting the

expression in terms y, which is the solution of µ
2
= �y

2
/(1� y)

4
, integrates over z. One obtains

Pg!tt̄ =
↵sTR

2⇡

 
�
4
�
y
4 � 9y

3
+ 23y

2 � 9y + 1
�

3(y � 1)3
p

y2 � 6y + 1
tanh

�1

 
1� yp

y2 � 6y + 1

!
+

+
2
�
y
4
+ y

3
+ 3y

2
+ y + 1

�
log(y)

3(y � 1)3(y + 1)
� 23

9

!
(2.8)

and the solution to take for y is y = 1� i
2µ +

(1�i)
p

4µ�i

2
p
2µ

.

7
This finding is reminiscent of the observation of giant K-factors discussed for example in Ref. [39] for

vector-boson plus jet production, though the K-factors in the tt̄ case are less extreme.

– 8 –

NB: is negative for  = 1 TeV, , 
i.e. not 1 TeV is not sufficiently asymptotic

pT,t R = 1
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Figure 7: Fractional contributions of the main top-production topologies as a function

of the variable used to characterise the hardness of the event. This is the analogue of

Fig. 2, replacing Monte-Carlo truth top quarks with top-quark candidates reconstructed in

particle-level events using the approach of sections 4.1 and 4.2. A rapidity cut of 2.5 has

been applied to the muons and to the R = 0.4 jets obtained in step 1 of Algorithm 2.

rapidity acceptance, i.e. considering only jets and muons at rapidities below 2.5 in step 2

of Algorithm 2.

Fig. 7 is the analogue of Fig. 2 using top-quark candidates as reconstructed from par-

ticle (hadron) level events. The two sets of plots are strikingly similar, which should not

be surprising given the validation results shown above. Where modest di↵erences arise,

these can be understood as a consequence of the variations in reconstruction e�ciencies

across di↵erent topologies. For example one sees a slightly larger FCR contribution in the

hadron-level reconstructed m
J,avg
T plot than in the parton-level one, reflecting the higher

e�ciencies for FCR reconstruction. Similarly we have checked that the hadron-level recon-
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Figure 2: Fractional contributions of the main top-production topologies (cf. Fig. 1), as

a function of the variable used to characterise the hardness of the event, cf. Table 1. The

expectations are those shown in Table 3.

cross sections that are commonly studied experimentally. Fig. 4 shows di↵erential cross

sections for a subset of observables, choosing at least one from each of the groupings of

Table 1. The left-hand plot shows the results without any topological classification. Among

the features in the plot that is surprising at first sight is that the p
tt̄
T distribution, which

starts at ↵3
s, is larger at high scales than the ptop,lepT distribution, which starts at ↵2

s. Based

on the analysis of Section 2, this is however not a surprise, because of large FEX and GSP

contributions to the p
tt̄
T distribution. If one considers only events with an FCR topology,

as done in the right-hand plot, the p
tt̄
T distribution ends up being substantially suppressed

relative to p
top,lep
T , restoring faith in an analysis based on perturbation theory.

Another feature that becomes clearer when isolating the FCR topology is the hierarchy

between 1
2m

tt̄ on one hand and H
tt̄+jets
T , mJ,avg

T and p
top,lep
T on the other. A hierarchy is

– 13 –
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Figure 3: Kinematic distribution of the softer top, for events with large mJ,avg
T , in each of

the three main topologies. The plots show d�/dzd��tt̄, normalised to 1 at the maximum

value of the histogram; z = m
top,min
T /m

J,avg
T measures the hardness of the softer top relative

to the underlying 2 ! 2 event hardness, and ��tt̄ is the azimuthal distance between the

two top quarks.

�s
=
13

TeV,PO
W
H
EG

hvq
+
Py8,tt�

bbjj�
±�

parton-level, truth tops

d�
/d
V
[p
b/
G
eV
]

V [GeV]

All channels

V = mtt/2
V = ½HT

tt,jets

V = mT
J,avg

V = pTtop,lept.
V = pTtt

1

10-5

10-4

10-3

10-2

10-1

0 200 400 600 800 1000

�s
=
13

TeV,PO
W
H
EG

hvq
+
Py8,tt�

bbjj�
±�

parton-level, truth tops

d�
/d
V
[p
b/
G
eV
]

V [GeV]

FCR only

V = mtt/2
V = ½HT

tt,jets

V = mT
J,avg

V = pTtop,lept.
V = pTtt

1

10-5

10-4

10-3

10-2

10-1

0 200 400 600 800 1000

Figure 4: Di↵erential cross sections as a function of a variety of scales used to characterise

the event hardness (V ), considering an illustrative subset of the scales from Table 1. Left-

hand plot: results summing over all topologies. Right-hand plot: results for just the FCR

topology.

an expected consequence of the LO log(mtt̄
/mtop) enhancement for the 1

2m
tt̄ distribution

quoted in Eq. (2.3). The other three observables are identical at LO, and free of any

log(mtt̄
/mtop) enhancement. Yet in Fig. 4 (left) H

tt̄+jets
T appears to be almost identical

to 1
2m

tt̄, and there is a clear hierarchy among H
tt̄+jets
T , mJ,avg

T and p
top,lep
T . If instead we

examine Fig. 4 (right), with just the FCR topologies, the pattern is closer to the picture

expected from LO: 1
2m

tt̄ is well above the other observables, with a relative enhancement

– 14 –
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Figure 8: Hadron level results with reconstructed tops, for di↵erential cross sections as a

function of a selection of scales used to characterise the event hardness (V ), for a subset of

such scales. Left-hand plot: results summing over all topologies. Right-hand plot: results

for just the FCR topology. This plot is to be compared to Fig. 4. The results here include

a rapidity acceptance cut of |y| < 2.5 for jets and muons.

Figure 9: Comparison of the truth (partonic-top) �ytt̄ distribution with the distribution

obtained for fully reconstructed top quarks in hadron (particle) level events. The (truth

or reconstructed) tt̄ pair satisfies the constraint 800 < m
tt̄
/2 < 1000 GeV. The histograms

include all topologies.

structed analogue of Fig. 3 is close to the truth-level results.

Fig. 8 shows hadron-level di↵erential cross sections. Broadly speaking the results are

similar to those with truth tops in Fig. 4. There is an overall reduction in the cross sections,

which is to be expected given the 10�30% reconstruction e�ciencies shown in Fig. 6.
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Figure 5: Left: the distribution of |�ytt̄| in for events where the tt̄ pair is in a given bin

of either m
tt̄
/2 or p

top,avg
T . Right: the average of the two top transverse momenta versus

|�ytt̄| in the given bin of mtt̄
/2. We include all topologies in these results, keeping in mind

that FCR is always the dominant contribution here.

that increases towards larger 1
2m

tt̄. Meanwhile, Htt̄+jets
T , mJ,avg

T and p
top,lep
T all show similar

scaling at high momenta. Remaining variations between them are straightforward to un-

derstand: taking m
J,avg
T as the reference, the H

tt̄+jets
T variable includes contributions from

ISR radiation and so is larger, while p
top,lep
T is sensitive to the loss of radiation from top

fragmentation and so is smaller.

We have also checked the six other event-hardness scales from Table 1 and the patterns

observed are in line with the analysis given above.

Our final comment of this section concerns the observation that the V = m
tt̄
/2 distri-

bution is 12�14 times larger than the p
top,lep
T distribution. A significant ratio is expected

because of the log(mtt̄
/mtop) enhancement that is present in Eq. (2.3), associated the in-

tegral over �ytt̄ up to its kinematic boundary, Eq. (2.4). Fig. 5 (left) shows the �ytt̄

distribution in a bin of either the m
tt̄
/2 or p

top,avg
T hardness scale. In the lowest bin of

�ytt̄, the results are independent of the choice of hardness scale. However at larger �ytt̄,

the di↵erence between the two histograms is striking, with the m
tt̄
/2 case dominated by

values of �ytt̄ close to the kinematic limit, a consequence not just of the LO distribution

covering rapidities up to the kinematic boundary, but also of further apparent logarithmic

enhancements for large �ytt̄ at NLO and beyond (cf. Appendix B). It is important to be

aware that the events at large�ytt̄ involve low transverse momenta for the top quarks. This

is illustrated in Fig. 5 (right), which shows the average top-quark transverse momentum

as a function of �ytt̄ for the same bin of mtt̄
/2 as shown on the left. Close to the kine-

matic boundary of �ytt̄, where the cross section is largest, the top quarks have transverse

momenta of the order of mtop, which is to be expected given the basic kinematic relations

that hold at LO.

– 15 –
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Figure 10: Asymptotic leading-order forms for the �ytt̄ distribution at fixed large mtt̄,

as given in Eq. (A.1), applied to the case of
p
s = 13 TeV pp collisions and mtt̄ = 2 TeV.

The left-hand plot uses fixed renormalisation and factorisation scales, which is physically

inappropriate but illustrates the key analytical features of the structure of Eq. (A.1). The

right-hand plot uses a physically motivated scale choice, of the order of the momentum

transfers involved in the process.

physically motivated scale choice, µ2
R = µ

2
F = (Htt̄

T /2)
2 = m

2
tt̄/(2(1 + cosh�ytt̄)), is shown

in the right-hand plot.14 This choice has a major impact on the shape of the distribution,

with the plateaus in the gg-induced distribution acquiring a strong quasi-linear dependence

on �ytt̄. This dependence arises from the scaling violations in the coupling and PDF, a

consequence of lnµ2
' lnm2

tt̄ � �ytt̄. The precise slope depends on the x values being

probed in the PDF.

The significant di↵erence in �ytt̄ dependence for qq̄ and gg-induced production has

the potential to provide a valuable handle separately for the gluon and quark parton dis-

tributions.

We can also integrate over �ytt̄ to obtain the single-di↵erential distribution,

d�

dm
2
tt̄

=
↵
2
s⇡

m
4
tt̄

✓
1

3
ln

m
2
tt̄

m
2
t

�
7

12

◆
Lgg +

8

27
Lqq̄

�
, (A.3)

quoted in Section 2.1 as Eq. (2.3). Again we have neglected corrections that are suppressed

in our kinematic region. The result is obtained for a fixed scale and, as discussed above,

this is a physically inappropriate choice. Nevertheless, it is instructive to have the ana-

lytical result in this limit, because it reveals a ln
m2

tt̄
m2

t
enhancement of the gluon-induced

contribution.

14
For more complex events, one may choose to generalise this to m

J,avg
T or H

tt̄+jets
T /2 of Table 1.
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NLO v. LO for fixed mtt bin [MCFM]
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Figure 12: Left: NLO v. LO prediction for the �ytt̄ distribution in a bin of large m
tt̄
/2,

as obtained with the MCFM program [88], including the semi-muonic branching fraction.

The renormalisation and factorisation scales are set to µ = H
tt̄
T /2. Right: corresponding

K-factor, i.e. the ratio of the NLO to the LO result.

B Comments on the mtt̄ distribution beyond LO

Fig. 12 compares LO and NLO fixed-order calculations (obtained using MCFM [88]) with

a renormalisation and factorisation scale choice of Htt̄
T /2. This scale choice already ab-

sorbs the running coupling and PDF e↵ects associated with the varying top transverse

momentum across the range of �ytt̄ values (cf. the left and right-hand plots of Fig. 10).

Those e↵ects correspond to an ↵
3
s ln

2
mtt̄/mtop contribution to the total cross section, i.e. a

single-logarithmic enhancement. However Fig. 12 shows further strong dependence of the

NLO/LO K-factor as a function of �ytt̄, which one may take evidence of further sources

of logarithmic enhancement.

A full discussion of the di↵erent potential sources of logarithmic enhancement is sig-

nificantly beyond the scope of this paper. However, we believe that it is still informa-

tive to outline the di↵erent classes of term that can contribute. Loss of top momentum

through fragmentation can contribute logarithms at small �ytt̄ (i.e. large p
t
T ), and is tra-

ditionally accounted for in the FONLL formalism [73, 74]. At large �ytt̄, for t-channel

top-quark exchange there are single logarithmic t-channel-fermion analogues of BFKL en-

hancement [75–78], associated with integrals over the rapidity of emitted gluons between

the two final-state top quarks. Integrating over �ytt̄, we also expect double logarithmic

↵
n
s ln

2n
mtt̄/mtop enhancements, which relate to double-logarithmic non-singlet structure

functions at small-x [86, 87], whose formalism can be used [89] to predict the ↵
n
s ln

2n�2
x

terms in the non-singlet P
+
NS(x) splitting functions [30, 90, 91]. To understand their

origin in the context of tt̄ production, one may examine the NLO case: consider an ISR

g ! tt̄ splitting followed by a harder tg ! gt scattering (which proceeds mainly through

t-channel top exchange). We are interested in a situation where, in the ISR splitting, the

anti-top and top have transverse momenta equal to some value pt1. Take the anti-top to
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pT,1

pT,2

pT,2

z
1 − z

{
m2

gt ≃ zmtt̄

dσ
dm2

tt̄
= ∫ dzPtg(z)

dp2
t1

p2
t1 ∫ dm2

tg
dσt−chan

tg→gt

dm2
tg

δ(m2
tt̄ − m2

tg/z)

= ∫ dzPtg(z)
dp2

t1

p2
t1

z
dσt−chan

tg→gt

dm2
tg

m2
tg=zm2

tt̄

∝ ∫ dzαs
dp2

t1

p2
t1

z
α2

s ln m2
tt̄ /p2

t1

(zm2
tt̄)2

∝
α2

s

m4
tt̄

ln3 m2
tt̄

m2
top

➤ They are present also in non-singlet splitting functions, and subleading corrections are 
quite large, so conceivably not relevant until beyond-LHC 

➤ Beyond LHC, watch out also for 4-top ( ) and  (EW, )α4
s /m2

tt̄m
2
top bb̄ → tt̄ α2

EW/m2
tt̄m

2
top


