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The context of this talk: LHC physics
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Standard-model  
physics  

(QCD & electroweak)

100 MeV ‒ 4 TeV

top-quark physics

170 GeV ‒ O(TeV)

Higgs physics

125 GeV ‒ 500 GeV

direct new-particle 
searches

100 GeV ‒ 8 TeV

flavour physics 
(bottom & some charm)

1 ‒ 5 GeV

heavy-ion physics

100 MeV - 500 GeV
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high pT Higgs & [SD] jet mass

We wouldn’t trust electromagnetism if 
we’d only tested it at one length/
momentum scale. 

New Higgs interactions need testing at 
both low and (here) high momenta.

3

high-pT  
Z → bb

high-pT  
H → bb  

(2.5 σ)

p p

H

arXiv:2006.13251 

http://arxiv.org/abs/2006.13251
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LHC luminosity v. time

4

Run 3 Run 4

YEAR

integrated luminosity  
(~ total number of  

pp collisions)

today: 140 fb-1

95% of collisions  
still to be delivered https://lhc-com

m
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UNDERLYING 
THEORY

EXPERIMENTAL 
DATA

how do you make 
quantitative 
connection?
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Lagrangian  data 

ATLAS and CMS (big LHC expts.) have  
written >700 articles since 2017 

links ≡ papers they cite

↔

quantum chromodynamics (QCD) theory papers

experimental & statistics papers
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predicting full particle structure  
that comes out of a collision
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incoming beam particle

intermediate particle 
(quark or gluon)

final particle (hadron)

Event evolution spans 7 orders of 
magnitude in space-time

http://panscales.org/videos.html 

http://panscales.org/videos.html


simulations use General Purpose Monte Carlo event generators 

THE BIG 3

9

Herwig 7 Pythia 8 Sherpa 2

used in ~95% of ATLAS/CMS publications 
they do an amazing job of simulation vast swathes of data; 

collider physics would be unrecognisable without them
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Torbjörn Sjöstrand: founding author of Pythia 
Byran Webber: founding author of Herwig (with Marchesini†)
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Elements of a Monte Carlo  
event generator

11
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schematic view of key 
components of QCD 

predictions and Monte 
Carlo event simulation
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schematic view of key 
components of QCD 

predictions and Monte 
Carlo event simulation

1 TeV

10 GeV

energy
scale

1 GeV

100 GeV

hadronisation

shower

hard process

parton

PanScales 
project

PanScales 
project[ ]

π Κ π ρ p . . . . . Κ π π Κ π π

timeZ'

1 TeV

10 GeV

energy
scale

1 GeV

100 GeV

hadronisation

shower

hard process

parton

PanScales 
project

PanScales 
project[ ]

π Κ π ρ p . . . . . Κ π π Κ π π

timeZ'

pattern of particles in 
MC can be directly 

compared to pattern in 
experiment
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Much of past 20 years’ work: 
MLM, CKKW, MC@NLO, 
POWHEG, MIN(N)LO, FxFx, 
Geneva, UNNLOPS, Vincia, etc.

Largely based 
on principles 
from 20-30 
years ago
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Much of past 20 years’ work: 
MLM, CKKW, MC@NLO, 
POWHEG, MINLO, FxFx, 
Geneva, UNNLOPS, Vincia, etc.

for new ideas 
(including connections 
with heavy-ion 
collisions) see work by 
Gustafson, Lönnblad, 
Sjöstrand
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Much of past 20 years’ work: 
MLM, CKKW, MC@NLO, 
POWHEG, MINLO, FxFx, 
Geneva, UNNLOPS, Vincia, etc.

This talk
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Status of parton showers

18
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selected collider-QCD accuracy milestones

19

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

1980 1990 2000 2010 20201970

Drell-Yan (γ/Ζ) & Higgs production at hadron colliders
NLOLO NNLO[……………….] N3LO

transverse-momentum resummation (DY&Higgs)
NLL[……]LL NNLL[…] N3LL

fixed-order matching of parton showers
LO NLO NNLO […….] [N3LO]

parton showers
[parts of NLL…………………………………………..]LL

(many of today’s widely-used showers only LL@leading-colour)this talk
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Many groups active on [QCD] parton showers in past 20 years

➤ Pythia shower [Sjöstrand & Skands ’04, Cabouat & Sjostrand, ’17] 
➤ Sherpa shower [Schumann & Krauss ’07] 
➤ Deductor shower [Nagy & Soper ’07 - ’22] 
➤ Vincia shower [Giele, Kosower & Skands ’07, Li & Skands ’16, …] 
➤ Dire shower [Höche & Prestel ’15, …] 
➤ Herwig angular-ordered showers [Gieseke, Stephens, Webber ’03,  

Bewick et al ’19, …] 
➤ Herwig dipole showers [Plätzer & Gieseke ’09, Forshaw, Holguin & Plätzer ’20, …] 

Various directions: new formulations of classic shower ideas, alternative kinematic 
recoil, improved colour-handling, improved spin-handling, higher-order splitting 
kernels, …

20
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   [2007.02645]

Difference between  
Pythia8 and Sherpa 

Parton Shower accuracy matters: e.g. for jet energy calibration (affects ~1500 papers)

21

Largest systematic errors (1–2%) 
come from differences between 

MC generators  

(here Sherpa2 v. Pythia8)

Jet energy calibration uncertainty 
feeds into 75% of ATLAS & CMS 

measurements

→ fundamental limit on 
LHC precision potential
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Consider measurement of W boson mass

mW = 80354 ± 23stat ± 10exp ± 17theory ± 9PDF MeV

Melissa van Beekveld22

[2109.01113]

Measurements of  in 
 decays used to 

validate the MC predictions for 

pZ
T

Z/γ* → l+l−

pW
T

[1009.1580]ϕ* = tan((π − Δϕ)/2)
cosh(Δη/2) ∼ pZ

T

mll

Different parton-
shower models

Analytic prediction

Different PDF

The envelope of shifts in  
originating from differences in these 
shower predictions is the dominant 

theory uncertainty (11 MeV)

mW

Parton Shower accuracy matters: e.g. for W mass extraction
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ce

pure QCD event event with Higgs & Z boson decays



Machine learning and jet/event structure 

24

Convolutational Neural Networks and Jet Images

I Project a jet onto a fixed n ⇥ n pixel image in rapidity-azimuth, where
each pixel intensity corresponds to the momentum of particles in that
cell.

I Can be used as input for classification methods used in computer
vision, such as deep convolutional neural networks.

[Cogan, Kagan, Strauss, Schwartzman JHEP 1502 (2015) 118]
[de Oliveira, Kagan, Mackey, Nachman, Schwartzman JHEP 1607 (2016) 069]

Frédéric Dreyer 11/42
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FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW

cRRUdLQaWeV feaWXUeV

EdgeCRQY BORcN
N = 16, C = (64, 64, 64)

EdgeCRQY BORcN
N = 16, C = (128, 128, 128)
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N = 16, C = (256, 256, 256)

GORbaO AYeUage PRROLQg

FXOO\ CRQQecWed
256, ReLU, DURSRXW = 0.1

FXOO\ CRQQecWed
2

SRfWPa[

(a) ParticleNet

cRRUdLQaWeV feaWXUeV

EdJeCRQY BORcN
N = 7, C = (32, 32, 32)

EdJeCRQY BORcN
N = 7, C = (64, 64, 64)

GORbaO AYeUaJe PRROLQJ

FXOO\ CRQQecWed
128, ReLU, DURSRXW = 0.1

FXOO\ CRQQecWed
2

SRfWPa[

(b) ParticleNet-Lite

FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

Qu & Guskos, 
arXiv:1902.08570

2021 Young Experimental Physicist Prize EPS HEPP prize

https://arxiv.org/abs/1902.08570


using full jet/event information for H/W/Z-boson tagging

25

ba
ck

gr
ou

nd
 r
ej
ec

tio
n

signal efficiency

adapted from 
Dreyer & Qu 
2012.08526 

p p

H/W/Z

QCD rejection  
with use of full jet  

substructure 
(2021 tools) 

100x better

First started to be exploited 
by Thaler & Van Tilburg with  
“N-subjettiness”  (2010/11)

x100

QCD rejection with 
just jet mass 

(SD/mMDT) 
i.e. 2008 tools & 

their 2013/14 
descendants 

https://arxiv.org/abs/2012.08526
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Unless you are highly confident in the 
information you have about the markets, you 
may be better off ignoring it altogether

- Harry Markowitz (1990 Nobel Prize in Economics) 
[via S Gukov]

26

can we trust machine learning? A question of confidence…
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parton shower basics
illustrate with dipole / antenna showers

27

Gustafson & Pettersson 1988, Ariadne 1992, main Sherpa & Pythia8 showers, option in Herwig7,  
Vincia & Dire showers & (partially) Deductor shower
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dP2(v)
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= − f qq̄
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Throw a random number to determine down to 
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30
v 

dP3(v)
dv

= − [f qg
2→3(v) + fgq̄

2→3(v)] P3(v)

Start with q-qbar state.  

Throw a random number to determine down to 
what scale state persists unchangedq

q
_
g

At some point, state splits (2→3, i.e. emits 
gluon). Evolution equation changes 

gluon is part of two dipoles , , each 
treated as independent  
(many showers use a large NC limit)

(qg) (gq̄)



QCD shower: an evolution equation (in evolution scale v, e.g. trans.mom.)
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logarithmic accuracy

32



How do you defined the accuracy of a parton shower?

➤ For a total cross section, e.g. for Higgs production, it’s easy to talk about systematic 
improvements (LO, NLO, NNLO, …). But they’re restricted to that one observable

33

how can you prescribe correctness & accuracy of the answer,  
when the questions you ask can be arbitrary?

➤ With a parton shower (+hadronisation) you produce a “realistic” full set of 
particles. You can ask questions of arbitrary complexity: 

➤ the multiplicity of particles 

➤ the total transverse momentum with respect to some axis (broadening) 

➤ the angle of 3rd most energetic particle relative to the most energetic one 
[machine learning might “learn” many such features]



Phenomenology: lecture 4 (93/101)

Choosing the right QCD tools

Example: thrust
Thrust — a QCD ‘guinea pig’

First discussion goes back to 1964. Serious work got going in late ’70s.
Thrust is one of many continous measures of the event ‘shape’:

T = max
!nT

∑

i |!pi .!nT |
∑

i |!pi |
,

2-jet event: T ! 1 3-jet event: T ! 2/3

There exist many other measures of aspects of the shape: Thrust-Major,
C-parameter, broadening, heavy-jet mass, jet-resolution parameters,. . .

⃗nT

Logarithmic accuracy: a schematic intro

It’s common to hear that showers are Leading Logarithmic (LL) accurate.  

That language, widespread for multiscale problems, comes from  
analytical resummations. E.g. transverse momentum broadening 

You can resum cross section for  to be very small (as it is in most events) B

34

σ(B < eL) = σtot exp [ 1
αs

g1(αsL) + g2(αsL) + αsg3(αsL) + α2
s g4(αsL) + ⋯]

LL ~ O( )1
α NLL ~ O(1) NNLL ~ O( )α N3LL ~ O( )α2

Dokshitzter, Lucenti, Marchesini & GPS ’98 Becher & Bell ‘12

[αs ≪ 1, αsL ∼ − 1]

B =
∑i | ⃗pi × ⃗nT |

∑i | ⃗pi |

today 
concentrate just on LL & NLL 
i.e. control of terms up to O(1)
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1. origin of logarithms: soft (dE/E) and collinear (dθ/θ) enhancements

35

B. Andersson, G. Gustafson, 
 L. Lonnblad and Pettersson 1989 

+ declustering-based analysis: 
Dreyer, GPS & Soyez, 1807.04758
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2-dimensional representation of 
logarithmic phase space  

emission probability  

∼ αs (dln kt) (dln θ)

    θ
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Eθ
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]

soft+ 
large 
angle

soft+collinear

hard+collinear

https://arxiv.org/abs/1807.04758
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2. classes of logarithmic enhancement: , αn
s L2n αn

s Ln

: 

➤ each emission “costs” a power of  

➤ full 2-dimensions of phase space → 
factor of 

αn
s L2n

αs

L2

36
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[G
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L

➤ vetoed regions of phase space 
count in similar way  
(“Sudakov” form factor)

vetoed
L



Gavin P. Salam DESY Theory Seminar, June 2022

2. classes of logarithmic enhancement: , αn
s L2n αn

s Ln

: 

➤ each emission “costs” a power of  

➤ some physics effects only involve 
one-dimensional phase space for 
emissions — factor of  

➤ some observables only sensitive to 
a one-dimensional phase space for 
emissions

αn
s Ln

αs

L

37

1

2

5

10

20

40

0.010.020.050.10.20.4

k t
=
p t
Δ
R
[G
eV
]

ΔR

∼ L



Gavin P. Salam DESY Theory Seminar, June 2022

2. classes of logarithmic enhancement: , αn
s L2n αn

s Ln

: 

➤ a nearby pair of real emissions, or 
one emission+ one virtual, brings 
two powers of  

➤ when  enhanced by two-
dimensional phase space, get 

 

➤ standard observables (e.g. event 
shapes) care only about integrated 
sum of double-real and real-virtual 
(and overall double-virtual 
counterpart) = cusp anomalous 
dimension

αn
s Ln

αs

α2
s

α2
s L2 × ⋯

38

1

2

5

10

20

40

0.010.020.050.10.20.4

k t
=
p t
Δ
R
[G
eV
]

ΔR

L

L



39

ln
 k

(c)

ln
 k

t

ln
 k

t

L
U

N
D

 D
I
A

G
R

A
M

P
R

I
M

A
R

Y
 L

U
N

D
 P

L
A

N
E

J
E

T

(b)

(a)

(b)

(a) (c)

tt

ln
 k

(c)

ln 1/ ∆

ln 1/ ∆ ln 1/ ∆

ln 1/ ∆

(b)

(c)

(b)

(b)(b)

(c)

η η

primary Lund plane

secondary  
Lund planes

tertiary  
Lund plane

3. accuracy needs to hold also for secondary, tertiary, etc. emissions



Designing NLL parton showers

40

defining “NLL” aims 
a robust recoil framework 

ingredients for specific phase-space regions
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Defining what we mean by NLL

A Matrix Element condition 

➤ correctly reproduce -parton tree-level matrix element for arbitrary configurations, 
so long as all emissions well separated in the Lund diagram 

➤ supplement with unitarity, 2-loop running coupling & cusp anomalous dimension 

Resummation condition: reproduce NLL results for all standard resummations 

➤ global event shapes  
➤ non-global observables  
➤ fragmentation functions 
➤ multiplicities 
➤ … 

n

42

Dasgupta, Dreyer, Hamilton, Monni, GPS ’18 
ibid + Soyez ‘20
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1. Recoil: the core of any shower

43

qq̄

1~
Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

pendix A), the kinematic mappings (Appendix B), the analytic expectations for our colour

tests (Appendix C) and the derivation of the spin branching amplitudes (Appendix D).

The validation of our approach at all-orders across many observables and a presentation of

the associated all-order testing methodology are to be found in a separate publication [1].

2 Basics of hadron-collision dipole showers

In this section we will highlight common features of dipole showers and formulate a generic

standard dipole shower, which will be used as a convenient reference for a LL-accurate

shower throughout this work and our companion article [1]. We will concentrate on colour-

singlet production in proton-proton collisions, specifically qq̄ ! Z and gg ! H, with a

hadron-hadron centre-of-mass energy
p
s and a colour-singlet Born four-momentum Q

µ.

2.1 Generic formulation of a hadron-collider shower

Standard dipole showers and the PanScales hadron-collider showers that we develop later

in Section 4 have a number of characteristics in common. These include the final and

initial-state splitting probabilities, as well as the generic structure of recoil for emission of

a parton from a dipole. In this work, all partons are considered to be massless and we will

often refer to the colour singlet as the “hard system”.

First, we consider a final-state parent parton ı̃ that radiates a collinear emission k. The

post-branching momentum of the parent is denoted by i. The phase-space of the emission

k is parameterised by its transverse momentum k?, its longitudinal momentum fraction

z (relative to the pre-branching parent) and its azimuthal angle '. In the collinear limit

(✓ik ⌧ 1), the di↵erential branching probability then reads

epi
pk ' zepi

pi ' (1� z)epi

! dPFS
ı̃!ik

=
↵s(k2?)

2⇡

dk2?
k
2
?

dz

z

d'

2⇡
N

sym
ik

[zPı̃!ik(z)] ,

(2.1)

with ↵s the strong coupling and N
sym
ik

a symmetry factor that is equal to 1/2 for g !

gg splittings, and 1 otherwise. We use symbols with a tilde to indicate pre-branching

partons and their momenta, and symbols without any decoration to indicate post-branching

partons. The DGLAP splitting functions Pı̃!ik are provided in Appendix A. A well-known

feature of Eq. (2.1) is its singular behaviour in the soft (z ! 0) collinear limit for flavour-

conserving emissions (i.e. Pg!gg and Pq!qg), and in the hard (z ⇠ 1) collinear limit for

every type of emission. The soft and collinear singularities compensate the smallness of

↵s in the corresponding regions of phase space, resulting in the large logarithms that the

shower resums.

In hadronic collisions, final-state radiation is to be supplemented with emissions from

the incoming partons. Over three decades ago, it was realised that a backwards evolution

– 4 –
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1. Recoil: the core of any shower
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qq̄

1 2

emission of 2 takes transverse 
recoil from 1

Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

(a)
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⟂
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(b)

Figure 3: (a) Illustration of the modification of the transverse momentum (upper panel)

and rapidity (lower panel) of gluon 1 after emission of gluon 2, shown as a function of

the rapidity of gluon 2. Prior to emission of gluon 2, gluon 1 originally has a rapidity

⌘g1 ' 2.3 and transverse momentum ep?,g1 = v1 = 10�6
Q (v1 = 10�6

Q and 1 � z1 =

10�5). Gluon 2 has v2 = 1
2v1 and is emitted parallel in azimuth to gluon 1. To help

guide the eye, four regions of gluon 2 rapidity are labelled according to the identity of the

parton that branches and that of the spectator. The results have been obtained using a

numerical implementation of the kinematic maps of section 2. The transverse momentum

shifts in (a) can be reinterpreted in terms of the e↵ect they have on the e↵ective matrix

element for double-soft emission. Plot (b) shows the ratio of this e↵ective matrix element

to the true one, as a function of the azimuthal angle between the two emissions and their

transverse-momentum ratio (in a specific “diamond” region of widely separated rapidities,

cf. Appendix A). For simplicity, the matrix-element ratio is given in the large-Nc limit.

that this issue with subleading Nc terms will also a↵ect those double logarithms. We will

investigate this in section 4.1.

We should note that issues with the attribution of colour factors beyond leading NC in

dipole showers have been highlighted in a range of previous work, e.g. Refs. [36, 53, 79, 80].

Our analysis in this subsection is close in particular to that of Ref. [53]. We also note

that approaches to obtain the correct subleading colour factor for at least the main soft-

collinear divergences have existed for some time. The classification that is implied by

angular ordering (see also Ref. [52]) provides a guide in this direction, as was articulated

for a dipole shower in Ref. [53] and found to be relevant for particle multiplicities at LHC

energies [54]. Another proposal is that of Ref. [79].

– 15 –

ratio of effective shower 
matrix element to exact one

Shower initially generated matrix element for  
particle , whose momentum differs (by ~ 50%)  
from final particle 1.  

Matrix element is incorrect wrt final momentum 1. 
First observed: Andersson, Gustafson, Sjogren ’92 
Closely related effect present for Z pt: Nagy & Soper 0912.4534 
Impact on log accuracy across many observables: Dasgupta, Dreyer, Hamilton, Monni, GPS, 1805.09327 

1̃

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/1805.09327
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1. Correct recoil rule: no side effects on other distant emissions

45

qq̄

1~
One approach

pendix A), the kinematic mappings (Appendix B), the analytic expectations for our colour

tests (Appendix C) and the derivation of the spin branching amplitudes (Appendix D).

The validation of our approach at all-orders across many observables and a presentation of

the associated all-order testing methodology are to be found in a separate publication [1].

2 Basics of hadron-collision dipole showers

In this section we will highlight common features of dipole showers and formulate a generic

standard dipole shower, which will be used as a convenient reference for a LL-accurate

shower throughout this work and our companion article [1]. We will concentrate on colour-

singlet production in proton-proton collisions, specifically qq̄ ! Z and gg ! H, with a

hadron-hadron centre-of-mass energy
p
s and a colour-singlet Born four-momentum Q

µ.

2.1 Generic formulation of a hadron-collider shower

Standard dipole showers and the PanScales hadron-collider showers that we develop later

in Section 4 have a number of characteristics in common. These include the final and

initial-state splitting probabilities, as well as the generic structure of recoil for emission of

a parton from a dipole. In this work, all partons are considered to be massless and we will

often refer to the colour singlet as the “hard system”.

First, we consider a final-state parent parton ı̃ that radiates a collinear emission k. The

post-branching momentum of the parent is denoted by i. The phase-space of the emission

k is parameterised by its transverse momentum k?, its longitudinal momentum fraction

z (relative to the pre-branching parent) and its azimuthal angle '. In the collinear limit

(✓ik ⌧ 1), the di↵erential branching probability then reads

epi
pk ' zepi

pi ' (1� z)epi

! dPFS
ı̃!ik

=
↵s(k2?)

2⇡

dk2?
k
2
?

dz

z

d'

2⇡
N

sym
ik

[zPı̃!ik(z)] ,

(2.1)

with ↵s the strong coupling and N
sym
ik

a symmetry factor that is equal to 1/2 for g !

gg splittings, and 1 otherwise. We use symbols with a tilde to indicate pre-branching

partons and their momenta, and symbols without any decoration to indicate post-branching

partons. The DGLAP splitting functions Pı̃!ik are provided in Appendix A. A well-known

feature of Eq. (2.1) is its singular behaviour in the soft (z ! 0) collinear limit for flavour-

conserving emissions (i.e. Pg!gg and Pq!qg), and in the hard (z ⇠ 1) collinear limit for

every type of emission. The soft and collinear singularities compensate the smallness of

↵s in the corresponding regions of phase space, resulting in the large logarithms that the

shower resums.

In hadronic collisions, final-state radiation is to be supplemented with emissions from

the incoming partons. Over three decades ago, it was realised that a backwards evolution

– 4 –
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1. Correct recoil rule: no side effects on other distant emissions
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qq̄

1~
One approach

2

emission of 2 takes transverse 
recoil from q

 left almost unchanged if  recoil from emission of 2 taken by (much harder) qθ1q ⊥
Can be achieved in multiple ways: 

➤ global transverse recoil  
(Dasgupta et al 2002.11114, “PanGlobal”; Holguin Seymour & Forshaw 2003.06400)  

➤ local transverse recoil, with non-standard shower ordering & dipole partition 
(“PanLocal”; Nagy & Soper 0912.4534, “Deductor”)
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https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/0912.4534
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2. individual ingredients: (a) large-angle soft (non-global logarithms)

➤ dipole showers get this right at 
large  “for free” 

➤ (NB: angular ordered showers 
don’t — Banfi, Corcella & 
Dasgupta, hep-ph/0612282)

Nc
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https://arxiv.org/abs/hep-ph/0612282
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2. individual ingredients: (b) hard-collinear spin correlations

➤ recipe proposed long ago by 
Collins (’86) 

➤ implemented in Herwig showers 
(Deductor & CVolver frameworks 
also discuss it) 

➤ Included in PanScales showers: 
Karlberg, GPS, Scyboz, Verheyen, 
2103.16526

48
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2. individual ingredients: (c) soft, then hard-collinear spin correlations

➤ explicitly excluded from Collins 
recipe (’86) 

➤ (Deductor & CVolver frameworks 
could in principle get it, but not 
implemented) 

➤ Efficient & simple large-  scheme 
introduced and implemented in 
PanScales showers: 
Hamilton, Karlberg, GPS, Scyboz, 
Verheyen, 2103.16526

Nc
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standard  
dipole showers: 
CA/2 instead  

of CF

2. individual ingredients: (d) colour, beyond leading-Nc limit

➤ Standard showers have wrong 
subleading colour terms at LL 
(LL NLL) 

Gustafson ’93 
Dasgupta et al ’18 

➤ Angular ordering (“coherence”) 
points to correct solution when all 
emissions well separated in angle 

Friberg, Gustafson, Hakkinen ’96 
Hamilton, Medves, GPS, Scyboz, 

Soyez, 2011.10054 
Forshaw, Holguin & Platzer, 

2011.15087

× 1/N2
c ∼

50
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2. individual ingredients: (d) colour, beyond leading-Nc limit

PanScales approach 

➤ Systematic expansion, with full 
colour for up to  emissions in any 
vertical slice 

➤ Implemented for  &  
(segment & “NODS” methods) 

➤ difference between them gives 
estimate of residual systematic error 

Hamilton, Medves, GPS, Scyboz, 
Soyez, 2011.10054 

(NB: coherence-violating logarithms with  
initial partons & complex final state not 

addressed so far in PanScales)

n

n = 1 2
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2. individual ingredients: (e) all of the above, with initial-state hadrons

52
Figure 3: Same as Fig. 2, but for PanGlobal with �ps = 0 (left) and �ps = 0.5 (right).

unit component transverse to the beam. As a result, step 2 assigns the shower transverse

momentum to the hard system, i.e. the Z boson, as is physically correct, thus reproducing

the pattern needed for NLL accuracy. When the 2nd emission is close in rapidity to the

first, it is arguably less physically correct to take the transverse recoil from the Z boson.

However, the assignment of transverse recoil only has a significant impact when k?,2 ⇠ k?,1,

and the region of commensurate rapidity and commensurate transverse momentum only

a↵ects terms at NNLL accuracy, the correct treatment of which would in any case require

the inclusion of the full double-soft matrix element.10 A similar discussion can be extended

to subsequent emissions. Our conclusion, therefore, is that the PanGlobal showers with

� = 0 and � = 1/2 satisfy the fixed-order NLL accuracy requirement.

4.2.2 Discussion of �ps = 1 case (time ordering)

We close our discussion of the PanGlobal shower with an explanation of why that shower

requires �ps < 1 and an illustration of the issues that arise with �ps = 1. The choice

of �ps = 1 is of interest because, physically, it corresponds roughly to a time ordering.

This can be relevant, for example, in a heavy-ion context where one may wish to relate

individual steps of the shower with the time-dependent evolution of a quark–gluon plasma.

That �ps = 1 corresponds roughly to time-ordering can be seen as follows. Firstly, consider

a soft large-angle emission with transverse momentum k? with respect to the parent dipole.

The uncertainty principle tells us that the formation time is roughly 1/k?. Next, observe

that a soft-collinear emission, with energy E and transverse momentum k? is equivalent to

a soft emission that has been boosted along the parent dipole direction. The boost factor

is roughly E/k? and so the formation time acquires a Lorentz dilation by that same factor,

10Note that kt,1 is also a↵ected by recoil that is longitudinal with respect to the dipole when emission 2

is collinear to 1. This is not the case for pZt .

– 17 –

van Beekveld, Ferrario Ravasio, GPS, Soto-Ontoso, Soyez, Verheyen, 2205.02237

checks 
of  

correct 
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}

https://arxiv.org/abs/2205.02237
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matrix element tests 
all-order resummation comparisons
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Test class 1: tree-level (2nd/3rd-order) expansion of shower v. factorised matrix element

➤ semi-analytically 
(recoil checks) 

➤ numerically 
(colour & spin)

54
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Figure 5: Colour factor assignment and relative deviation to the squared tree-level matrix

element, as in Fig. 4, for the 2 ! 4 + g configurations (a) q̄q0q̄0q + g and (b) q̄g1g2q + g,

corresponding respectively to the Lund diagrams in Figs. 2c and 1a (with g2 there moved

to the right of g1). The results have been obtained with the � = 0 PanGlobal shower

algorithm.

as in Eq. (6.1). The second splitting is performed with

q̄q0q̄0q configuration : zq̄0 = 1/4, ⌘q0q̄0 = 10,  = 0, (6.2a)

q̄g1g2q configuration : zg2 = 10�16, ⌘g2 = 10,  = 0 . (6.2b)

These configurations are such that the second splitting happens at a much smaller angle

than the first gluon emission. For the first configuration (g1 ! q̄0q0), we choose a z fraction

reflecting the absence of soft enhancements. For the second configuration (emission of

g2 from the quark, well separated in rapidity from g1) we focus on a case where g2 is

much softer than g1, though the conclusions are unchanged if we take g1 and g2 to have

commensurate transverse momenta. Results are displayed in Fig. 5. They have features

similar to those of Fig. 4, albeit with a richer structure.
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than the first gluon emission. For the first configuration (g1 ! q̄0q0), we choose a z fraction

reflecting the absence of soft enhancements. For the second configuration (emission of

g2 from the quark, well separated in rapidity from g1) we focus on a case where g2 is

much softer than g1, though the conclusions are unchanged if we take g1 and g2 to have
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shower/exact |ME2|

colour

Figure 13: Size of the spin correlations for sequences that involve both soft and collinear

splittings, showing a2/a0 at O(↵2
s) (two left-hand plots) and O(↵3

s) (two right-hand plots).

The Feynman diagrams indicate the sequence of splittings under consideration for all cases.

We consider the azimuthal di↵erence between the plane defined by the primary soft splitting

with momentum fraction z1 (z2), and the plane defined by the second (third) splitting with

momentum fraction zc. The colour indicates the size of a2/a0 as predicted by the shower.

Black lines indicate constant values for this ratio, and are obtained by using crossing

relations in the matrix elements calculated in Ref. [45] for final-state configurations.

splits collinearly as g1 ! gg (first plot) or g1 ! qq̄ (second plot) with momentum fraction

zc. We scan over the rapidity y1 of gluon g1 relative to the qq̄ system between �2 < y1 < 2,

and over the energy fraction zc of the emitted parton (g or q). Spin correlations are in

this case independent of the rapidity of the soft gluon.25 The spin correlations are again

maximal in absolute size when the energy fraction of the gluon is shared equally between

the two final-state partons.

A more interesting pattern appears at O(↵3
s) as displayed in the two rightmost panels

of Fig. 13. In this case we study the azimuthal correlations between the first and third

emission. The first gluon emission is now fixed at y1 = 1 with an energy fraction z1 = 10�4,

while we scan the rapidity of a second gluon emission between �2 < y2 < 2 with z2 = 10�8,

which then splits collinearly. The two soft gluons are emitted at di↵erent azimuthal angles,

� 12 = 1. Because we fix � 12, the analytical form for the azimuthal correlations needs

to be extended relative to Eq. (6.6), and now reads

d�

d� 13
/ a0

✓
1 +

a2

a0
cos(2� 13) +

b2

a0
sin(2� 13)

◆
. (6.7)

We plot just the ratio a2/a0 and see that it is enhanced when the second gluon is emitted

with a larger rapidity di↵erence with respect to the first gluon, and when its energy fraction

is shared equally between the children (zc = 0.5).

Finally, we also check the spin correlations at O(↵3
s) for collinear splittings. We con-

sider two configurations: (i) one backwards splitting followed by two final-state emissions,

and (ii) two backwards splittings on opposite hemispheres followed by one final-state split-

ting. For case (i) we consider both qq̄ ! Z and gg ! H, whereas for case (ii) we only

25A purely collinear Collins-Knowles algorithm would in general not correctly reproduce this pattern [46].

– 39 –
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Δψ12
kt1

kt2

jet➤ run full shower  
with specific value of  & measure an 
observable: azimuth between two 
highest-kt emissions (soft-collinear) 

➤ ratio to NLL should be flat ≡ 1 

➤ it isn’t: have we got an NLL mistake? Or 
a residual subleading (NNLL) term?

αs(Q)

55

ratio 
to 
NLL

Test class 2: full shower v. all-order NLL
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Δψ12
kt1

kt2

jet➤ run full shower  
with specific value of  & measure an 
observable: azimuth between two 
highest-kt emissions (soft-collinear) 

➤ ratio to NLL should be flat ≡ 1 

➤ it isn’t: have we got an NLL mistake? Or 
a residual subleading (NNLL) term? 

➤ try reducing , while keeping 
constant  [ ] 

➤ NLL effects, , should be unchanged, 
subleading ones, , → 0

αs(Q)

αs(Q)
αsL L ≡ ln kt1/Q

(αsL)n

αs(αsL)n
56

ratio 
to 
NLL

Tests (2): full shower v. all-order NLL
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Δψ12
kt1

kt2

jet

57

ratio 
to 
NLL

Tests (2): full shower v. all-order NLL

➤ run full shower  
with specific value of  & measure an 
observable: azimuth between two 
highest-kt emissions (soft-collinear) 

➤ ratio to NLL should be flat ≡ 1 

➤ it isn’t: have we got an NLL mistake? Or 
a residual subleading (NNLL) term? 

➤ try reducing , while keeping 
constant  [ ] 

➤ NLL effects, , should be unchanged, 
subleading ones, , → 0

αs(Q)

αs(Q)
αsL L ≡ ln kt1/Q

(αsL)n

αs(αsL)n
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➤ run full shower  
with specific value of  & measure an 
observable: azimuth between two 
highest-kt emissions (soft-collinear) 

➤ ratio to NLL should be flat ≡ 1 

➤ it isn’t: have we got an NLL mistake? Or 
a residual subleading (NNLL) term? 

➤ try reducing , while keeping 
constant  [ ] 

✓extrapolation  agrees with NLL

αs(Q)

αs(Q)
αsL L ≡ ln kt1/Q
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FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.
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FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

Figure 11: NLL global event-shape tests of the segment and NODS colour schemes,

showing NLL agreement for � = 1/2 PanScales showers and for the � = 0 PanGlobal

shower. In contrast to the NLL-LC tests of Ref. [12], the Pythia 8 �obs > 0 results here

are coloured green rather than amber, because our colour code does not incorporate the

information about failure of exponentiation in fixed-order tests, tests that we have not

explicitly repeated for this paper.

of the slice [22, 59] (see also Ref. [60]). The full-colour resummation for such observables is

sensitive to arbitrarily complex colour correlators, both in the real emissions and the virtual

corrections, which need to be evaluated at amplitude level. The resulting subleading-

colour single-logarithmic corrections go far beyond the scope of the colour schemes that we

introduced in sections 3 and 4. In particular, we expect the segment scheme to be correct

at full colour only up to order ↵sL, and the NODS scheme to be correct at full colour up to

order ↵2
sL

2. Recall that leading-colour all-order single-logarithmic accuracy for PanScales

showers was demonstrated in Ref. [12].
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Figure 17: All-order comparison of the toy shower and di↵erent PanScales showers, for

�
⇤

! qq̄ events. The two observables shown are the azimuthal angle, � 12, between a

primary and secondary splitting planes in Lund declustering, and the di↵erence in angle

� between the (ij)k and ij planes in the EEEC (Eq. (3.2)). The results are obtained in

the limit ↵s ! 0 for fixed � = ↵sL = �0.5. For the Lund declustering � 12 we consider

events with kt,2/Q > e
�|L| and for the EEEC � we consider events with ✓S > e

�|L|.

compared to the numerically resummed result obtained from the toy shower. In all cases,

we show the contributions stemming from the di↵erent channels to the full observable.

The relative deviation between the PanScales showers and the toy shower is shown on the

right, separately for each channel, and is compatible with zero with statistical uncertainties

below the 5 permille level.

4.3 Phenomenological remarks

We comment on three aspects here that are potentially relevant for phenomenological

applications.

Our first comment concerns the relative size of spin correlations in the EEEC and

– 27 –

collinear spin

Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when NLL tests

passed. The error is calculated as explained below Eq. (??).[fix Eqref]

with the widely studied 0-jettiness (⌧0) of Ref. [7], which is also used in the Geneva [28, 29]

matching procedure. For all of the observables, the LL resummation structure depends on

�obs. For a given value of �obs, the Mj,�obs
observables di↵er from the Sp,�obs

and Sj,�obs
at

NLL, while the Sp,�obs
and Sj,�obs

observables di↵er from NNLL onwards. The resummation

formulas up to NLL are summarised in Appendix B.

In our numerical tests, we take �obs = 0, 12 , 1. In Fig. 4 we show the ratio of the

cumulative distribution ⌃(O < eL) as calculated with the shower to the NLL result, again

in the limit ↵s ! 0 for � = �0.5. As in the final-state case [16], we find that standard dipole

showers fail to reproduce the all-order NLL results �obs = 0 observables, as represented

by the red squares. Concerning the �obs = 0.5, 1 cases, the ↵s ! 0 dipole-shower results

appear to agree with the NLL predictions. However the studies of similar observables in the

final-state case showed that dipole-type showers induce spurious all-order leading-colour

super-leading logarithms, (↵sL)n(↵sL2)p (Section 2-d of the supplementary material of

Ref. [16]). Similar issues will inevitably appear with initial-state radiation and accordingly

we colour these dipole-shower points in amber. The green circles for the four PanScales

showers in Fig. 4 indicate that their predictions are in agreement with the NLL results,

and no issues are revealed from a fixed order analysis.

As final remark, we remind the reader that in these studies, subleading Nc corrections

have been included according the NODS method [2] for both the dipole-type showers and

the PanScales showers, so as to concentrate on the impact of transverse recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

– 10 –

Figure 1: Ratio of the DGLAP evolution produced by the parton shower versus the

forward evolution DGLAP solution, as a function of logarithm of the x fraction of the

parton. The forward evolution is constrained to end with the d̄ flavour, such that it reflects

the starting point of the shower, which we take to be dd̄ in this case. We work with a

center-of-mass energy of
p
s = 1 TeV and set mZ = 1 GeV, such that the maximal x

fraction a parton can have is 0.001. We take � = ↵sL = �0.5. The three windows from left

to right then show the original flavour that created this d̄ state, where we focus on the d̄,

g and d cases. We show the PanGlobal shower with �ps = 0 (top panel), and the PanLocal

dipole shower with �ps = 0.5.

For completeness Fig. 2 shows the distributions for gg ! H events with
p
s/mH = 1000

and yH = 0, where we examine i = g, the sum over quarks i =
P

i
q, and the sum over

anti-quarks i =
P

i
q̄. Again, the agreement is good to within statistical errors.

– 6 –

hadron collisions

(a) (b)

Figure 8: NDL shower multiplicity tests. (a) Results for NPS�NNDL
NNDL�NDL

, for a variety of parton

showers in the NODS colour scheme, as a function of
p
↵s, showing that they vanish as

↵s ! 0, as required to achieve full-colour NDL accuracy. The curves depict a fit that is

a polynomial in powers of
p
↵s. (b) Explicit extrapolation of NPS�NNDL

NNDL�NDL
to ↵s = 0, for

a range of showers, with the segment and NODS colour schemes. In both plots we also

illustrate the NDL-level discrepancy that arises in a scheme where quarks from g ! qq̄

splittings erroneously continue to emit with a CA/2 colour factor.

Fig. 8 also includes results (red points) obtained using a deliberately erroneous prescrip-

tion that omits the insertion of new CF segments following g ! qq̄ branchings, resulting

in those quarks emitting with a CA/2 colour factor. While this prescription gives the cor-

rect DL-FC result, one should expect it to fail to reproduce the NDL-FC results, because

g ! qq̄ splittings start to contribute to the multiplicity from NDL terms onwards, as can

be verified by inspecting the nf terms in Eq. (7.5).15 We see in Fig. 8a that with this

incorrect treatment of g ! qq̄ splittings, the limit
p
↵s ! 0 fails to converge to the NDL

expectation. Instead the extrapolated NDL coe�cient is ⇠ 3% larger than the analytic

expectation.

We have also carried out similar tests for the multiplicity in H ! gg events for all

showers shown in Fig. 8 and found a similar level of agreement with the full-colour NDL

predictions for both the segment and NODS colour prescriptions.

15The prescription bears similarities with that of Ref. [25], which concentrated on corrections of the colour

factor for primary gluon emissions.
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phase space  region critical ingredients observables accuracy colour

soft collinear no long-distance 
recoil global event shapes NLL full

hard collinear
DGLAP split-fns 

+ amplitude spin-
correlations

fragmentation functions 
& special azimuthal 

observables
NLL full

soft commensurate 
angle large-Nc dipoles energy flow in slice NLL full up to 2 

emsns, then LC 

soft, then hard 
collinear soft spin correlations special azimuthal 

observables NLL full up to 2 
emsns, then LC 

all nested – subjet and/or particle 
multiplicity NDL full
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PanLocal 

 ordered 

Recoil 
: local 

+: local 
–: local 

Tests 
numerical  
for many 

observables

kt θ

⊥

PanGlobal 

 or  ordered 

Recoil 
: global 

+: local 
–:  local 

Tests 
numerical  
for many 

observables

kt kt θ

⊥

Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez 2002.11114  
+ subsequent work incl van Beekveld, Ferrario Ravasio, Karlberg,  
Medves, Scyboz, Soto-Ontoso, Verheyen 

FHP 

 ordered 

Recoil 
: global 

+:  local  
–: global 

Tests 
analytical  

for thrust & 
multiplicity

kt

⊥

Forshaw, Holguin & Plätzer 
2003.06400

Deductor 

 (“Λ”) ordered 

Recoil 
:  local 

+:  local  
–: global 

Tests 
analytical /
numerical  
for thrust

ktθ

⊥

Nagy & Soper 
2011.04777 (+past decade)

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2011.04777
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~n1 ~n2

� 12

P1

P2

� 12

~p1

~p3

~p2

~p4

~p5

Figure 3: Azimuthal angles are defined between successive splitting planes for the 1 ! 23

splitting, P1 � {~p2, ~p3} and the 2 ! 45 splitting, P2 � {~p4, ~p5}. The figure also depicts

the vectors normal to the two planes, ~n1 and ~n2.

(which unlike 3 is a quark). Because of the interplay between the shower ordering variable

and emission kinematics, this occurs only for situations in which 9 is soft relative to particle

3, and also soft relative to any of the parents of 3. Inspecting Table 1, one sees that soft

gluon emission (the z ! 1 limit) leads to splitting amplitudes that are independent of the

flavour of the parent, a, and that are non-zero only for �a = �b, i.e. they are diagonal in

the spin space relating the parent and its harder o↵spring. This means that in the limit

where emission 9 could conceivably have been emitted from 2, it is immaterial whether

we actually view it as being emitted from 2 or instead organise the tree as if it had been

emitted by 3. The latter is considerably simpler and so it is the solution that we adopt.

3 Collinear spin correlations: expectations and measurement strategy

In this section, we start (section 3.1) by examining how the spin correlations translate into

azimuthal correlations between the planes of separate collinear branchings, both within a

single jet and across pairs of jets. We do so at fixed order, O
�
↵

2
s

�
, where it is trivial to

define the observables. We then propose (section 3.2) a set of observables that are suitable

for use at all orders. They exploit a Lund diagram [26] representation of individual jets [44].

Next (section 3.3), we recall the definition of the EEEC spin-sensitive observable, which

was proposed and resummed in Ref. [38]. Finally (section 3.4), we use these observables

to study the impact on the azimuthal correlations coming from the all-order resummation

of collinear spin-correlation e↵ects.

3.1 Azimuthal structure

Each collinear branching in an event can be associated with the plane that contains the

momenta of the two o↵spring partons. The simplest observable one may think of to study

spin correlations is the azimuthal di↵erence, � , between the planes defined by two distinct

branchings. Here we will consider two broad cases: intra-jet correlations, i.e. between the

planes of two branchings within a single jet, for example between the plane of the 1 ! 56

– 8 –

Energy-energy-energy correlations (EEEC), resummed analytically (Chen, Moult & Zhu,2011.02492) 
Lund declustering ( ,  ), resummed numerically with “toy shower” 
(extending unpolarized Microjets code from Dasgupta, Dreyer, GPS, Soyez 1411.5182)  

Δψ12 Δψ11′ 

Karlberg, GPS, Scyboz & Verheyen,  2103.16526

2

(a) (b)

FIG. 1: Double slit experiments in position and spin space (a), and physical implementation of the spin space
double slit experiment using the squeezed limit, ✓S ⌧ ✓L, of the three-point correlator (b). Quantum interference

between gluon spin states, � = ±, leads to a cos(2�) pattern as the squeezed correlators are rotated.

applied in QCD, and provides powerful operator based
techniques for jet substructure. We show that the iter-
ated OPE of E(n̂) operators closes at leading twist onto

operators O[J]
i (n̂) with arbitrary collinear spin-J , but re-

stricted transverse spin-j = 0, 2, and we explicitly com-

pute the E(n̂1)E(n̂2) and O
[J]
i (n̂1)E(n̂2) OPEs. The all

orders structure of spin interference e↵ects in the three-
point correlator then arises naturally from the transverse
spin structure of the light-ray OPE.

Interference in the Squeezed Limit.—The physics of the
squeezed limit of the three-point correlator in a weakly
coupled gauge theory can be described as a double slit
experiment in spin space, see Fig. 1. The interference
pattern in the usual double slit experiment is due to the
interference in |AL(x) + AR(x)|2, where AL(R)(x) is the
amplitude for going through the left (right) slit from the
light source to position x on the detector. Similarly, in
the squeezed limit of the three-point correlator, the in-
terference terms in |A+(�) + A�(�)|2 are the source of
an interference pattern, where A+(�) is the splitting am-
plitude with a nearly on-shell virtual gluon with posi-
tive (negative) helicity. Therefore the slits in the stan-
dard double slit experiment are replaced by the inter-
mediate +/� helicity gluons, and varying the distance x
is replaced by varying the angle � of the squeezed en-
ergy correlators. We emphasize that while this e↵ect
arises from quantum interference, we have been unable to
prove a Bell-type inequality using only energy measure-
ments. It would be interesting to understand if Bell-type
inequalities can be proven in the collider context, even in
principle. Similar questions have also been considered in
the context of inflationary measurements [43].

We parametrize the squeezed limit symmetrically, us-
ing (✓S , ✓L, �) as shown in Fig. 1, to eliminate linear
power corrections in ✓S/✓L. The squeezed limit is charac-

terized by ✓S ⌧ ✓L, with � arbitrary, and the expansion
in this limit takes the form

d3⌃

d✓2Ld✓2Sd�
'

1

⇡

⇣↵s

4⇡

⌘2 Sq(0)
i (�)

✓2L✓2S
+ · · · , (2)

where the dots denote terms less singular in the squeezed
limit. Expanding the full result for the three-point cor-
relator in [21], we find for quark and gluon jets,
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= 10.54 + 0.1156nf + (0.1778 � 0.0593nf ) cos(2�),

Sq(0)
g (�) = CAnfTF

✓
126 � 20 cos(2�)

225

◆

+ C2
A

✓
882 + 10 cos(2�)

225

◆
+ CFnfTF

3

5

= (35.28 + 1.24nf ) + (0.4 � 0.133nf ) cos(2�) .

Here we see cos(2�) interference terms at leading twist,
which at this order are identical for quark and gluon jets,
since they arise only from an intermediate gluon, and
have opposite signs for g ! qq̄ (in blue) and g ! gg
(in red). Positivity of the cross section guarantees that
the cos(2�) terms are smaller than the constant terms,
analogous to the conformal collider bounds [9]. Due to
the singular structure of the squeezed limit, the all orders
resummation of these spin interference e↵ects is required
to describe the three-point correlator, as well as for limits
of higher-point correlators.

Despite their importance for observables relevant to jet
substructure, spin interference e↵ects are not included in
the standard parton shower simulations used to this point

Quantum mechanical interference 
in otherwise quasi-classical regime

Chen, Moult &  
Zhu, 2011.02492

https://arxiv.org/abs/2011.02492
https://arxiv.org/abs/1411.5182
https://arxiv.org/abs/2103.16526
https://arxiv.org/abs/2011.02492
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Figure 17: All-order comparison of the toy shower and di↵erent PanScales showers, for

�
⇤

! qq̄ events. The two observables shown are the azimuthal angle, � 12, between a

primary and secondary splitting planes in Lund declustering, and the di↵erence in angle

� between the (ij)k and ij planes in the EEEC (Eq. (3.2)). The results are obtained in

the limit ↵s ! 0 for fixed � = ↵sL = �0.5. For the Lund declustering � 12 we consider

events with kt,2/Q > e
�|L| and for the EEEC � we consider events with ✓S > e

�|L|.

compared to the numerically resummed result obtained from the toy shower. In all cases,

we show the contributions stemming from the di↵erent channels to the full observable.

The relative deviation between the PanScales showers and the toy shower is shown on the

right, separately for each channel, and is compatible with zero with statistical uncertainties

below the 5 permille level.

4.3 Phenomenological remarks

We comment on three aspects here that are potentially relevant for phenomenological

applications.

Our first comment concerns the relative size of spin correlations in the EEEC and
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flavour channel for 2nd splitting g ! qq̄ g ! gg all

EEEC -0.36 0.026 -0.008

� 12, z1, z2 > 0.1 -0.61 0.050 -0.025

� 12, z1 > 0.1, z2 > 0.3 -0.81 0.086 -0.042

Table 3: The relative magnitude of the azimuthal modulation, a2/a0 (cf. Eq. (3.1)), for

the EEEC and Lund intra-jet � 12 observables, the latter for two sets of cuts on z1 and

z2. The results are shown for �⇤
! qq̄ events for nf = 5, separately for two specific flavour

channels, as well as the sum over all flavour channels (including the channel without spin

correlations, q ! qg). As in Fig. 17, the results are obtained in the limit ↵s ! 0 for fixed

� = ↵sL = �0.5 and for the Lund declustering � 12 we consider events with kt,2/Q > e
�|L|,

while for the EEEC � we consider events with ✓S > e
�|L|.

the � 12 Lund declustering observable. The EEEC has the advantage of not requiring

a zcut, reducing the number of parameters that need to be chosen for the observable.

However its weighting with the energies in Eq. (3.2) tends to favour configurations where

a q ! qg(g ! xy) splitting shares energy equally between the three final particles. In the

notation of Figs. 4 and 5, this corresponds to z1 ' 2/3 and z2 ' 1/2. While z2 ' 1/2 acts

to enhance the spin correlations, z1 ' 2/3 tends to reduce them. In contrast, with the

Lund declustering � 12 one can adjust the cuts on the z1 and z2 values so as to maximise

the azimuthal modulations.18 Table 3 summarises the degree of azimuthal modulation for

di↵erent observables in �
⇤

! qq̄ events. With our default (non-optimised) cuts of z1 and

z2 > 0.1, we see substantially larger azimuthal modulations than in the EEEC variables,

both in individual flavour channels and in their sum. The potential for further enhancement

of the modulations is made evident by the results obtained with the z2 > 0.3 requirement.

Our second comment concerns the sum over all flavour channels. The results shown

here have been obtained with nf = 5 light flavours. The final magnitude of the spin cor-

relations after the sum over flavour channels is quite sensitive to the cancellation between

g ! qq̄ and g ! gg splittings and the degree of cancellation is strongly influenced by the

value of nf . At the scales where one might aim to probe spin correlations, the c- and

especially b-quark masses are not entirely negligible. A full phenomenological study of the

flavour-summed structure of azimuthal correlations might, therefore, needs to take into ac-

count finite quark-mass e↵ects. Note that e↵ects related to kt values in the neighbourhood

of a heavy-quark threshold are formally suppressed by a logarithm. For a complete un-

derstanding of phenomenological expectations one would also want to examine the impact

of other subleading logarithmic e↵ects, as well as contributions suppressed by powers of

kt/Q, and possibly also non-perturbative corrections. It would clearly also be of interest to

find ways of carrying out measurements with flavour tagging, given the strong e↵ects to be

seen with g ! qq̄ splittings. While b and c flavour tagging are the most obviously robust

starting points in this respect, one may also wish to consider s tagging [61] and generic

18Too tight a cut on z1 and z2 would reduce the available statistics, so one might want to optimise the

cuts to maximise a combination of statistical accuracy and degree of modulation.
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Δψ12

magnitude of spin correlation effects

https://arxiv.org/abs/2103.16526


DESY Theory Seminar, June 2022Gavin P. Salam

pp→ Z + hadrons: small-pt asymptotics for Z pt spectrum

67

(a) (b)

Figure 6: (a) m2
Z
d⌃(ptZ)/dp2tZ , as determined with four showers. In QCD this quantity

tends to a calculable (non-zero) constant for ptZ ! 0 [8]. (b) For the three showers

that tend to a non-zero constant, the plot shows the ↵s ! 0 limit of the deviation of

that constant relative to the NLL expectation, with the usual (red) green colour coding

for (dis)agreement with NLL. To facilitate the exploration of the region of small ptZ , all

results here have been obtained with running of the coupling switched o↵. The ↵s ! 0

result is obtained by linearly extrapolating results at ↵s = 0.2 and 0.3, and includes a

systematic error that is evaluated as the change when one instead extrapolates using the

↵s = 0.3 and 0.4 points. The NLL expectation is determined using Eq. (5.1), based on a

Bessel transform of the first-emission shower ordering variable (or transverse momentum

equivalent for showers not ordered in transverse momentum).

small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.

For those showers that do tend to a non-zero constant, it is worth checking the value of

that constant, which is a prediction of the NLL resummation. That value can be deduced

from Eq. (5.1), simply setting ptX = 0 on the right-hand side. Note that at our NLL

accuracy, ⌃V coincides with the cumulative distribution of the leading jet pt, or equivalently

(still at NLL), in a pt-ordered shower, the shower ordering variable. We use the distribution

of the latter (or an analogue in �ps = 0.5 showers) to evaluate Eq. (5.1), because it facilitates

the ↵s ! 0 extrapolation. The ↵s ! 0 extrapolation of the ratio of the actual d⌃/dp2
tX

to the prediction from Eq. (5.1) is shown for three showers in Fig. 6b. The PanGlobal

(�ps = 0) and PanLocal (�ps = 0.5) showers are consistent with the NLL expectation,

while the Dipole-kt shower (with global IF recoil) has the wrong normalisation.

Note that, in contrast with all other results in this paper, the results here have been

obtained with quite large values of the coupling and the coupling has been kept fixed. This

is because it is considerably more di�cult to simultaneously explore small values of ↵s and

of ptX than for other observables. Furthermore at large values of ↵s, had we used a running

coupling, we would have had to disentangle logarithmic e↵ects from power-suppressed but

practically non-negligible e↵ects associated with the regularisation of ↵s near the Landau
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Parisi-Petronzio ’79, predicted power-law scaling of Z  spectrum at low .  
Which showers reproduce it? 
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Towards a complete 
 public NLL shower

hadron collisions: 
more complex processes 

& associated tests

Matching to hard matrix elements 
Essential for phenomenology, must be 
done in way that retains NLL accuracy

Heavy quarks 
Essential for phenomenology

Interface to Pythia 
and potentially 

 other Monte Carlos
uncertainty 
estimates
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Next steps
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Going beyond NLL

Underlying Calculations 
We need (a) reference results 

and (b) understanding of NNLL logs in 
soft & collinear limits 

…

…

Other groups’ work (prior to our NLL understanding): Jadach et al 1103.5015 & 1503.06849, Li 
& Skands 1611.00013, Höche & Prestel 1705.00742,+Krauss 1705.00982, +Dulat 1805.03757, 

https://arxiv.org/abs/1103.5015
https://arxiv.org/abs/1503.06849
https://arxiv.org/abs/1611.00013
https://arxiv.org/abs/1705.00742
https://arxiv.org/abs/1705.00982
https://arxiv.org/abs/1805.03757v2
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Next steps
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Underlying Calculations 
We need (a) reference results 

and (b) understanding of NNLL logs in 
soft & collinear limits 

Groomed jet mass as a direct probe 
of collinear parton dynamics 
Anderle, Dasgupta, El-Menoufi, 
Guzzi, Helliwell, 2007.10355 
[see also SCET work, Frye, Larkoski, 
Schwartz & Yan, 1603.09338 + …]

Next-to-leading non-global 
logarithms in QCD 
Banfi, Dreyer and Monni,  
2104.06416 

Lund and Cambridge  
multiplicities for precision physics 
Medves, Soto-Ontoso, Soyez, 2205.02861

Dissecting the collinear structure 
of quark splitting at NNLL 
Dasgupta, El-Menoufi, 2109.07496

https://arxiv.org/abs/2007.10355
https://arxiv.org/abs/1603.09338
https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2205.02861
https://arxiv.org/abs/2109.07496
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conclusions

➤ Parton showers (and event generators in general), and their predictions of the full 
structure of events, are an essential part of LHC’s very broad physics programme 

➤ Despite their central role, understanding of their accuracy has been elusive 

➤ Minimal baseline for progress beyond 1980’s technology is to achieve NLL 
accuracy ≡ control of terms  

➤ We’ve demonstrated leading-colour NLL is possible, full colour can be included at 
LL, (and at NLL for most observables), spin correlations fit in nicely, for both final 
and initial-state showers 

➤ Next steps: 

➤ full phenomenological showers (e.g. including matching, pp processes with jets) 

➤ mapping out the path towards higher accuracy

(αsL)n
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