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Higher-order corrections at small x (2/47)

Introduction High-energy limit

One of the major unsolved problems of QCD (and Yang-Mills theory in
general) is the understanding of its high-energy limit.

I.e. the limit in which C.O.M. energy (
√

s) is much larger than all other
scales in the problem.

√s = 2E >> m h

E E

(e.g. proton)
hadron hadron

Want to understand:

I asymptotic behaviour of cross section, σhh(s) ∼??

I properties of final states for large s.
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Introduction Experimental knowledge

Donnachie & Landshoff

I Some knowledge exists about
behaviour of cross section
experimentally

I Slow rise as energy increases

I Data insufficient to make
reliable statements about
functional form
I σ ∼ s0.08?
I σ ∼ ln2 s?

I Understanding of final-states is
∼ inexistent

I Would like theoretical
predictions. . .
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Introduction Experimental knowledge

cosmic ray
neutrinos

cosmic ray
hadrons

LHC

Future experiments go to much higher energies.
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Introduction Not just for hadrons

Problem is must more general than just for hadrons. E.g. photon can
fluctuate into a quark-antiquark (hadronic!) state:

photon γ
q

q
E

hadron

Even a neutrino can behave like a hadron

W±, Z

E

hadron
q

q

neutrino

Hadronic component dominates high-energy cross section
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Introduction Outline

I Perturbative, leading-logarithmic (LL), calculation of cross-section
growth Using just classical field theory

I Failure of comparison to data

I Higher-order corrections
I NLL corrections
I Problems & solutions

I Splitting functions
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 1

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 2

q

q−

Look at density of gluons from
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 3

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
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2+1 dimensions



Higher-order corrections at small x (6/47)

Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 5

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 10

q

q−

Look at density of gluons from
dipole field (∼ energy density).
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 20

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

z

E/m = 50

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED
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Origin of growth of σ

QED analogy
Study field of qq̄ dipole (' hadron)

y

x

E/m = 50
q

q−

Look at density of gluons from
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Origin of growth of σ

QED analogy
Total number of gluons

Longitudinal structure of energy density (Nc = # of
colours):

dε

dz
∼ αsNc

π
× Eδ(z) × transverse

Fourier transform → energy density in field per unit of
long. momentum (pz)

dε

dpz
∼ αsNc

π
× transverse , m � pz � E

→ number (n) of gluons (each gluon has energy pz):

y

x zR⊥

q

q−

dn

dpz
∼ αsNc

π

1

pz
× transverse , m � pz � E [soft divergence]

Total number of gluons:

n ∼ αsNc

π
ln

E

m
× transverse
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Origin of growth of σ

QED analogy
High-energy limit

√
s , E → ∞

I Calculation so far is first-order perturbation theory.

I Fixed order perturbation theory is reliable if series converges quickly.

I At high energies, n ∼ αs lnE ∼ 1.

I What happens with higher orders?

(αs lnE )n?

Leading Logarithms (LL). Any fixed order potentially non-convergent. . .
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Origin of growth of σ

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently.
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Origin of growth of σ

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q
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Origin of growth of σ

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently. e+

e−

γ
γ
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Origin of growth of σ

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently.

g

q

q
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Origin of growth of σ

QCD specifics
Iterating gluon emission

Problem is self-similar: dipole → 2 dipoles → 4 dipoles → . . .

Number of dipoles (or gluons) grows exponentially:

n ∼ exp

[
αsNc

π
lnE × transverse

]

∼ E
αsNc

π
×transverse

Tranverse part → many complications/interest

I transverse part is conformally invariant ➥Extensive mathematical studies

I In high-energy limit it reduces to a pure number: 4 ln 2

n ∼ E
αsNc

π
4 ln 2 ∼ E 0.5

Balitsky Fadin Kuraev Lipatov Pomeron (1976)
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Origin of growth of σ

QCD specifics
BFKL: rising cross sections

ndipoles(E ) ∼ E
αsNc

π
4 ln 2 ⇔ σhh ∼ s

αsNc
π

4 ln 2, αsNc

π 4 ln 2 ' 0.5

I Completely incompatible with rise of pp̄ cross section (∼ s 0.08)
I pp̄ is simply beyond perturbation theory

I experimentally spectactular — if observable in some process. . .

I Raises many theoretical issues — high gluon densities should lead to
non-linear effects: high fields, but still perturbative

Colour Glass Condensate

densedilutebare

increase E increase E
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Origin of growth of σ

QCD specifics
BFKL: rising cross sections

ndipoles(E ) ∼ E
αsNc

π
4 ln 2 ⇔ σhh ∼ s

αsNc
π

4 ln 2, αsNc

π 4 ln 2 ' 0.5

I Completely incompatible with rise of pp̄ cross section (∼ s 0.08)
I pp̄ is simply beyond perturbation theory

I experimentally spectactular — if observable in some process. . .

I Raises many theoretical issues — high gluon densities should lead to
non-linear effects: high fields, but still perturbative

Colour Glass Condensate

How can we search for BFKL experimentally?

I Need to ensure we are in regime where perturbation theory can be
applied

I Choose appropriate hadronic scales (small R)
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Experimental searches for LL BFKL

DIS
Deep Inelastic Scattering (DIS)

Getting small transverse sizes
(needed for αs � 1) and asymp-
totically large collision energies is
experimentally difficult.

In general collide two hadronic
probes — try a compromise: make
one of them small

Rγ ∼ 1

Q
� Rp ∼ 1

mp

off−shell (Q2)
γ ∗photon

electron

q

q

proton

Rγ Rp

I qq̄ probe measures (roughly)
number of gluons in proton up to
scale Q

I NB: DIS more usually viewed as
photon hitting quarks in proton

I Some of physics perturbative
(Q & pt � mp)

I But if lnQ2 & ln s we have
competition between

(αs ln s)n v. (αs ln s lnQ2)n
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Experimental searches for LL BFKL

DIS
HERA F2 data

I F2 is rescaled cross section

I x =
pz

pz ,proton
∼ 1

s
I Clear rise of cross section at

high energies (low x).
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Experimental searches for LL BFKL

DIS
Large number of gluons

H
1 

C
ol

la
bo

ra
tio

n

I Convert cross sections into
estimate of number of
gluons

I Various independent
extractions

I Up to 20 gluons per unit
ln x (or unit ln pz)!
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Experimental searches for LL BFKL

DIS
Is it BFKL?

H
1 

C
ol

la
bo

ra
tio

n

I Check if BFKL by looking
at power (λ) of x

I For BFKL, expect λ ' 0.5

I Definitely not LL BFKL!

There is some growth — where
does it come from?

It is due to combination of x �
1 and Q2 � m2

p — resumma-

tion of terms (αs ln 1
x

lnQ2)n:

σ ∼ exp
[

c
√

αs lnQ2 ln x
]
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Experimental searches for LL BFKL

γ∗γ∗
γ

∗
γ

∗ collisions

off−shell (Q )
1

γ ∗

γ ∗ (Q 2)

positron

q

q

electron

photon

I Eliminate ratios of transverse
scales by colliding two virtual
photons Q1 ∼ Q2

I Experimentally difficult (small
cross section)

I Theoretically clean
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Experimental searches for LL BFKL

γ∗γ∗
Results from LEP

L3 Data * γ * γ

1 2

LL BFKL (schematic)
One gluon

√s


=189 −209 GeV

σ
γ∗

γ∗
(Y

) 
[n

b
]

0
2 3 4 5 6

Y = ln s/Q Q

5

10

15

20

I Here too, data clearly incompatible with LL BFKL

I But perhaps some evidence for weak growth
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Experimental searches for LL BFKL

γ∗γ∗
Results from LEP

g−class BFKL

NLOLO

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Y

10
-3

2

5

10
-2

2

5

10
-1

2

5

d
t/d

Y
[p

b]

e
+

e
-

e
+

e
-
(

* *
) hadrons, L3 cuts

NLO + g class scale dep
NLO + g class
NLO
L3 data

Cacciari et al, 2001

I Here too, data clearly incompatible with LL BFKL

I But perhaps some evidence for weak growth
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Beyond LL

Introduction
Where is BFKL?

I BFKL is rigorous prediction of field theory, yet not seen in data

I Should we be worried?

I Calculations shown so far are in Leading Logarithmic (LL)
approximation, (αs ln s)n: accurate only for

αs → 0, ln s → ∞ and αs ln s ∼ 1.

I Need higher order corrections

Next-to-Leading-Logarithmic (NLL)
terms: αs(αs ln s)n
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Next-to-Leading-Logarithmic (NLL)
terms: αs(αs ln s)n
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Wavefunction v. ladder graphs
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wavefunctions

q

q

q

q

evolution as
ladder diagram



Higher-order corrections at small x (20/47)

Beyond LL

Introduction
NLL ingredients

Label various parts of cross-section calculation
NLL: include relative O (αs) corrections to each

LL

Green function

impact factors

kernel

G =
∑

n

K ⊗K ⊗ · · · ⊗ K
︸ ︷︷ ︸

n times

G

K

Kernel (universal):

Associated with power growth

Impact factors (proc.-dependent):

Associated with normalisation
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Beyond LL

Introduction
NLL ingredients

Label various parts of cross-section calculation
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Green function

impact factors

kernel

G =
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n

K ⊗K ⊗ · · · ⊗ K
︸ ︷︷ ︸

n times

G

K

Kernel (universal):

Fadin, Lipatov, Fiore, Kotsky,
Quartarolo; Catani, Ciafaloni,
Hautmann, Camici ’89–’98

Impact factors (proc.-dependent):

Bartels, Gieseke, Qiao, Colferai,
Vacca, Kyrieleis; Fadin, Ivanov, Kot-
sky ’01–. . .



Higher-order corrections at small x (21/47)

Beyond LL

NLL
NLL power

Cast NLL corrections to kernel as modification of power:

σ ∼ G (Y , k , k) ∼ exp [ 4 ln 2ᾱs(1 − 6.5ᾱs)Y ]

NB: k = transv. mom. scale

I Very poorly convergent (ᾱs = αsNc/π ' 0.15 · · · 0.2)
I Unstable perturbative hierarchy: expansion of power has limited sense

➥ Instead, try solving BFKL equation with full NLL kernel (including
running coupling)

G (Y , k , k0) =
δ(k − k0)

2πk0
+

∫ Y

0
dy

∫

dk ′2 K(k , k ′)G (Y − y , k , k ′)

Andersen & Sabio-Vera ’03

Ciafaloni, Colferai, GPS & Staśto ’03
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NB: k = transv. mom. scale

I Very poorly convergent (ᾱs = αsNc/π ' 0.15 · · · 0.2)
I Unstable perturbative hierarchy: expansion of power has limited sense

➥ Instead, try solving BFKL equation with full NLL kernel (including
running coupling)

G (Y , k , k0) =
δ(k − k0)

2πk0
+

∫ Y

0
dy

∫

dk ′2 K(k , k ′)G (Y − y , k , k ′)

Andersen & Sabio-Vera ’03

Ciafaloni, Colferai, GPS & Staśto ’03



Higher-order corrections at small x (22/47)

Beyond LL

NLL
NLL Green function solution
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 k
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(Y

; k
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+
 ε

, k
0)

Y

LL

k0 = 20 GeV

Various convention choices
affect higher orders
(NNLLx):

I scale of αs

I ‘energy-scale’ s0
(Y = ln s/s0).

Extreme sensitivity to
choice of convention
⇔ poor perturbative
convergence.

NB: Andersen & Sabio Vera

solutions ∼ green curve

Need to understand origin of instability
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Higher-order corrections at small x (23/47)

Beyond LL

NLL
NLL: why so bad?

y

z

E/m = 3

q

q−

I First branching occurs for Y ∼ c
αs

I In practice c is small: eY ∼ 2 − 5

I Energy-distribution 6= perfect δ(z)

I ‘degree of imperfection’ depends on
transverse position

Ciafaloni ’88

Andersson et al; Kwiecinski et al ’96

I Dominant part ≡ double & single ⊥
logs
I Responsible for ∼ 90% of NLL

corrections
I Can be used to supplement NLL at all

orders
GPS; Ciafaloni & Colferai, ’98–99
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Higher-order corrections at small x (24/47)

Beyond LL

NLL + transverse improvements
Characteristic function

 0

 5

 10

 0  0.5  1

χ(
γ)

γ

4 ln 2

≈ 1/γ ≈ 1/(1−γ)

Eigenvalues of kernel:

K ⊗ (k2)γ = ᾱsχ(γ) · (k2)γ

χ(γ) is characteristic function

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ)

→ high energy evolution, σ ∼ e ᾱsχ(γ)Y .

I dominant part at high energies is
minimum (only stable solution)

σ ∼ e4 ln 2ᾱsY ∼ e0.5Y

αs ' 0.2

I pole (1/γ) corresponds to ⊥
logarithms → DL terms αsY lnQ2



Higher-order corrections at small x (25/47)

Beyond LL

NLL + transverse improvements
Building up the kernel. . .
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LL BFKL

α−s(Q
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Examine ᾱsχ(γ)
minimum = BFKL power

χ(γ) = χ0(γ)
︸ ︷︷ ︸

LL

+ ᾱsχ1(γ)
︸ ︷︷ ︸

NLL

+ . . .

I NLL terms pathologically large.
minimum → max. (unstable)

oscillating X-sctns, . . .

I Culprit: ⊥ DGLAP logs

ᾱs

γ
− 11

12

ᾱ2
s

γ2
+ . . .

[γ−1 ⇔ ln Q2]

I Known at all orders (γ → 0)

≈ ᾱs

ᾱs + γ
‘Rotated γ(N)’

I Symmetry γ ↔ N − γ
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≈ ᾱs
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Higher-order corrections at small x (25/47)

Beyond LL

NLL + transverse improvements
Building up the kernel. . .
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Assemble all constraints:

stable, sensible kernel

Ciafaloni, Colferai, GPS & Staśto;

Altarelli, Ball & Forte; ’99–’05



Higher-order corrections at small x (26/47)

Beyond LL

NLL + transverse improvements
Green fn. from improved kernel
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bining NLLx BFKL with
DGLAP:
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violates mom. sum-rule
at O
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I scheme B (NLLB)
satisfies it at all orders

Different schemes →
similar results
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Higher-order corrections at small x (27/47)

Beyond LL

NLL + transverse improvements
Check stability of results

2π
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; k

+
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 k
−ε
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k = 4.5 GeV LL

NLLB

(a)

k = 0.50 GeV
k = 0.74 GeV
k = 1.00 GeV

(frozen)k = 0.74 GeV
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 0  5  10  15

Check stability wrt:

I renorm. scale variation
1/2 < xµ < 2

I change of infrared cutoff

Uncertainties seem
under control

Growth is

I suppressed for Y . 5

I slowed beyond Y . 5

Should be consistent with
data

full tests need impact factors
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Higher-order corrections at small x (28/47)

Splitting functions Limitations of Green function

Green function
G (Y , k , k0) perturbatively calculable for k , k0 � ΛQCD .

I Fine for γ∗γ∗, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS).
But: rare processes – of interest mainly for testing BFKL

Recall:
We were interested in proton (e.g. F2(x ,Q

2) structure fn in DIS).

I In best of cases, k ∼ Q � k0 ∼ ΛQCD

I Such structure functions not perturbatively calculable

Evolution in Q2 is calculable

I via DGLAP splitting functions

I these also get small-x enhancements

➥ Calculate them!
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Higher-order corrections at small x (29/47)

Splitting functions Green function ⇒ splitting function

Construct a gluon density from Green function (take k � k0):

xg(x ,Q2) ≡
∫ Q

d2k G (ν0=k2)(ln 1/x , k , k0)

There should exist a perturbative splitting function, Pgg ,eff(z ,Q2), such
that

dg(x ,Q2)

d lnQ2
=

∫
dz

z
Pgg ,eff(z ,Q2) g

(x

z
,Q2

)

Factorisation

I Splitting function:
red paths

I Green function:
all paths

Splitting function ≡
evolution with cutoff
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Higher-order corrections at small x (30/47)

Splitting functions Perturbative structure of Pgg

I Small-x gluon splitting
function has logarithmic
enhancements:

xPgg (x) =
∑

n=1

αn
s lnn−1 1

x

+
∑

n=2

αn
s lnn−2 1

x
+ . . .

I NNLO (α3
s ): first small-x

enhancement in gluon splitting
function.

Understanding small-x

becomes unavoidable

Leading Logs (LLx)

ᾱs +
ζ(3)

3
ᾱ4

s ln3 1

x
+
ζ(5)

60
ᾱ6

s ln5 1

x
+ · · ·

Next-to-Leading Logs (NLLx)

A20ᾱ
2
s + A31ᾱ

3
s ln

1

x
+ A42ᾱ

4
s ln3 1

x
+ . . .
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enhancements:

xPgg (x) =
∑
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+
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x
+ . . .
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4
s ln3 1

x
+ . . .



Higher-order corrections at small x (30/47)

Splitting functions Perturbative structure of Pgg

I Small-x gluon splitting
function has logarithmic
enhancements:

xPgg (x) =
∑

n=1

αn
s lnn−1 1

x

+
∑

n=2

αn
s lnn−2 1

x
+ . . .

I NNLO (α3
s ): first small-x

enhancement in gluon splitting
function.

Understanding small-x

becomes unavoidable

Leading Logs (LLx)
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Higher-order corrections at small x (31/47)

Splitting functions LLx , NLLx

Problem:

I LLx terms rise very
fast, xPgg (x) ∼ x−0.5.

Incompatible with data.
Ball & Forte ’95

I NLLx terms go
negative very fast.

No one’s even tried
fitting the data!

[NB: Taking NLLx terms
of Pgg is almost the worst
possible expansion] -3
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Higher-order corrections at small x (32/47)

Splitting functions

Resummed
BFKL splitting function ‘power’

Two classes of correction, to power growth ω:

ω = 4 ln 2 ᾱs(Q
2)



1 − 6.5 ᾱs
︸ ︷︷ ︸

NLL

− 4.0 ᾱ
2/3
s

︸ ︷︷ ︸

running

+ · · ·





I NLL piece is universal
As before, add approximate higher orders via NLLB kernel

I running piece appears only in problems with cutoffs

I a consequence of asymmetry due
to cutoff (only scales higher than
cutoff contribute)

αs(Q
2) → αs(Q

2e−X/(bαs)1/3
)

Hancock & Ross ’92

I Beyond first terms, not possible to separate effects of ‘pure’ higher
orders & running coupling

Obtain G (Y , k , k0) ⇒ g(x ,Q2) with arbitrary non-pert. condition,
deconvolute ∂ln Q2g = Pgg ⊗ g =⇒ Pgg
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2/3
s

︸ ︷︷ ︸

running

+ · · ·





I NLL piece is universal
As before, add approximate higher orders via NLLB kernel

I running piece appears only in problems with cutoffs

I a consequence of asymmetry due
to cutoff (only scales higher than
cutoff contribute)

αs(Q
2) → αs(Q

2e−X/(bαs)1/3
)

Hancock & Ross ’92

I Beyond first terms, not possible to separate effects of ‘pure’ higher
orders & running coupling

Obtain G (Y , k , k0) ⇒ g(x ,Q2) with arbitrary non-pert. condition,
deconvolute ∂ln Q2g = Pgg ⊗ g =⇒ Pgg



Higher-order corrections at small x (33/47)

Splitting functions

Resummed
BFKL Pgg power growth — results
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Higher-order corrections at small x (34/47)

Splitting functions

Resummed
Full Pgg(z) splitting fn
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Higher-order corrections at small x (34/47)

Splitting functions

Resummed
Full Pgg(z) splitting fn
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Higher-order corrections at small x (35/47)

Splitting functions

Dip
Phenomenology: dip dominates Pgg

I Rapid rise in Pgg is not for
today’s energies!

I Main feature is a dip at x ∼ 10−3

Questions:

I Is the dip a rigorous prediction?

I What is its origin?
Running αs, mom. sum rule. . . ?

NNLO DGLAP gives a clue. . .
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Higher-order corrections at small x (36/47)

Splitting functions

Phenom. impact
Phenomenological impact?

Phenomenological relevance comes through impact on growth of small-x
gluon with Q2.

∂g(x ,Q2)

d lnQ2
= Pgg ⊗ g + Pgq ⊗ q

At small x , Pgg ⊗ g dominates.

Take CTEQ6M gluon as ‘test’ case for convolution.
Because it’s nicely behaved at small-x
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Higher-order corrections at small x (37/47)

Splitting functions

Phenom. impact
Phenomenological impact? Pgg ⊗ g(x)
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Splitting functions
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Higher-order corrections at small x (38/47)

Splitting functions

Phenom. impact
Pgg ⊗ g(x)
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Higher-order corrections at small x (38/47)

Splitting functions

Phenom. impact
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Higher-order corrections at small x (39/47)

Conclusions Conclusions

I High-energy limit is one of most challenging problems of QCD.

I Much is now understood about some central elements of small-x
resummations:
I gluon Green function
I gluon splitting function

It seems both can be predicted with confidence

I Phenomenological tests are essential
I Mueller-Navelet jets at LHC, γ∗γ∗ at ILC
I Structure functions from HERA

I Some ingredients still missing
I NLL Impact factors
I Full singlet matrix for splitting functions (not just Pgg ).

I Big, active question not touched on:

Saturation & limit of high gluon density
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Higher-order corrections at small x (40/47)
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Higher-order corrections at small x (41/47)

Extra Material
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Reorganise perturbative series
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s ln

1

x
+ 0.401 ᾱ4
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Higher-order corrections at small x (42/47)

Extra Material
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NB:

I convergence is very poor
As ever at small x!

I higher-order terms in expansion
need NNLLx info
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Higher-order corrections at small x (43/47)

Extra Material

Splitting function dip
Test

√
αs dip expansion

Quadratic solution
Expanded solution
measured ln(1/xmin)
3/(2 ωc)
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(a)

Test position of dip v. αs

I Band is uncertainty due to
higher orders in

√
αs

I At small αs, good agreement
→ confirmation of ‘dip
mechanism’

I At moderate αs, normal
small-x resummation effects
‘collide’ with dip

ln
1

xmin

.
3

2ωc

Dip then comes from interplay
between α3

s ln x (NNLO) term
and full resummation.

[Actually, story more complex]
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Higher-order corrections at small x (44/47)

Extra Material

Splitting function dip
Test
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I similar conclusions!

back



Higher-order corrections at small x (45/47)

Extra Material

MS-Bar scheme gluon
Towards phenomenology?

Steps missing for ‘full’ phenomenology:

I Resummation of all entries of singlet matrix & coefficient functions.

I Put results in MS factorisation scheme
➥illustrate nature of surprises that arise. . .



Higher-order corrections at small x (46/47)

Extra Material

MS-Bar scheme gluon
Factorisation scheme

Results shown so far in Q0 scheme. [Catani, Ciafaloni & Hautmann ’93]

xg(x ,Q2) ≡
∫

d2k G (ln 1/x , k , k0)Θ(Q − k) G (0) = f (x)δ2(k − k0)

To translate to MS scheme

xg(x ,Q2) ≡
∫

d2k G (ln 1/x , k , k0)r

(
k2

Q2

)

, r

(
k2

Q2

)

=

∫
dγ eγ ln Q2

k2

2πi γR(γ)

Should be easy?!

R(γ) =

{
Γ(1 − γ)χ(γ)

Γ(1 + γ)[−γχ′(γ)]

} 1
2

exp

{∫ γ

0
dγ′

ψ′(1) − ψ′(1 − γ′)

χ(γ′)

}

Catani & Hautmann ’94

[NB: involves χ(γ) — does this need to be collinearly improved? Ignore
problem for now. . . ]
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Higher-order corrections at small x (47/47)

Extra Material

MS-Bar scheme gluon
Q0 v. MS
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Numerically, MS is much more difficult.
Conceptually, the oscillations are disturbing.
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