Impact of higher orders in the high-energy limit of QCD [OR: Is BFKL predictive?]

> Gavin Salam (work with M. Ciafaloni, D. Colferai & A.M. Stasto)

> > LPTHE, Universities of Paris VI and VII and CNRS

BNL Riken lunch seminar Upton, NY, May 2005

(日) (四) (문) (문) (문) 문

High-energy limit

-

One of the major unsolved problems of QCD (and Yang-Mills theory in general) is the understanding of its *high-energy limit*.

I.e. the limit in which C.O.M. energy (\sqrt{s}) is much larger than *all other scales* in the problem.

Want to understand:

asymptotic behaviour of cross section, σ_{hh}(s) ~??
 properties of final states for large s.

- Some knowledge exists about behaviour of cross section experimentally
- Slow rise as energy increases
- Data insufficient to make reliable statements about functional form
 - $\sigma \sim s^{0.08}$? • $\sigma \sim \ln^2 s$?
- Understanding of final-states is
 ~ inexistent
- Would like theoretical predictions...

Experimental knowledge

Future experiments go to much higher energies.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

э

Problem is must more general than just for hadrons. E.g. photon can *fluctuate* into a quark-antiquark (hadronic!) state:

Even a neutrino can behave like a hadron

Hadronic component dominates high-energy cross section

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

- Perturbative, leading-logarithmic (LL), calculation of cross-section growth
 Using just classical field theory
- Failure of comparison to data
- Higher-order corrections
 - NLL corrections
 - Problems & solutions
- Splitting functions

- Perturbative, leading-logarithmic (LL), calculation of cross-section growth
 Using just classical field theory
- Failure of comparison to data
- Higher-order corrections
 - NLL corrections
 - Problems & solutions
- Splitting functions

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- Perturbative, leading-logarithmic (LL), calculation of cross-section growth
 Using just classical field theory
- Failure of comparison to data
- Higher-order corrections
 - NLL corrections
 - Problems & solutions
- Splitting functions

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- Perturbative, leading-logarithmic (LL), calculation of cross-section growth
 Using just classical field theory
- Failure of comparison to data
- Higher-order corrections
 - NLL corrections
 - Problems & solutions
- Splitting functions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

・ロト ・ 雪 ト ・ ヨ ト

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

・ロト ・ 雪 ト ・ ヨ ト

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

イロト 不得 トイヨト イヨト 三日

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

There remains non-trivial transverse structure.

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

(日) (字) (日) (日) (日)

 There remains non-trivial transverse structure.

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.

 Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

(日) (字) (日) (日) (日)

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Total number of gluons

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{\sf s} N_{\sf c}}{\pi} imes E\delta(z) imes {
m transverse}$

Fourier transform ightarrow energy density in field per unit of long. momentum (ho_z)

 $rac{d\epsilon}{d
ho_z}\sim rac{lpha_s N_c}{\pi} imes {
m transverse}\,,\qquad m\ll
ho_z\ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $rac{dn}{d
ho_z}\sim rac{lpha_{
m s}N_c}{\pi}rac{1}{
ho_z} imes {
m transverse}\,,\qquad m\ll
ho_z\ll E$ [soft divergence]

Total number of gluons:

 $\frac{3}{2}m_{\rm ext}^2 = m_{\rm ext}^2 m_{\rm ext}^2 + m_{\rm ext}^2 m_{\rm ext}^2 + m_{\rm ext}^2$

◆□> ◆□> ◆三> ◆三> ・三 のへで

Total number of gluons

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{s} N_{c}}{\pi} imes E \delta(z) imes ext{transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

 $\frac{d\epsilon}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $rac{dn}{dp_z} \sim rac{lpha_{
m s} N_c}{\pi} rac{1}{p_z} imes {
m transverse}, \qquad m \ll p_z \ll E \qquad [{
m soft divergence}]$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● ◇◇◇

Total number of gluons

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{s}N_{c}}{\pi} imes E\delta(z) imes ext{transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

 $\frac{d\epsilon}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll E \qquad [\text{soft divergence}]$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Total number of gluons

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{s}N_{c}}{\pi} imes E\delta(z) imes ext{transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

 $\frac{d\epsilon}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \times \text{transverse}, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll E \qquad [\text{soft divergence}]$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

(日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Calculation so far is first-order perturbation theory.
- Fixed order perturbation theory is reliable if series converges quickly.
- At high energies, $n \sim \alpha_s \ln E \sim 1$.
- What happens with higher orders?

 $(\alpha_{s} \ln E)^{n}$?

Leading Logarithms (LL). Any fixed order potentially non-convergent...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Start with bare $q\bar{q}$ dipole:

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

 $\alpha \rightarrow \alpha_{\rm s} N_c/2$ (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Higher-order corrections at small x (9/47) \Box Origin of growth of σ \Box QCD specifics

Multiple gluon emission

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Higher-order corrections at small x (9/47) \Box Origin of growth of σ \Box QCD specifics

Multiple gluon emission

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Higher-order corrections at small x (9/47) \Box Origin of growth of σ \Box QCD specifics

Multiple gluon emission

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

・ロト ・ 同ト ・ ヨト ・ ヨト

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Problem is self-similar: dipole \rightarrow 2 dipoles \rightarrow 4 dipoles \rightarrow . . .

Number of dipoles (or gluons) grows *exponentially*:

$$n \sim \exp\left[rac{lpha_{\sf s} N_c}{\pi} \ln E imes ext{transverse}
ight] \sim E^{rac{lpha_{\sf s} N_c}{\pi} imes ext{transverse}}$$

Tranverse part \rightarrow many complications/interest

- ► transverse part is *conformally invariant* → Extensive mathematical studies
- ▶ In high-energy limit it reduces to a pure number: 4 ln 2

 $n \sim E^{rac{lpha_{
m s}N_c}{\pi}4\ln 2} \sim E^{0.5}$

Balitsky Fadin Kuraev Lipatov Pomeron (1976)
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Problem is self-similar: dipole \rightarrow 2 dipoles \rightarrow 4 dipoles \rightarrow . . .

Number of dipoles (or gluons) grows *exponentially*:

$$n \sim \exp\left[rac{lpha_{\sf s} N_c}{\pi} \ln E imes ext{transverse}
ight] \sim E^{rac{lpha_{\sf s} N_c}{\pi} imes ext{transverse}}$$

Tranverse part \rightarrow many complications/interest

- ► transverse part is *conformally invariant* ► Extensive mathematical studies
- In high-energy limit it reduces to a pure number: 4 ln 2

 $n \sim E^{\frac{\alpha_{\rm s}N_c}{\pi}4\ln 2} \sim E^{0.5}$

Balitsky Fadin Kuraev Lipatov Pomeron (1976)

BFKL: rising cross sections

$$n_{
m dipoles}(E) \sim E^{rac{lpha_{
m s}N_{
m c}}{\pi}4\ln 2} \quad \Leftrightarrow \quad \sigma_{
m hh} \sim s^{rac{lpha_{
m s}N_{
m c}}{\pi}4\ln 2}, \qquad rac{lpha_{
m s}N_{
m c}}{\pi}4\ln 2 \simeq 0.5$$

- Completely incompatible with rise of pp
 cross section (~ s^{0.08})
 pp
 is simply beyond perturbation theory
- experimentally spectactular if observable in some process...
- Raises many theoretical issues high gluon densities should lead to non-linear effects: high fields, but still perturbative

Colour Glass Condensate

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

BFKL: rising cross sections

$$n_{\text{dipoles}}(E) \sim E^{\frac{\alpha_{\text{s}}N_{\text{c}}}{\pi}4\ln 2} \quad \Leftrightarrow \quad \sigma_{\text{hh}} \sim s^{\frac{\alpha_{\text{s}}N_{\text{c}}}{\pi}4\ln 2}, \qquad \frac{\alpha_{\text{s}}N_{\text{c}}}{\pi}4\ln 2 \simeq 0.5$$

- Completely incompatible with rise of pp
 cross section (~ s^{0.08})
 pp
 is simply beyond perturbation theory
- experimentally spectactular if observable in some process...
- Raises many theoretical issues high gluon densities should lead to non-linear effects: *high fields, but still perturbative*

Colour Glass Condensate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

How can we search for BFKL experimentally?

- Need to ensure we are in regime where perturbation theory can be applied
 - Choose appropriate hadronic scales (small R)

Higher-order corrections at small × (12/47) Experimental searches for LL BFKL DIS

Deep Inelastic Scattering (DIS)

Getting small transverse sizes (needed for $\alpha_{\rm s} \ll 1$) and asymptotically large collision energies is experimentally difficult.

In general collide two hadronic probes — try a compromise: *make one of them small*

$$R_{\gamma} \sim rac{1}{Q} \ll R_p \sim rac{1}{m_p}$$

- qq̄ probe measures (roughly) number of gluons in proton up to scale Q
- NB: DIS more usually viewed as photon hitting quarks in proton

- Some of physics perturbative (Q ≥ pt ≫ mp)
- ▶ But if ln Q² ≥ ln s we have competition between

 $(\alpha_{\rm s}\ln s)^n$ v. $(\alpha_{\rm s}\ln s\ln Q^2)^n$

Higher-order corrections at small × (12/47) Experimental searches for LL BFKL DIS

Deep Inelastic Scattering (DIS)

Getting small transverse sizes (needed for $\alpha_{\rm s} \ll 1$) and asymptotically large collision energies is experimentally difficult.

In general collide two hadronic probes — try a compromise: *make one of them small*

$$R_{\gamma} \sim rac{1}{Q} \ll R_p \sim rac{1}{m_p}$$

- qq̄ probe measures (roughly) number of gluons in proton up to scale Q
- NB: DIS more usually viewed as photon hitting quarks in proton

- Some of physics perturbative (Q ≥ pt ≫ mp)
- ► But if ln Q² ≥ ln s we have competition between

 $(\alpha_{\rm s}\ln s)^n$ v. $(\alpha_{\rm s}\ln s\ln Q^2)^n$

Higher-order corrections at small × (12/47) Experimental searches for LL BFKL DIS

Deep Inelastic Scattering (DIS)

Getting small transverse sizes (needed for $\alpha_{\rm s} \ll 1$) and asymptotically large collision energies is experimentally difficult.

In general collide two hadronic probes — try a compromise: *make one of them small*

$$R_{\gamma} \sim rac{1}{Q} \ll R_p \sim rac{1}{m_p}$$

- ▶ qq̄ probe measures (roughly) number of gluons in proton up to scale Q
- NB: DIS more usually viewed as photon hitting quarks in proton

- Some of physics perturbative (Q ≥ p_t ≫ m_p)
- ► But if $\ln Q^2 \gtrsim \ln s$ we have *competition* between $(\alpha_s \ln s)^n$ v. $(\alpha_s \ln s \ln Q^2)^n$

Higher-order corrections at small x (13/47) Experimental searches for LL BFKL DIS

HERA F_2 data

Higher-order corrections at small × (13/47) Experimental searches for LL BFKL DIS

HERA F_2 data

Higher-order corrections at small x (13/47) Experimental searches for LL BFKL DIS

HERA F_2 data

Higher-order corrections at small × (14/47) Experimental searches for LL BFKL DIS

- Convert cross sections into estimate of number of gluons
- Various independent extractions
- Up to 20 gluons per unit ln x (or unit ln p_z)!

(日)

- 3

Higher-order corrections at small × (15/47) Experimental searches for LL BFKL DIS

Is it BFKL?

- Check if BFKL by looking at power (λ) of x
- For BFKL, expect $\lambda \simeq 0.5$

Definitely not LL BFKL!

There is some growth — where does it come from?

It is due to combination of $x \ll 1$ and $Q^2 \gg m_p^2$ — resummation of terms $(\alpha_s \ln \frac{1}{x} \ln Q^2)^n$:

 $\sigma \sim \exp\left[c\sqrt{\alpha_{\rm s}\ln Q^2\ln x}\right]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higher-order corrections at small × (15/47) Experimental searches for LL BFKL DIS

Is it BFKL?

- Check if BFKL by looking at power (λ) of x
- ▶ For BFKL, expect $\lambda \simeq 0.5$
- Definitely not LL BFKL!

There is some growth — where does it come from?

It is due to combination of $x \ll 1$ and $Q^2 \gg m_p^2$ — resummation of terms $(\alpha_s \ln \frac{1}{x} \ln Q^2)^n$:

$$\sigma \sim \exp\left[c\sqrt{\alpha_{\rm s}\ln Q^2\ln x}\right]$$

イロト 不得 トイヨト イヨト 三日

 $\gamma^*\gamma^*$ collisions

Results from LEP

Here too, data clearly incompatible with LL BFKL

But perhaps some evidence for weak growth

Results from LEP

- Here too, data clearly incompatible with LL BFKL
- But perhaps some evidence for weak growth

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

▶ BFKL is rigorous prediction of field theory, yet not seen in data

- Should we be worried?
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{s} \rightarrow 0$, ln $s \rightarrow \infty$ and $\alpha_{s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried?

 Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{s} \rightarrow 0$, $\ln s \rightarrow \infty$ and $\alpha_{s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_s(\alpha_s \ln s)^n$

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

$$\alpha_{\rm s} \rightarrow 0$$
, $\ln s \rightarrow \infty$ and $\alpha_{\rm s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

$$\alpha_{\rm s} \rightarrow 0$$
, $\ln s \rightarrow \infty$ and $\alpha_{\rm s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$ Higher-order corrections at small x (19/47)
Beyond LL
Introduction

Wavefunction v. ladder graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

evolution in wavefunctions

Higher-order corrections at small x (19/47) Beyond LL Introduction

Wavefunction v. ladder graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

evolution in wavefunctions

Wavefunction v. ladder graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

wavefunctions

Associated with power growth

Associated with normalisation

Higher-order corrections at small x (20/47)
Beyond LL
Introduction

Label various parts of cross-section calculation NLL: include relative $\mathcal{O}(\alpha_s)$ corrections to each

Label various parts of cross-section calculation NLL: include relative $\mathcal{O}(\alpha_s)$ corrections to each

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici '89-'98

Bartels, Gieseke, Qiao, Colferai, Vacca, Kyrieleis; Fadin, Ivanov, Kotsky

NLL power

Cast NLL corrections to kernel as modification of power:

 $\sigma \sim G(Y, k, k) \sim \exp\left[4\ln 2\bar{lpha}_{\mathsf{s}}(1 - 6.5\bar{lpha}_{\mathsf{s}})Y
ight]$

NB: k = transv. mom. scale

• Very *poorly convergent* ($\bar{\alpha}_{s} = \alpha_{s} N_{c} / \pi \simeq 0.15 \cdots 0.2$)

▶ Unstable perturbative hierarchy: *expansion of power has limited sense*

 Instead, try solving BFKL equation with full NLL kernel (including running coupling)

$$G(Y,k,k_0) = \frac{\delta(k-k_0)}{2\pi k_0} + \int_0^Y dy \int dk'^2 \mathcal{K}(k,k') G(Y-y,k,k')$$

Andersen & Sabio-Vera '03 Ciafaloni, Colferai, GPS & Staśto '03

NLL power

Cast NLL corrections to kernel as modification of power:

 $\sigma \sim G(Y, k, k) \sim \exp\left[4\ln 2\bar{lpha}_{s}(1-6.5\bar{lpha}_{s})Y
ight]$

NB: k = transv. mom. scale

- Very *poorly convergent* ($\bar{\alpha}_{s} = \alpha_{s} N_{c} / \pi \simeq 0.15 \cdots 0.2$)
- Unstable perturbative hierarchy: expansion of power has limited sense

 Instead, try solving BFKL equation with full NLL kernel (including running coupling)

$$G(Y,k,k_0) = \frac{\delta(k-k_0)}{2\pi k_0} + \int_0^Y dy \int dk'^2 \mathcal{K}(k,k') G(Y-y,k,k')$$

Andersen & Sabio-Vera '03 Ciafaloni, Colferai, GPS & Staśto '03

NLL power

Cast NLL corrections to kernel as modification of power:

 $\sigma \sim G(Y, k, k) \sim \exp\left[4\ln 2\bar{\alpha}_{\rm s}(1 - 6.5\bar{\alpha}_{\rm s})Y\right]$

NB: k = transv. mom. scale

- Very *poorly convergent* ($\bar{\alpha}_{s} = \alpha_{s} N_{c} / \pi \simeq 0.15 \cdots 0.2$)
- Unstable perturbative hierarchy: expansion of power has limited sense
- Instead, try solving BFKL equation with full NLL kernel (including running coupling)

$$G(Y,k,k_0) = \frac{\delta(k-k_0)}{2\pi k_0} + \int_0^Y dy \int dk'^2 \mathcal{K}(k,k') G(Y-y,k,k')$$

Andersen & Sabio-Vera '03 Ciafaloni, Colferai, GPS & Stasto '03

Higher-order corrections at small × (22/47) Beyond LL NLL

NLL Green function solution

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Need to understand origin of instability

Higher-order corrections at small × (22/47)
Beyond LL
NLL

NLL Green function solution

Need to understand origin of instability

◆□> ◆□> ◆三> ◆三> ・三 のへで

Higher-order corrections at small × (22/47)
Beyond LL
NLL

NLL Green function solution

Various convention choices affect higher orders (NNLLx):

▶ scale of α_s

• 'energy-scale'
$$s_0$$

($Y = \ln s/s_0$).

Extreme sensitivity to choice of convention ⇔ poor perturbative convergence.

NB: Andersen & Sabio Vera solutions ~ green curve

Need to understand origin of instability

Higher-order corrections at small x (22/47) Beyond LL

NLL Green function solution

Various convention choices affect higher orders (NNLLx):

 \blacktriangleright scale of α_s

• 'energy-scale'
$$s_0$$

($Y = \ln s/s_0$).

Extreme sensitivity to of convention perturbative poor convergence.

NB: Andersen & Sabio Vera solutions \sim green curve

Higher-order corrections at small x (22/47) Beyond LL

NLL Green function solution

to

Need to understand origin of instability

Higher-order corrections at small × (23/47) Beyond LL NLL

- First branching occurs for $Y \sim \frac{c}{\alpha_s}$
- In practice c is small: $e^{Y} \sim 2-5$
- Energy-distribution \neq perfect $\delta(z)$
- 'degree of imperfection' depends on transverse position

Ciafaloni '88

Andersson et al; Kwiecinski et al '96

- - Responsible for ~ 90% of NLL corrections
 - Can be used to supplement NLL at all orders

GPS; Ciafaloni & Colferai, '98-99

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Higher-order corrections at small x (23/47)
Beyond LL
NLL

NLL: why so bad?

- First branching occurs for $Y \sim \frac{c}{\alpha_s}$
- In practice c is small: $e^{Y} \sim 2-5$
- Energy-distribution \neq perfect $\delta(z)$
- 'degree of imperfection' depends on transverse position

Andersson et al; Kwiecinski et al '96

- - Responsible for ~ 90% of NLL corrections
 - Can be used to supplement NLL at all orders

GPS; Ciafaloni & Colferai, '98-99

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Ciafaloni '88

Higher-order corrections at small × (23/47) Beyond LL NLL

- First branching occurs for $Y \sim \frac{c}{\alpha_s}$
- In practice c is small: $e^{Y} \sim 2-5$
- Energy-distribution \neq perfect $\delta(z)$
- 'degree of imperfection' depends on transverse position

Ciafaloni '88

Andersson et al; Kwiecinski et al '96

- ▶ Dominant part ≡ double & single ⊥ logs
 - Responsible for ~ 90% of NLL corrections
 - Can be used to supplement NLL at all orders

GPS; Ciafaloni & Colferai, '98-99

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆
Characteristic function

Eigenvalues of kernel:

- $\mathcal{K}\otimes (k^2)^\gamma = ar{lpha}_{\mathsf{s}}\chi(\gamma)\cdot (k^2)^\gamma$
- $\chi(\gamma)$ is characteristic function
 - $\chi(\gamma) = 2\psi(1) \psi(\gamma) \psi(1 \gamma)$

ightarrow high energy evolution, $\sigma \sim e^{ar{lpha}_{
m s}\chi(\gamma)Y}$.

 dominant part at high energies is *minimum* (only stable solution)

 $\sigma \sim e^{4 \ln 2 \bar{lpha}_{
m s} Y} \sim e^{0.5 Y}$ $lpha_{
m c} \sim 0.2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

▶ pole $(1/\gamma)$ corresponds to ⊥ logarithms → DL terms $\alpha_s Y \ln Q^2$

Building up the kernel...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Green fn. from improved kernel

Check stability of results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Check stability of results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○へ⊙

Green function

 $G(Y, k, k_0)$ perturbatively calculable for $k, k_0 \gg \Lambda_{QCD}$.

Fine for γ*γ*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS). But: rare processes – of interest mainly for testing BFKL

Recall:

We were interested in proton (e.g. $F_2(x, Q^2)$ structure fn in DIS).

- In best of cases, $k \sim Q \gg k_0 \sim \Lambda_{QCD}$
- Such structure functions not perturbatively calculable

Evolution in Q^2 is calculable

- via DGLAP splitting functions
- these also get small-x enhancements
- Calculate them!

Green function

 $G(Y, k, k_0)$ perturbatively calculable for $k, k_0 \gg \Lambda_{QCD}$.

Fine for γ*γ*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS). But: rare processes – of interest mainly for testing BFKL

Recall:

We were interested in proton (e.g. $F_2(x, Q^2)$ structure fn in DIS).

- In best of cases, $k \sim Q \gg k_0 \sim \Lambda_{QCD}$
- Such structure functions not perturbatively calculable

Evolution in Q^2 is calculable

- via DGLAP splitting functions
- these also get small-x enhancements
- Calculate them!

Green function

 $G(Y, k, k_0)$ perturbatively calculable for $k, k_0 \gg \Lambda_{QCD}$.

Fine for γ*γ*, Mueller-Navelet jets (hadron-hadron), Forward jets (DIS). But: rare processes – of interest mainly for testing BFKL

Recall:

We were interested in proton (e.g. $F_2(x, Q^2)$ structure fn in DIS).

- In best of cases, $k \sim Q \gg k_0 \sim \Lambda_{QCD}$
- Such structure functions not perturbatively calculable

Evolution in Q^2 is calculable

- via DGLAP splitting functions
- these also get small-x enhancements
- Calculate them!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

There should exist a *perturbative* splitting function, $P_{gg,eff}(z, Q^2)$, such that

$$\frac{dg(x,Q^2)}{d \ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

Splitting function:

red paths

• Green function:

all paths

Splitting function =evolution with cutoff

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

There should exist a *perturbative* splitting function, $P_{gg,eff}(z, Q^2)$, such that

$$\frac{dg(x, Q^2)}{d \ln Q^2} = \int \frac{dz}{z} P_{gg, eff}(z, Q^2) g\left(\frac{x}{z}, Q^2\right)$$

Factorisation

Splitting function:

red paths

• Green function:

all paths

Splitting function ≡ evolution with cutoff

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(
u_0=k^2)}(\ln 1/x,k,k_0)$$

There should exist a *perturbative* splitting function, $P_{gg,eff}(z, Q^2)$, such that

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

- Splitting function: red paths
- Green function: all paths

Splitting function \equiv evolution with cutoff

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(
u_0=k^2)}(\ln 1/x,k,k_0)$$

There should exist a *perturbative* splitting function, $P_{gg,eff}(z, Q^2)$, such that

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

- Splitting function: red paths
- Green function: all paths

Splitting function \equiv evolution with cutoff

Perturbative structure of P_{gg}

 Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{n} \alpha_s^n \ln^{n-1} \frac{1}{x}$$
$$+ \sum_{n=2}^{n} \alpha_s^n \ln^{n-2} \frac{1}{x} + \dots$$

Leading Logs (LLx)

$$\bar{\alpha}_{s} + \frac{\zeta(3)}{3}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \frac{\zeta(5)}{60}\bar{\alpha}_{s}^{6}\ln^{5}\frac{1}{x} + \cdots$$

Next-to-Leading Logs (NLLx)

$$A_{20}\bar{\alpha}_{\rm s}^2 + A_{31}\bar{\alpha}_{\rm s}^3 \ln \frac{1}{x} + A_{42}\bar{\alpha}_{\rm s}^4 \ln^3 \frac{1}{x} + \dots$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Perturbative structure of P_{gg}

 Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_s^n \ln^{n-1} \frac{1}{x}$$
$$+ \sum_{n=2}^{\infty} \alpha_s^n \ln^{n-2} \frac{1}{x} + \dots$$

Understanding small a become unerstable

-Leading Logs (LLx)
$$\bar{\alpha}_{s} + \frac{\zeta(3)}{3}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \frac{\zeta(5)}{60}\bar{\alpha}_{s}^{6}\ln^{5}\frac{1}{x} + \cdots$$

Next-to-Leading Logs (NLLx)

$$A_{20}\bar{\alpha}_{s}^{2} + A_{31}\bar{\alpha}_{s}^{3}\ln\frac{1}{x} + A_{42}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \dots$$

・ロト・(型ト・(ヨト・(型・))へ()

Perturbative structure of P_{gg}

 Small-x gluon splitting function has logarithmic enhancements:

$$\bar{\alpha}_{s} + \frac{\zeta(3)}{3} \bar{\alpha}_{s}^{4} \ln^{3} \frac{1}{x} + \frac{\zeta(5)}{60} \bar{\alpha}_{s}^{6} \ln^{5} \frac{1}{x} + \cdots$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

 NNLO (α³_s): first small-x enhancement in gluon splitting function.

> Understanding small-x becomes unavoidable

Perturbative structure of P_{gg}

 Small-x gluon splitting function has logarithmic enhancements:

$$\bar{\alpha}_{s} + \frac{\zeta(3)}{3}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \frac{\zeta(5)}{60}\bar{\alpha}_{s}^{6}\ln^{5}\frac{1}{x} + \cdots$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Next-to-Leading Logs (NLLx)

...
$$A_{20}\bar{\alpha}_{s}^{2} + A_{31}\bar{\alpha}_{s}^{3}\ln\frac{1}{x} + A_{42}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \dots$$

► NNLO (α³_s): first small-x enhancement in gluon splitting function.

 $xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_s^n \ln^{n-1} \frac{1}{x}$

 $+ \sum_{n=1}^{\infty} \alpha_{s}^{n} \ln^{n-2} \frac{1}{x} +$

Understanding small-x becomes unavoidable

Perturbative structure of P_{gg}

 Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{n} \alpha_s^n \ln^{n-1} \frac{1}{x}$$
$$+ \sum_{n=2}^{n} \alpha_s^n \ln^{n-2} \frac{1}{x} + \dots$$

 NNLO (α³_s): first small-x enhancement in gluon splitting function.

Understanding small-x becomes unavoidable

Problem:

- LLx terms rise very fast, $xP_{gg}(x) \sim x^{-0.5}$. Incompatible with data. Ball & Forte '95
- NLLx terms go negative very fast.

No one's even tried fitting the data!

[NB: Taking NLLx terms of P_{gg} is almost the worst possible expansion]

BFKL splitting function 'power'

Two classes of correction, to power growth ω :

$$\omega = 4 \ln 2 \,\bar{\alpha}_{s}(Q^{2}) \left(1 - \underbrace{6.5 \,\bar{\alpha}_{s}}_{NLL} - \underbrace{4.0 \,\bar{\alpha}_{s}^{2/3}}_{running} + \cdots \right)$$

NLL piece is universal

As before, add approximate higher orders via $\mathsf{NLL}_{\mathrm{B}}$ kernel

running piece appears only in problems with cutoffs

 a consequence of *asymmetry* due to cutoff (only scales higher than cutoff contribute)

 $lpha_{\mathsf{s}}(Q^2)
ightarrow lpha_{\mathsf{s}}(Q^2 e^{-X/(blpha_{\mathsf{s}})^{1/3}})$

Hancock & Ross '92

Beyond first terms, not possible to separate effects of 'pure' higher orders & running coupling

Obtain $G(Y, k, k_0) \Rightarrow g(x, Q^2)$ with arbitrary non-pert. condition, deconvolute $\partial_{\ln Q^2}g = P_{gg} \otimes g \Longrightarrow P_{gg}$ Two classes of correction, to power growth ω :

$$\omega = 4 \ln 2 \,\bar{\alpha}_{\rm s}(Q^2) \left(1 - \underbrace{6.5 \,\bar{\alpha}_{\rm s}}_{NUL} - \underbrace{4.0 \,\bar{\alpha}_{\rm s}^{2/3}}_{running} + \cdots \right)$$

NLL piece is universal

As before, add approximate higher orders via $\mathsf{NLL}_{\mathrm{B}}$ kernel

running piece appears only in problems with cutoffs

 a consequence of *asymmetry* due to cutoff (only scales higher than cutoff contribute)

 $\alpha_{\rm s}(Q^2) \rightarrow \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$

Hancock & Ross '92

Beyond first terms, not possible to separate effects of 'pure' higher orders & running coupling

 $\begin{array}{l} \text{Obtain } G(Y,k,k_0) \Rightarrow g(x,Q^2) \text{ with arbitrary non-pert. condition,} \\ \text{ deconvolute } \partial_{\ln Q^2}g = P_{gg} \otimes g \Longrightarrow P_{gg} \end{array}$

Two classes of correction, to power growth ω :

$$\omega = 4 \ln 2 \,\bar{\alpha}_{\rm s}(Q^2) \left(1 - \underbrace{6.5 \,\bar{\alpha}_{\rm s}}_{NLL} - \underbrace{4.0 \,\bar{\alpha}_{\rm s}^{2/3}}_{running} + \cdots \right)$$

NLL piece is universal

As before, add approximate higher orders via $\mathsf{NLL}_{\mathrm{B}}$ kernel

- running piece appears only in problems with cutoffs
 - a consequence of *asymmetry* due to cutoff (only scales higher than cutoff contribute)

 $\alpha_{\rm s}(Q^2) \rightarrow \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$

Hancock & Ross '92

Beyond first terms, not possible to separate effects of 'pure' higher orders & running coupling

Obtain $G(Y, k, k_0) \Rightarrow g(x, Q^2)$ with arbitrary non-pert. condition, deconvolute $\partial_{\ln Q^2}g = P_{gg} \otimes g \Longrightarrow P_{gg}$ Two classes of correction, to power growth ω :

$$\omega = 4 \ln 2 \,\bar{\alpha}_{s}(Q^{2}) \left(1 - \underbrace{6.5 \,\bar{\alpha}_{s}}_{NLL} - \underbrace{4.0 \,\bar{\alpha}_{s}^{2/3}}_{running} + \cdots \right)$$

NLL piece is universal

As before, add approximate higher orders via $\mathsf{NLL}_{\mathrm{B}}$ kernel

- running piece appears only in problems with cutoffs
 - a consequence of *asymmetry* due to cutoff (only scales higher than cutoff contribute)

 $\alpha_{\rm s}(Q^2) \rightarrow \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$

Hancock & Ross '92

Beyond first terms, not possible to separate effects of 'pure' higher orders & running coupling

Obtain $G(Y, k, k_0) \Rightarrow g(x, Q^2)$ with arbitrary non-pert. condition, deconvolute $\partial_{\ln Q^2}g = P_{gg} \otimes g \Longrightarrow P_{gg}$

BFKL P_{gg} power growth — results

BFKL P_{gg} power growth — results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○○○

BFKL P_{gg} power growth — results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○○○

BFKL P_{gg} power growth — results

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

◆□> ◆□> ◆三> ◆三> ・三 のへで

Higher-order corrections at small x (35/47) Splitting functions Dip

Phenomenology: dip dominates P_{gg}

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a *dip at* $x \sim 10^{-3}$

Questions:

- Is the dip a rigorous prediction?
- What is its origin? Running α_s, mom. sum rule...?

NNLO DGLAP gives a clue. . . $-1.54 \,\overline{\alpha}_s^3 \ln \frac{1}{x}$

Interaction between $-\bar{lpha}_{
m s}^3\ln 1/x$ and BFKL growth

h $rac{1}{x_{dip}}\simrac{1}{\sqrt{lpha_{
m s}}}$

・ロト ・ 雪 ト ・ ヨ ト

3
Phenomenology: dip dominates P_{gg}

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a *dip at* $x \sim 10^{-3}$

Questions:

- Is the dip a rigorous prediction?
- What is its origin? Running α_s, mom. sum rule...? NNLO DGLAP gives a clue... -1 54 α³ ln ¹/₂

Interaction between $-\bar{\alpha}_{\rm s}^3\ln 1/x$ and BFKL growth

$$\ln \frac{1}{x_{dip}} \sim \frac{1}{\sqrt{\alpha_{\rm s}}}$$

Phenomenology: dip dominates P_{gg}

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a *dip at* $x \sim 10^{-3}$

Questions:

- Is the dip a rigorous prediction?
- ► What is its origin? Running α_s, mom. sum rule...?

NNLO DGLAP gives a clue... $-1.54 \,\overline{\alpha}_{s}^{3} \ln \frac{1}{x}$

Interaction between $-\bar{\alpha}_{\rm s}^3\ln 1/x$ and BFKL growth

$$\ln \frac{1}{x_{dip}} \sim \frac{1}{\sqrt{\alpha_{\rm s}}}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・

Phenomenology: dip dominates P_{gg}

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a *dip at* $x \sim 10^{-3}$

Questions:

- Is the dip a rigorous prediction?
- What is its origin? Running α_s, mom. sum rule...?

NNLO DGLAP gives a clue. . . $-1.54 \, \bar{\alpha}_s^3 \ln \frac{1}{x}$

Interaction between $-\bar{\alpha}_{\rm s}^3\ln 1/x$ and BFKL growth

$$\ln \frac{1}{x_{dip}} \sim \frac{1}{\sqrt{\alpha_{\rm s}}}$$

(日) (字) (日) (日) (日)

Phenomenology: dip dominates P_{gg}

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a *dip at* $x \sim 10^{-3}$

Questions:

- Is the dip a rigorous prediction?
- What is its origin? Running α_s, mom. sum rule...?

NNLO DGLAP gives a clue. . . $-1.54\,\bar{\alpha}_{s}^{3}\ln\frac{1}{x}$

Interaction between $-\bar{\alpha}_{\rm s}^3 \ln 1/x$ and BFKL growth

$$\ln \frac{1}{x_{dip}} \sim \frac{1}{\sqrt{\alpha_{\rm s}}}$$

Phenomenological relevance comes through impact on growth of small-x gluon with Q^2 .

$$rac{\partial g(x,Q^2)}{d \ln Q^2} = P_{gg} \otimes g + P_{gq} \otimes q$$

At small x, $P_{gg} \otimes g$ dominates.

Take CTEQ6M gluon as 'test' case for convolution.

Because it's nicely behaved at small-x

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Phenomenological relevance comes through impact on growth of small-x gluon with Q^2 .

$$\frac{\partial g(x, Q^2)}{d \ln Q^2} = P_{gg} \otimes g + P_{gq} \otimes q$$

At small x, $P_{gg} \otimes g$ dominates.

Take CTEQ6M gluon as 'test' case for convolution.

Because it's nicely behaved at small-x

 $\underset{\downarrow_{\text{Phenom. impact}}}{\overset{\text{Higher-order corrections at small x (37/47)}}{\overset{\text{Splitting functions}}{\overset{\text{Log}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Log}}{\overset{\text{Splitting functions}}{\overset{\text{Log}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Log}}{\overset{\text{Splitting functions}}{\overset{\text{Log}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{Splitting functions}}{\overset{\text{$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

Higher-order corrections at small x (37/47) Splitting functions Phenom. impact

Phenomenological impact? $P_{gg} \otimes g(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ

 $P_{gg} \otimes g(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 $P_{gg} \otimes g(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲日 → ▲圖 → ▲ 田 → ▲ 田 → ― 田 →

- High-energy limit is one of most challenging problems of QCD.
- Much is now understood about some central elements of small-x resummations:
 - ▶ gluon *Green* function
 - gluon *splitting* function

It seems both can be predicted <u>with confidence</u>

- Phenomenological tests are essential
 - Mueller-Navelet jets at LHC, $\gamma^*\gamma^*$ at ILC
 - Structure functions from HERA
- Some ingredients still missing
 - NLL Impact factors
 - Full singlet matrix for splitting functions (not just Pgg).
- Big, active question not touched on:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ○

- High-energy limit is one of most challenging problems of QCD.
- Much is now understood about some central elements of small-x resummations:
 - ▶ gluon *Green* function
 - gluon splitting function

It seems both can be predicted with confidence

- Phenomenological tests are essential
 - Mueller-Navelet jets at LHC, $\gamma^*\gamma^*$ at ILC
 - Structure functions from HERA
- Some ingredients still missing
 - NLL Impact factors
 - ► Full singlet matrix for splitting functions (not just P_{gg}).
- Big, active question not touched on:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- High-energy limit is one of most challenging problems of QCD.
- Much is now understood about some central elements of small-x resummations:
 - ▶ gluon *Green* function
 - gluon splitting function

It seems both can be predicted with confidence

- Phenomenological tests are essential
 - Mueller-Navelet jets at LHC, $\gamma^*\gamma^*$ at ILC
 - Structure functions from HERA
- Some ingredients still missing
 - NLL Impact factors
 - ▶ Full singlet matrix for splitting functions (not just P_{gg}).
- Big, active question not touched on:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

- High-energy limit is one of most challenging problems of QCD.
- Much is now understood about some central elements of small-x resummations:
 - ▶ gluon *Green* function
 - gluon *splitting* function

It seems both can be predicted with confidence

- Phenomenological tests are essential
 - Mueller-Navelet jets at LHC, $\gamma^*\gamma^*$ at ILC
 - Structure functions from HERA
- Some ingredients still missing
 - NLL Impact factors
 - ▶ Full singlet matrix for splitting functions (not just P_{gg}).

Big, active question not touched on:

A D A (日) A (1) A (1

- High-energy limit is one of most challenging problems of QCD.
- Much is now understood about some central elements of small-x resummations:
 - ▶ gluon *Green* function
 - gluon *splitting* function

It seems both can be predicted with confidence

- Phenomenological tests are essential
 - Mueller-Navelet jets at LHC, $\gamma^*\gamma^*$ at ILC
 - Structure functions from HERA
- Some ingredients still missing
 - NLL Impact factors
 - ► Full singlet matrix for splitting functions (not just P_{gg}).
- Big, active question not touched on:

Green function (extra slides)

<□> <□> <□> <□> <≡> <≡> <≡> <≡</p>
back

Green function (extra slides)

Green function (extra slides)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Reorganise perturbative series

Reorganise perturbative series

with x-dependence are

 $-1.54\,ar{lpha}_{
m s}^{
m 3}\lnrac{1}{x}+0.401\,ar{lpha}_{
m s}^{
m 4}\ln^{
m 3}rac{1}{x}$

Minimum when

 $s \ln^2 x \sim 1 \equiv \ln \frac{1}{x} \sim \frac{1}{\sqrt{\alpha_s}}$

Reorganise perturbative series

Reorganise perturbative series

Reorganise perturbative series

(日) (四) (三) (三)

Systematic expansion in $\sqrt{\alpha_s}$

Position of dip

$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_{s}}} + 6.947 + \cdots$$

Depth of dip

$$-d \simeq -1.237 \bar{\alpha}_{s}^{5/2} - 11.15 \bar{\alpha}_{s}^{3} + \cdots$$

NB:

- convergence is very poor
 As ever at small x!
- higher-order terms in expansion need NNLLx info

・ロト ・聞ト ・ヨト ・ヨト

3

Systematic expansion in $\sqrt{\alpha_{\rm s}}$

Position of dip

$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_{s}}} + 6.947 + \cdots$$

Depth of dip

$$-d \simeq -1.237 \bar{lpha}_{s}^{5/2} - 11.15 \bar{lpha}_{s}^{3} + \cdots$$

NB:

- convergence is very poor As ever at small x!
- higher-order terms in expansion need NNLLx info

・ロト ・聞ト ・ヨト ・ヨト

- 3

Systematic expansion in $\sqrt{\alpha_{\rm s}}$

Position of dip

$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_{s}}} + 6.947 + \cdots$$

Depth of dip

$$-d \simeq -1.237 \bar{\alpha}_{\rm s}^{5/2} - 11.15 \bar{\alpha}_{\rm s}^3 + \cdots$$

NB:

- convergence is very poor As ever at small x!
- higher-order terms in expansion need NNLLx info

Test $\sqrt{\alpha_s}$ dip expansion

Test *position* of dip v. α_s

- ► Band is uncertainty due to higher orders in √as
- ► At small α_s, good agreement → confirmation of 'dip mechanism'
- At moderate α_s, normal small-x resummation effects 'collide' with dip

$$\ln \frac{1}{x_{\min}} \lesssim \frac{3}{2\omega_c}$$

Dip then comes from interplay between $\alpha_s^3 \ln x$ (NNLO) term and full resummation.

[Actually, story more complex] ব □ ► বিটা ব ই ► ব ই ► হ ত ৩৫৫

Test $\sqrt{\alpha_s}$ dip expansion

Test *position* of dip v. α_s

- ► Band is uncertainty due to higher orders in √as
- ► At small \(\alpha\)_s, good agreement → confirmation of 'dip mechanism'
- At moderate α_s, normal small-x resummation effects 'collide' with dip

$$\ln \frac{1}{x_{\min}} \lesssim \frac{3}{2\omega_c}$$

Dip then comes from interplay between $\alpha_s^3 \ln x$ (NNLO) term and full resummation.

[Actually, story more complex] ব □ ► বিটি ব ই ► ব ই ► হ ত ৩৫৫

Test $\sqrt{\alpha_{\rm s}}$ dip expansion

Test *position* of dip v. α_s

- ► Band is uncertainty due to higher orders in √as
- ► At small \(\alpha\)_s, good agreement → confirmation of 'dip mechanism'
- At moderate α_s, normal small-x resummation effects 'collide' with dip

$$\ln \frac{1}{x_{\min}} \lesssim \frac{3}{2\omega_c}$$

Dip then comes from interplay between $\alpha_s^3 \ln x$ (NNLO) term and full resummation.

[Actually, story more complex]

Test $\sqrt{\alpha_{\rm s}}$ dip expansion

Test *depth* of dip v. α_s

similar conclusions!

back

Steps missing for 'full' phenomenology:

- ▶ Resummation of all entries of singlet matrix & coefficient functions.
- ▶ Put results in MS factorisation scheme

⇒illustrate nature of surprises that arise...

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Higher-order corrections at small x (46/47) Extra Material MS-Bar scheme gluon

Factorisation scheme

Results shown so far in Q_0 scheme.

[Catani, Ciafaloni & Hautmann '93]

$$xg(x,Q^2) \equiv \int d^2k \ G(\ln 1/x,k,k_0)\Theta(Q-k) \qquad G^{(0)} = f(x)\delta^2(k-k_0)$$

To translate to MS scheme

$$xg(x,Q^2) \equiv \int d^2k \ G(\ln 1/x,k,k_0)r\left(\frac{k^2}{Q^2}\right), \qquad r\left(\frac{k^2}{Q^2}\right) = \int \frac{d\gamma \, e^{\gamma \ln \frac{Q^2}{k^2}}}{2\pi i \, \gamma R(\gamma)}$$

Should be easy?!

$$R(\gamma) = \left\{ \frac{\Gamma(1-\gamma)\chi(\gamma)}{\Gamma(1+\gamma)[-\gamma\chi'(\gamma)]} \right\}^{\frac{1}{2}} \exp\left\{ \int_{0}^{\gamma} d\gamma' \frac{\psi'(1) - \psi'(1-\gamma')}{\chi(\gamma')} \right\}$$

Catani & Hautmann '94 NB: involves $\chi(\gamma)$ — does this need to be collinearly improved? Ignore problem for now...] Higher-order corrections at small x (46/47) Extra Material MS-Bar scheme gluon

Factorisation scheme

Results shown so far in Q_0 scheme.

[Catani, Ciafaloni & Hautmann '93]

$$xg(x,Q^2) \equiv \int d^2k \ G(\ln 1/x,k,k_0)\Theta(Q-k) \qquad G^{(0)} = f(x)\delta^2(k-k_0)$$

To translate to MS scheme

$$xg(x,Q^2) \equiv \int d^2k \ G(\ln 1/x,k,k_0)r\left(\frac{k^2}{Q^2}\right), \qquad r\left(\frac{k^2}{Q^2}\right) = \int \frac{d\gamma \, e^{\gamma \ln \frac{Q^2}{k^2}}}{2\pi i \, \gamma R(\gamma)}$$

Should be easy?!

$$R(\gamma) = \left\{ \frac{\Gamma(1-\gamma)\chi(\gamma)}{\Gamma(1+\gamma)[-\gamma\chi'(\gamma)]} \right\}^{\frac{1}{2}} \exp\left\{ \int_{0}^{\gamma} d\gamma' \frac{\psi'(1) - \psi'(1-\gamma')}{\chi(\gamma')} \right\}$$

Catani & Hautmann '94

[NB: involves $\chi(\gamma)$ — does this need to be collinearly improved? Ignore problem for now...]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Numerically, MS is much more difficult. *Conceptually*, the oscillations are disturbing.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Numerically, MS is much more difficult. *Conceptually*, the oscillations are disturbing.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Numerically, MS is much more difficult. *Conceptually*, the oscillations are disturbing.