Automated resummation and hadron collider event shapes

Gavin P. Salam
(in collaboration with Andrea Banfi \& Giulia Zanderighi)

LPTHE, Universities of Paris VI and VII and CNRS
RADCOR
Shonan Village, Japan, October 2005

A wealth of information about QCD lies in its final states. Problem is how to extract it.

One option is to use a jet-algorithm and classify events -2 jets, 3 jets,. But this does not capture continuous nature of variability of events.

A wealth of information about QCD lies in its final states. Problem is how to extract it.

One option is to use a jet-algorithm and classify events -2 jets, 3 jets,... But this does not capture continuous nature of variability of events.

A wealth of information about QCD lies in its final states. Problem is how to extract it.

One option is to use a jet-algorithm and classify events -2 jets, 3 jets,... But this does not capture continuous nature of variability of events.

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure shape of events. Most famous example is Thrust:

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$

3-jet event: $\quad T \simeq 2 / 3$

First discussion goes back to 1964. Serious work got going in late '70s. Various proposals to measure shape of events. Most famous example is Thrust:

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$

3-jet event: $\quad T \simeq 2 / 3$

There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Event shapes: high information content

Much learnt from event-shapes in $e^{+} e^{-}$and DIS:

- α_{s} fits
- Tuning of Monte Carlos

Much learnt from event-shapes in $e^{+} e^{-}$and DIS:

- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits (C_{A}, C_{F}, \ldots)
- Studies of analytical

Much learnt from event-shapes in $e^{+} e^{-}$and DIS:

- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical

Much learnt from event-shapes in $e^{+} e^{-}$and DIS:

- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical hadronisation models ($1 / Q$, shape functions, ...)

Much learnt from event-shapes in $e^{+} e^{-}$and DIS:

- α_{s} fits
- Tuning of Monte Carlos
- Colour factor fits $\left(C_{A}, C_{F}, \ldots\right)$
- Studies of analytical hadronisation models ($1 / Q$, shape functions, ...)

Neglected at hadron colliders despite (measurements: CDF Broad, D0 Thr)

- Rich structure of multi-jet events
- big source of gluon jets
- potential for studying underlying event
[e.g. Stony Brook soft colour logs]
[e.g. for hadronisation studies]

Automated resummation (p. 5)
 - Introduction
 Inputs to event-shape distribution?

Automated resummation (p. 5)
 LIntroduction
 Inputs to event-shape distribution?

Fixed order

- Event shapes trivial for Born events (e.g. p $\bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets

$$
\frac{1}{\sigma} \frac{d \sigma}{d V} \equiv \Sigma^{\prime}(V)=\alpha_{s} f_{1}(V)+\alpha_{s}^{2} f_{2}(V)+\ldots
$$

Given computer subroutine for $V\left(p_{1}, \ldots, p_{n}\right)$ program gives you $f_{1}(V), f_{2}(V)$ NLOJET++, Nagy, '01-'03; also Kilgore-Giele code
Resummation

- For $V \ll 1$ (most data), soft-collinear logs dominate, $L=\ln 1 / v$:

- Sometimes series 'exponentiates', i.e. In \sum is simpler:

Fixed order

- Event shapes trivial for Born events (e.g. $p \bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets

$$
\frac{1}{\sigma} \frac{d \sigma}{d V} \equiv \Sigma^{\prime}(V)=\alpha_{s} f_{1}(V)+\alpha_{s}^{2} f_{2}(V)+\ldots
$$

Given computer subroutine for $V\left(p_{1}, \ldots, p_{n}\right)$ program gives you $f_{1}(\mathrm{~V}), f_{2}(V)$ NLOJET++, Nagy, '01-'03; also Kilgore-Giele code

Resummation

- For $V \ll 1$ (most data), soft-collinear logs dominate, $L=\ln 1 / v$:

$$
\Sigma(V) \simeq \sum_{m} \sum_{n=0}^{2 m} \alpha_{s}^{m} L^{n} H_{m n}=\underbrace{h_{1}\left(\alpha_{s} L^{2}\right)}_{L L}+\underbrace{\sqrt{\alpha_{s}} h_{2}\left(\alpha_{s} L^{2}\right)}_{N L L}+\ldots
$$

- Sometimes series 'exponentiates', i.e. In Σ is simpler:

Fixed order

- Event shapes trivial for Born events (e.g. p $\bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets

$$
\frac{1}{\sigma} \frac{d \sigma}{d V} \equiv \Sigma^{\prime}(V)=\alpha_{s} f_{1}(V)+\alpha_{s}^{2} f_{2}(V)+\ldots
$$

Given computer subroutine for $V\left(p_{1}, \ldots, p_{n}\right)$ program gives you $f_{1}(\mathrm{~V}), f_{2}(V)$ NLOJET++, Nagy, '01-'03; also Kilgore-Giele code

Resummation

- For $V \ll 1$ (most data), soft-collinear logs dominate, $L=\ln 1 / v$:

$$
\Sigma(V) \simeq \sum_{m} \sum_{n=0}^{2 m} \alpha_{s}^{m} L^{n} H_{m n}=\underbrace{h_{1}\left(\alpha_{s} L^{2}\right)}_{L L}+\underbrace{\sqrt{\alpha_{s}} h_{2}\left(\alpha_{s} L^{2}\right)}_{N L L}+\ldots
$$

- Sometimes series 'exponentiates', i.e. $\ln \Sigma$ is simpler:

$$
\ln \Sigma(V) \simeq \sum_{m} \sum_{n=0}^{m+1} \alpha_{s}^{m} L^{n} G_{m n}=\underbrace{\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)}_{L L}+\underbrace{g_{2}\left(\alpha_{s} L\right)}_{N L L}+\ldots
$$

Fixed order

- Event shapes trivial for Born events (e.g. p $\bar{p} \rightarrow 2$ jets, thrust $=1$)
- First non-trivial order (LO) is Born +1 parton, i.e. $p \bar{p} \rightarrow 3$ jets

$$
\frac{1}{\sigma} \frac{d \sigma}{d V} \equiv \Sigma^{\prime}(V)=\alpha_{s} f_{1}(V)+\alpha_{s}^{2} f_{2}(V)+\ldots
$$

Given computer subroutine for $V\left(p_{1}, \ldots, p_{n}\right)$ program gives you $f_{1}(\mathrm{~V}), f_{2}(V)$ NLOJET++, Nagy, '01-'03; also Kilgore-Giele code

Resummation

- For $V \ll 1$ (most data), soft-collinear logs dominate, $L=\ln 1 / v$:

$$
\Sigma(V) \simeq \sum_{m} \sum_{n=0}^{2 m} \alpha_{s}^{m} L^{n} H_{m n}=\underbrace{h_{1}\left(\alpha_{s} L^{2}\right)}_{L L_{\Sigma}}+\underbrace{\sqrt{\alpha_{s}} h_{2}\left(\alpha_{s} L^{2}\right)}_{N L L_{\Sigma}}+\ldots
$$

- Sometimes series 'exponentiates', i.e. $\ln \Sigma$ is simpler:

$$
\ln \Sigma(V) \simeq \sum_{m} \sum_{n=0}^{m+1} \alpha_{s}^{m} L^{n} G_{m n}=\underbrace{\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)}_{L L_{\ln \Sigma}}+\underbrace{g_{2}\left(\alpha_{s} L\right)}_{N L L_{\ln \Sigma}}+\ldots
$$

Automated resummation (p. 7)
-Perturbative tools

Exponentiating final-state resummations

$e^{+} e^{-} \rightarrow 2$ jets

S. Catani et al., Thrust distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 263 (1991) 491.
S. Catani, G. Turnock and B. R. Webber, Heavy jet mass distribution [...], Phys. Lett. B 272 (1991) 368.
S. Catani et al., New clustering algorithm for multi-jet crosssections in $e^{+} e^{-}$annihilation, Phys. Lett. B 269 (1991) 432.
S. Catani, et al. Resummation of large logarithms in $e^{+} e^{-}$ event shape distributions, Nucl. Phys. B 407 (1993) 3.
S. Catani, G. Turnock and B. R. Webber, Jet broadening measures in $e^{+} e^{-}$annihilation, Phys. Lett. B 295 (1992) 269.
G. Dissertori and M. Schmelling, [...] two jet rate in $e^{+} e^{-}$ annihilation, Phys. Lett. B 361 (1995) 167.
Y. L. Dokshitzer et al. On the QCD analysis of jet broadening, JHEP 9801 (1998) 011
S. Catani and B. R. Webber, Resummed C-parameter distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 427 (1998) 377 S. J. Burby and E. W. Glover, [...] light hemisphere mass and narrow jet broadening [...] JHEP 0104 (2001) 029
M. Dasgupta and GPS, Resummation of non-global QCD observables, Phys. Lett. B 512 (2001) 323
E. Gardi and J. Rathsman, Renormalon resummation [...] in the thrust distribution, Nucl. Phys. B 609 (2001) 123
E. Gardi and J. Rathsman, The thrust and heavy-jet mass distributions [...], Nucl. Phys. B 638 (2002) 243
C. F. Berger, T. Kucs and G. Sterman, Event shape / energy flow correlations, Phys. Rev. D 68 (2003) 014012
F. Krauss and G. Rodrigo, Resummed jet rates for $e^{+} e^{-}$annihilation into massive quarks, Phys. Lett. B 576 (2003) 135
E. Gardi and L. Magnea, The C parameter distribution in e+ e- annihilation, JHEP 0308 (2003) 030
C. F. Berger and L. Magnea, [...] angularities from dressed gluon exponentiation, Phys. Rev. D 70, 094010 (2004)

DIS $1+1$ jet

V. Antonelli, M. Dasgupta and GPS, Resummation of thrust distributions in DIS, JHEP 0002 (2000) 001
M. Dasgupta and GPS, Resummation of the jet broadening in DIS, Eur. Phys. J. C 24 (2002) 213
M. Dasgupta and GPS, Resummed event-shape variables in DIS, JHEP 0208 (2002) 032

$e^{+} e^{-}$, DY, DIS 3 jets

A. Banfi, G. Marchesini, Y. L. Dokshitzer and G. Zanderighi, QCD analysis of near-to-planar 3-jet events, JHEP 0007 (2000) 002
A. Banfi, Y. L. Dokshitzer, G. Marchesini and G. Zanderighi, Near-to-planar 3-jet events in and beyond QCD perturbation theory, Phys. Lett. B 508 (2001) 269
A. Banfi, Y. L. Dokshitzer, G. Marchesini and G. Zanderighi, QCD analysis of D-parameter in near-to-planar threejet events, JHEP 0105 (2001) 040
A. Banfi, G. Marchesini, G. Smye and G. Zanderighi, Out-ofplane QCD radiation in hadronic $Z 0$ production, JHEP 0108 (2001) 047
A. Banfi, G. Marchesini, G. Smye and G. Zanderighi, Out-ofplane QCD radiation in DIS with high $p(t)$ jets, JHEP 0111 (2001) 066
A. Banfi, G. Marchesini and G. Smye, Azimuthal correlation in DIS, JHEP 0204 (2002) 024
A. Banfi and M. Dasgupta, Dijet rates with symmetric $E(t)$ cuts, JHEP 0401, 027 (2004)

Average: 1 observable per paper

$$
\begin{gathered}
\frac{\text { Monte Carlo resummation: }}{\text { Event generators }} \\
\text { resummation programs! But: }
\end{gathered}
$$

- Accuracy often unclear (depends on observable, no NLL for multi-jet processes)
- Difficult to estimate uncertainties of calculation
- Matching with fixed order is tricky
- No analytical information
- Guaranteed accuracy, exponentiation
- Separate LL, NLL functions, $g_{1}\left(\alpha_{s} L\right), g_{2}\left(\alpha_{s} L\right)$
- Expansions of g_{1} and g_{2} to fixed order in α_{s}

```
Monte Carlo resummation:
Event generators (Herwig, Pythia, ...) = powerful automated resummation programs! But:
```

- Accuracy often unclear (depends on observable, no NLL for multi-jet processes)
- Difficult to estimate uncertainties of calculation
- Matching with fixed order is tricky
- No analytical information
What we would like:

Something as good as manual analytical resummation

- Guaranteed accuracy, exponentiation
- Separate LL, NLL functions, $g_{1}\left(\alpha_{s} L\right), g_{2}\left(\alpha_{s} L\right)$
- Expansions of g_{1} and g_{2} to fixed order in α_{s}

Phase space ($e^{+} e^{-} \rightarrow 2$ jets)

Use 'Lund' representation of kinematic plane: $\ln k_{t}$ and $\eta=-\ln \tan \theta / 2$

Phase space ($e^{+} e^{-} \rightarrow 2$ jets)

Use 'Lund' representation of kinematic plane: $\ln k_{t}$ and $\eta=-\ln \tan \theta / 2$

Phase space ($e^{+} e^{-} \rightarrow 2$ jets)

Use 'Lund' representation of kinematic plane: $\ln k_{t}$ and $\eta=-\ln \tan \theta / 2$

Phase space ($e^{+} e^{-} \rightarrow 2$ jets)

Use 'Lund' representation of kinematic plane: $\ln k_{t}$ and $\eta=-\ln \tan \theta / 2$

Introduce observable (\& one emission)

Take observable, e.g. 1-Thrust (τ).
Dependence on single soft collinear emission:

$$
\ln \tau=\ln \frac{k_{t}}{Q}-|\eta|
$$

In general: linear comb. of $\ln \frac{K_{t}}{Q},|\eta|$ Limit on $\tau, \tau<\tau_{\text {max }}$ defines vetoed region in $k_{t}-\eta$ plane.

Virtual-real cancellation occurs everywhere except vetoed region - left-over virtuals give $\left(\sim-\alpha_{s} d \eta d \ln k_{t}\right):$

$$
\Sigma\left(\tau<\tau_{\max }\right)=1+\underbrace{G_{12} \alpha_{s} L^{2}}_{\text {Vetoed area }}+\underbrace{G_{11} \alpha_{s} L}_{\text {edges }}
$$

What happens at all orders. . .

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

What happens at all orders. . .

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

- Require non-canc. to be $\alpha_{s}^{n} L^{n}$, i.e. only emissions in band matter

What happens at all orders. . .

- Require non-canc. to be $\alpha_{s}^{n} L^{n}$, i.e. only emissions in band matter
- The rest cancel with virtual

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

- Require insensitivity to secondary collinear splitting - 'Cluster' emissions

What happens at all orders. . .

- Require non-canc. to be $\alpha_{s}^{n} L^{n}$, i.e. only emissions in band matter
- The rest cancel with virtual

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

- Require insensitivity to secondary collinear splitting

What happens at all orders. . .

- Require non-canc. to be $\alpha_{s}^{n} L^{n}$, i.e. only emissions in band matter
- The rest cancel with virtual

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

- Require insensitivity to secondary collinear splitting
- 'cluster' emissions

What happens at all orders. . .

- Require non-canc. to be $\alpha_{s}^{n} L^{n}$, i.e. only emissions in band matter
- The rest cancel with virtual

Virtual 'area' exponentiates:

$$
\alpha_{s} L^{2} \rightarrow e^{\alpha_{s}^{n} L^{n+1}}
$$

(Sudakov)
NLL edges stay NLL (and multiply LL exponential)

$$
\alpha_{s} L \rightarrow e^{\alpha_{s}^{n} L^{n}}
$$

What of real emissions? Only cancel against virtuals if do not affect observable.

- Require insensitivity to secondary collinear splitting
- 'cluster' emissions

Like infrared-collinear (IRC) safety. But stronger: recursive IRC safety.
Low emission density \rightarrow approximate M.E. by indep. emission (coherence)

Extracting pure NLL corrections

- Recall $\ln \Sigma=\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots$.
- Rescale $\alpha_{s} \rightarrow 0, L \rightarrow \infty$ with $\alpha_{s} L$ constant.
- $\alpha_{s} g_{3}\left(\alpha_{s} L\right)$ drops out; subtract $\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)$: pure $g_{2}\left(\alpha_{s} L\right)$ remains
- Rescaling of L and α_{s} equivalent to remapping of phase-space band
- Recall $\ln \Sigma=\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots$
- Rescale $\alpha_{s} \rightarrow 0, L \rightarrow \infty$ with $\alpha_{s} L$ constant.
- $\alpha_{s} g_{3}\left(\alpha_{s} L\right)$ drops out; subtract $\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)$: pure $g_{2}\left(\alpha_{s} L\right)$ remains
- Rescaling of L and α_{s} equivalent to remapping of phase-space band
 $\xrightarrow[\left(\alpha_{s} L \text { const }\right)]{\text { remapping }}$

- Recall $\ln \Sigma=\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots$
- Rescale $\alpha_{s} \rightarrow 0, L \rightarrow \infty$ with $\alpha_{s} L$ constant.
- $\alpha_{s} g_{3}\left(\alpha_{s} L\right)$ drops out; subtract $\alpha_{s}^{-1} g_{1}\left(\alpha_{s} L\right)$: pure $g_{2}\left(\alpha_{s} L\right)$ remains
- Rescaling of L and α_{s} equivalent to remapping of phase-space band
 $\xrightarrow[\left(\alpha_{s} L \text { const }\right)]{\text { remapping }}$

NB: observable must scale properly under remapping (\rightarrow part of rIRC safety)

Some observables measure just part of phase space, e.g. single jet
non-global
Resummation is different:

- Extra edge (NLL), whose shape may depend on emissions, e.g. jet in k_{t} algorithm

- Must resum multiple large-angle
only in large- N_{c} limit

Some observables measure just part of phase space, e.g. single jet

non-global

Resummation is different:

- Extra edge (NLL), whose shape may depend on emissions, e.g. jet in k_{t} algorithm

Appleby \& Seymour '02
Banfi \& Dasgupta '05

- Must resum multiple large-angle ordered emission, done so far
only in large- N_{c} limit

Banfi, Marchesini \& Smye '02

Other major condition: globalness

Some observables measure just part of phase space, e.g. single jet

non-global

Resummation is different:

- Extra edge (NLL), whose shape may depend on emissions, e.g. jet in k_{t} algorithm

Appleby \& Seymour '02
Banfi \& Dasgupta '05

- Must resum multiple large-angle ordered emission, done so far only in large- N_{c} limit

Dasgupta \& GPS '01-'02
Banfi, Marchesini \& Smye '02

Other major condition: globalness

Non-global observables are not for now!

Some observables measure just part of phase space, e.g. single jet

non-global

Resummation is different:

- Extra edge (NLL), whose shape may depend on emissions, e.g. jet in k_{t} algorithm

Appleby \& Seymour '02
Banfi \& Dasgupta '05

- Must resum multiple large-angle ordered emission, done so far only in large- N_{c} limit

Dasgupta \& GPS '01-'02
Banfi, Marchesini \& Smye '02

Analytical work (done once and for all)

A1. formulate exact applicability conditions for the approach (its scope)
A2. derive a master formula for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)
N1. let an "expert system" investigate the applicability conditions
N 2 . it also determines the inputs for the master formula
straightforward evaluation of the master formula, including phase space integration etc.
collinear) limits

Analytical work (done once and for all)
A1. formulate exact applicability conditions for the approach (its scope)
A2. derive a master formula for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)
N1. let an "expert system" investigate the applicability conditions
N2. it also determines the inputs for the master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.
\square N1 and N2 are core of automation
a) they require high precision arithmetic to take asymptotic (soft \& collinear) limits
b) validatation of hypotheses uses methods inspired by "Experimental Mathematics'

Analytical work (done once and for all)
A1. formulate exact applicability conditions for the approach (its scope)
A2. derive a master formula for a generic observable in terms of simple properties of the observable

Numerical work (to be repeated for each observable)
N1. let an "expert system" investigate the applicability conditions
N2. it also determines the inputs for the master formula
N3. straightforward evaluation of the master formula, including phase space integration etc.

Note: N1 and N2 are core of automation
a) they require high precision arithmetic to take asymptotic (soft \& collinear) limits
b) validatation of hypotheses uses methods inspired by "Experimental Mathematics"

Single emission properties

- Observable must have standard functional form for soft \& collinear gluon emission

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi) .
$$

Single emission properties

- Observable must have standard functional form for soft \& collinear gluon emission

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi) .
$$

Born momenta

Single emission properties

- Observable must have standard functional form for soft \& collinear gluon emission

- Determine coefficients $a_{\ell}, b_{\ell}, d_{\ell}$ and $g_{\ell}(\phi)$ for emissions close to each hard Born parton (leg) ℓ.
- Require continuous globalness, i.e. uniform dependence

Single emission properties

- Observable must have standard functional form for soft \& collinear gluon emission

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi) .
$$

- Determine coefficients $a_{\ell}, b_{\ell}, d_{\ell}$ and $g_{\ell}(\phi)$ for emissions close to each hard Born parton (leg) ℓ.
- Require continuous globalness, i.e. uniform dependence on k_{t} independently of emission direction ($a_{1}=a_{2}=\cdots=a$)

Single emission properties

- Observable must have standard functional form for soft \& collinear gluon emission

$$
V(\{p\}, k)=d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi) .
$$

- Determine coefficients $a_{\ell}, b_{\ell}, d_{\ell}$ and $g_{\ell}(\phi)$ for emissions close to each hard Born parton (leg) ℓ.
- Require continuous globalness, i.e. uniform dependence on k_{t} independently of emission direction $\left(a_{1}=a_{2}=\cdots=a\right)$

Multiple emission properties

- Parametrize emission momenta by effect on observable:

$$
\kappa(\bar{v}) \text { is any momentum such that } V(\{p\}, \kappa(\bar{v}))=\bar{v}
$$

- Require observable to scale universally for any number of emissions:
- Require recursive infrared-collinear safety:

Multiple emission properties

- Parametrize emission momenta by effect on observable:

$$
\kappa(\bar{v}) \text { is any momentum such that } V(\{p\}, \kappa(\bar{v}))=\bar{v}
$$

- Require observable to scale universally for any number of emissions:

$$
\lim _{\bar{v} \rightarrow 0} \frac{1}{\bar{v}} V\left(\{p\}, \kappa_{1}\left(\zeta_{1} \bar{v}\right), \kappa_{2}\left(\zeta_{2} \bar{v}\right), \ldots\right)=f\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

- Require recursive infrared-collinear safety:

Multiple emission properties

- Parametrize emission momenta by effect on observable:

$$
\kappa(\bar{v}) \text { is any momentum such that } V(\{p\}, \kappa(\bar{v}))=\bar{v}
$$

- Require observable to scale universally for any number of emissions:

$$
\lim _{\bar{v} \rightarrow 0} \frac{1}{\bar{v}} V\left(\{p\}, \kappa_{1}\left(\zeta_{1} \bar{v}\right), \kappa_{2}\left(\zeta_{2} \bar{v}\right), \ldots\right)=f\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

- Require recursive infrared-collinear safety:

$$
\lim _{\zeta_{n} \rightarrow 0} f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n-1}, \zeta_{n}\right)=f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n-1}\right)
$$

Multiple emission properties

- Parametrize emission momenta by effect on observable:

$$
\kappa(\bar{v}) \text { is any momentum such that } V(\{p\}, \kappa(\bar{v}))=\bar{v}
$$

- Require observable to scale universally for any number of emissions:

$$
\lim _{\bar{v} \rightarrow 0} \frac{1}{\bar{v}} V\left(\{p\}, \kappa_{1}\left(\zeta_{1} \bar{v}\right), \kappa_{2}\left(\zeta_{2} \bar{v}\right), \ldots\right)=f\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

- Require recursive infrared-collinear safety:

$$
\lim _{\zeta_{n} \rightarrow 0} f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n-1}, \zeta_{n}\right)=f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n-1}\right)
$$

Or:

$$
\left[\lim _{\bar{v} \rightarrow 0}, \lim _{\zeta_{n} \rightarrow 0}\right] \frac{1}{\bar{v}} V\left(\{p\}, \kappa_{1}\left(\zeta_{1} \bar{v}\right), \kappa_{2}\left(\zeta_{2} \bar{v}\right), \ldots, \kappa_{n}\left(\zeta_{n} \bar{v}\right)\right)=0
$$

Given info from previous pages, final answer is analytical:

$$
\begin{aligned}
& \ln \Sigma(v)=-\sum_{\ell=1}^{n} C_{\ell}\left[r_{\ell}(v)+r_{\ell}^{\prime}(v)\left(\ln \bar{d}_{\ell}-b_{\ell} \ln \frac{2 E_{\ell}}{Q}\right)\right. \\
& \left.\quad+B_{\ell} T\left(\frac{\ln 1 / v}{a+b_{\ell}}\right)\right]+\sum_{\ell=1}^{n_{i}} \ln \frac{f_{\ell}\left(x_{\ell}, \frac{2}{a+b_{\ell}} \mu_{f}^{2}\right)}{f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)} \\
& \\
& \quad+\ln S\left(T\left(\frac{\ln 1 / v}{a}\right)\right)+\ln \mathcal{F}\left(C_{1} r_{1}^{\prime}, \ldots, C_{n} r_{n}^{\prime}\right),
\end{aligned}
$$

Given info from previous pages, final answer is analytical:

$$
\begin{aligned}
& \ln \Sigma(v)=-\sum_{\ell=1}^{n} C_{\ell}\left[r_{\ell}(v)+r_{\ell}^{\prime}(v)\left(\ln \bar{d}_{\ell}-b_{\ell} \ln \frac{2 E_{\ell}}{Q}\right)\right. \\
& \left.\quad+B_{\ell} T\left(\frac{\ln 1 / v}{a+b_{\ell}}\right)\right]+\sum_{\ell=1}^{n_{i}} \ln \frac{f_{\ell}\left(x_{\ell}, \frac{2}{v^{2+b_{\ell}}} \mu_{f}^{2}\right)}{f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)} \\
& \\
& \quad+\ln S\left(T\left(\frac{\ln 1 / v}{a}\right)\right)+\ln \mathcal{F}\left(C_{1} r_{1}^{\prime}, \ldots, C_{n} r_{n}^{\prime}\right),
\end{aligned}
$$

$C_{\ell}=$ colour factor $\left(C_{F}\right.$ or $\left.C_{A}\right), \quad f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)=$ parton distributions
$r_{\ell}(L)=\int_{v^{\frac{2}{a}} Q^{2}}^{v^{\frac{2}{a+b}} Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \ln \left(\frac{k_{t}}{v^{1 / \partial} Q}\right)^{a / b_{\ell}}+\int_{v^{2}}^{Q^{2}} \frac{2}{a+b_{\ell}} Q^{2} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \ln \frac{Q}{k_{t}}$,
$S\left(T\left(\frac{1}{a} \ln 1 / v\right)\right)=$ large-angle logarithms (process dependence)
Botts-Kidonakis-Oderda-Sterman '89-'98; ($n>4$: Bonciani et al '03)

Given info from previous pages, final answer is analytical:

$$
\begin{aligned}
& \ln \Sigma(v)=-\sum_{\ell=1}^{n} C_{\ell}\left[r_{\ell}(v)+r_{\ell}^{\prime}(v)\left(\ln \bar{d}_{\ell}-b_{\ell} \ln \frac{2 E_{\ell}}{Q}\right)\right. \\
& \left.\quad+B_{\ell} T\left(\frac{\ln 1 / v}{a+b_{\ell}}\right)\right]+\sum_{\ell=1}^{n_{i}} \ln \frac{f_{\ell}\left(x_{\ell}, \frac{2}{2+b_{\ell}} \mu_{f}^{2}\right)}{f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)} \\
& \\
& \quad+\ln S\left(T\left(\frac{\ln 1 / v}{a}\right)\right)+\ln \mathcal{F}\left(C_{1} r_{1}^{\prime}, \ldots, C_{n} r_{n}^{\prime}\right),
\end{aligned}
$$

$C_{\ell}=$ colour factor $\left(C_{F}\right.$ or $\left.C_{A}\right), \quad f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)=$ parton distributions
$r_{\ell}(L)=\int_{v^{\frac{2}{a}} Q^{2}}^{v^{\frac{2}{a+b_{\ell}}} Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \ln \left(\frac{k_{t}}{v^{1 / a} Q}\right)^{a / b}+\int_{v^{a} \frac{2}{a+b_{\ell}}}^{Q^{2}} Q^{2} \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \ln \frac{Q}{k_{t}}$,
$S\left(T\left(\frac{1}{a} \ln 1 / v\right)\right)=$ large-angle logarithms (process dependence)
Botts-Kidonakis-Oderda-Sterman '89-'98; ($n>4$: Bonciani et al '03)

Given info from previous pages, final answer is analytical:

$$
\begin{aligned}
& \ln \Sigma(v)=-\sum_{\ell=1}^{n} C_{\ell}\left[r_{\ell}(v)+r_{\ell}^{\prime}(v)\left(\ln \bar{d}_{\ell}-b_{\ell} \ln \frac{2 E_{\ell}}{Q}\right)\right. \\
& \left.\quad+B_{\ell} T\left(\frac{\ln 1 / v}{a+b_{\ell}}\right)\right]+\sum_{\ell=1}^{n_{i}} \ln \frac{f_{\ell}\left(x_{\ell}, v^{2} \frac{2}{2+b_{\ell}} \mu_{f}^{2}\right)}{f_{\ell}\left(x_{\ell}, \mu_{f}^{2}\right)} \\
& \\
& \quad+\ln S\left(T\left(\frac{\ln 1 / v}{a}\right)\right)+\ln \mathcal{F}\left(C_{1} r_{1}^{\prime}, \ldots, C_{n} r_{n}^{\prime}\right),
\end{aligned}
$$

Except \mathcal{F}, which is calculated via MC integration

$$
\begin{aligned}
& \mathcal{F}=\lim _{\epsilon \rightarrow 0} \frac{\epsilon^{R^{\prime}}}{R^{\prime}} \sum_{m=0}^{\infty} \frac{1}{m!}\left(\prod_{i=1}^{m+1} \sum_{\ell_{i}=1}^{n} C_{\ell} r_{\ell_{i}} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right) \delta\left(\ln \zeta_{1}\right) \times \\
& \times \exp \left(-R^{\prime} \ln \lim _{\bar{v} \rightarrow 0} \frac{V\left(\{\tilde{p}\}, \kappa_{1}\left(\zeta_{1} \bar{v}\right), \ldots, \kappa_{m+1}\left(\zeta_{m+1} \bar{v}\right)\right)}{\bar{v}}\right) .
\end{aligned}
$$

Computer Automated Expert Semi-Analytical Resummer

START

SUCCESS: NLL resummed result

What it doesn't do

- Observables that vanish other than through suppression of radiation (e.g. Vector Boson p_{t} spectrum) have divergence in $g_{2}\left(\alpha_{s} L\right)$ beyond fixed value of $\alpha_{s} L$. Rakow \& Webber '81; Dasgupta \& GPS '02
- for very-inclusive 2-jet cases analytical resummations are in any case more accurate (NNLL)

Higgs p_{t} : Bozzi et al '03-05
Back-to-back EEC: de Florian \& Grazzini '04

- For less-inclusive cases, this problem is sometimes 'academic' (in region of vanishing X -section).
- Non-global observables are beyond its scope (but perhaps could be included in future).
- Individual jet properties, or subsets of jets
- Gap resummations Appleby, Banfi, C. Berger, Dasgupta, Forshaw Kucs, Kyrieleis, Oderda, Seymour, Sterman, ...
- Threshold resummations not yet thought about in this framework.

Hadron collider event shapes

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$
\Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

Hadron collider event shapes

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range.
(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$
\Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

	Tevatron	LHC
$\eta_{\max }$	3.5	5.0

Particles from beyond max rapidity contribute significantly only for small $V \lesssim e^{-\left(a+b_{\ell}\right) \eta_{\text {max }}}$.
Most of cross section may be above that limit - rapidity cut irrelevant. Banfi et al. '01

Practical hh event shapes

Particles from beyond max rapidity contribute significantly only for small $V \lesssim e^{-\left(a+b_{\ell}\right) \eta_{\text {max }}}$.
Most of cross section may be above that limit - rapidity cut irrelevant. Banfi et al. '01

Alternative

Measure just centrally \& add recoil term (indirect sensitivity to rest of

Jet-broadening, jet-mass

$\left(+k_{t} / Q e^{-|\eta|}\right)$

Practical hh event shapes

Particles from beyond max rapidity contribute significantly only for small $V \lesssim e^{-\left(a+b_{\ell}\right) \eta_{\text {max }}}$.
Most of cross section may be above that limit - rapidity cut irrelevant. Banfi et al. '01

Alternative

Measure just centrally \& add recoil term (indirect sensitivity to rest of event):

$$
\mathcal{R}_{\perp, \mathcal{C}} \equiv \frac{1}{Q_{\perp, \mathcal{C}}}\left|\sum_{i \in \mathcal{C}} \vec{q}_{\perp i}\right|
$$

Recoil thrust minor

Here $g_{2}\left(\alpha_{s} L\right)$ diverges for $L \sim 1 / \alpha_{s}$ (due to cancellations in vector sum) study distribution only before divergence.

Event-shape	Impact of $\eta_{\max }$	Resummation breakdown	Underlying Event	Jet hadronisation
$\tau_{\perp, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 / Q$
$T_{m, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
y_{23}	tolerable	none	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{E}}, \rho_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 / Q$
$B_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$T_{m, \mathcal{E}}$	negligible	serious	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{R}}, \rho_{X, \mathcal{R}}$	none	serious	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{R}}, B_{X, \mathcal{R}}$	none	tolerable	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{R}}$	none	intermediate	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$

NB: there may be surprises after more detailed study, e.g. matching to NLO...

Grey entries are definitely subject to uncertainty

Event-shape	Impact of $\eta_{\max }$	Resummation breakdown	Underlying Event	Jet hadronisation
$\tau_{\perp, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 / Q$
$T_{m, g}$	tolerable	none	$\sim \eta_{\max } / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
y_{23}	tolerable	none	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{E}}, \rho_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 / Q$
$B_{X, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$T_{m, \mathcal{E}}$	negligible	serious	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{E}}$	negligible	none	$\sim 1 / Q$	$\sim \sqrt{y_{23}} / Q$
$\tau_{\perp, \mathcal{R}}, \rho_{X, \mathcal{R}}$	none	serious	$\sim 1 / Q$	$\sim 1 / Q$
$T_{m, \mathcal{R}}, B_{X, \mathcal{R}}$	none	tolerable	$\sim 1 / Q$	$\sim 1 /\left(\sqrt{\alpha_{s}} Q\right)$
$y_{23, \mathcal{R}}$	none	intermediate	$\sim \sqrt{y_{23}} / Q$	$\sim \sqrt{y_{23}} / Q$

NB: there may be surprises after more de- Grey entries are definitely tailed study, e.g. matching to NLO...
subject to uncertainty

Note complementarity between observables

Conclusions/Outlook

Status

- Powerful new tool
- Insight into structure of exponentiating resummations (rIRC safety)
- Many observables have been studied, and for first time, hadron-collider dijet event shapes
http://qcd-caesar.org/

Short-term Outlook

- Matching with fixed order (DIS $2+1$ jets, $e^{+} e^{-3} 3$ jets, then
hadron-hadron)
- Making program public

Conclusions/Outlook

Status

- Powerful new tool
- Insight into structure of exponentiating resummations (rIRC safety)
- Many observables have been studied, and for first time, hadron-collider dijet event shapes
http://qcd-caesar.org/

Short-term Outlook

- Matching with fixed order (DIS $2+1$ jets, $e^{+} e^{-} 3$ jets, then hadron-hadron)
- Making program public

NB: for accurate hadron-hadron matching, crucial information is missing from fixed-order codes.

Conclusions/Outlook

Status

- Powerful new tool
- Insight into structure of exponentiating resummations (rIRC safety)
- Many observables have been studied, and for first time, hadron-collider dijet event shapes

Short-term Outlook

- Matching with fixed order (DIS $2+1$ jets, $e^{+} e^{-} 3$ jets, then hadron-hadron)
- Making program public

NB: for accurate hadron-hadron matching, crucial information is missing from fixed-order codes:

To authors of fixed-order codes:
Please provide flavour information!

EXTRA SLIDES

Automated resummation (p. 25)
-Hadron collider specifics

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in p \bar{p}, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01

Main subject of this talk
New territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures

Sterman '89-99

- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for analytical non-nert studies
- Underlying event - test models (analytical \& MC)

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01

 Main subject of this talkNew territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures
soft colour evln matrices
Botts, Kidonakis, Oderda,
Sterman '89-99
- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for analytical non-pert. studies
- Underlying event - test models (analytical \& MC).

Various processes:

- $p p \rightarrow \mathrm{~W} / \mathrm{Z} / \mathrm{H}$ boson + jet
- $p p \rightarrow 2$ jets

Standard applications (e.g.)

- Measure α_{s}
- As for 3-jet/2-jet ratio in $p \bar{p}$, reduce dependence on PDFs
- But for event-shapes \rightarrow distribution
- Far more information than 3-jet/2-jet ratio

Banfi Marchesini Smye Zanderighi '01 Main subject of this talk
New territory

- 4-jet $(2+2)$ topology \rightarrow novel perturbative structures
soft colour evln matrices
Botts, Kidonakis, Oderda,
Sterman '89-99
- 3 \& 4-jet topologies (\& g-jets) \rightarrow rich environment for analytical non-pert. studies
- Underlying event - test models (analytical \& MC).
Variety of event-shape observables \rightarrow complementary information \rightarrow disentangle the different physics issues.

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Soft colour evolution

Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Soft colour evolution

-Hadron collider specifics
Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.
more general formulation Bonciani, Catani, Mangano, Nason

Soft colour evolution

-Hadron collider specifics
Multi-jet final states: relative colour of pairs of hard partons determines soft large-angle radiation.

2 jets: always in a colour singlet

3 jets: colour state of any pair fixed by third parton (colour conservation).

4 jets: a given pair can be in various colour states. Soft virtual corrections mix colour states.

Resummation leads to matrix evolution equation for colour state of amplitudes ('soft anomalous dimenions')

Developed at Stony Brook: Botts, Kidonakis, Oderda \& Sterman '89-99 more general formulation Bonciani, Catani, Mangano, Nason

Interesting to test it (NB: used also for top threshold corrections).

IRC safety is subtle in two-scale problems. Say we have two scales: Q and $k_{t 1} \ll Q$.
IRC safety says that if we add an extra emission $k_{t 2}$, then

$$
\lim _{k_{t 2} \rightarrow 0} V\left(k_{1}, k_{2}\right)=V\left(k_{1}\right)
$$

An example function that satisfies this is

$$
V\left(k_{1}\right)=\frac{k_{t 1}}{Q} \quad V\left(k_{1}, k_{2}\right)=\frac{k_{t 1}}{Q}\left(1+\Theta\left(k_{t 2}-k_{t 1}^{2} / Q\right)\right)
$$

But it is not rIRC safe. Take $k_{t 1}=\bar{v} Q$ and $k_{t 2}=\zeta_{2} k_{t 1}$

$$
V\left(k_{1}, k_{2}\right)=\bar{v}\left(1+\Theta\left(\zeta_{2}-\bar{v}\right)\right)
$$

So

$$
\lim _{\bar{v} \rightarrow 0} \lim _{\zeta_{2} \rightarrow 0} \frac{1}{\bar{V}} V\left(k_{1}, k_{2}\right)=1, \quad \text { while } \quad \lim _{\zeta_{2} \rightarrow 0} \lim _{\bar{V} \rightarrow 0} \frac{1}{\bar{V}} V\left(k_{1}, k_{2}\right)=2 .
$$

Experimental considerations

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Contradiction?

Theoretical calculations are for global observables.
But experiments only have detectors in limited rapidity range.
(Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$
\Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

Contradiction?

Theoretical calculations are for global observables. But experiments only have detectors in limited rapidity range. (Strictly: series of sub-detectors, of worsening quality as rapidity increases)

Model by cut around beam $|\eta|<\eta_{\text {max }}$
\Rightarrow Problems with globalness

Take cut as being edge of most forward detector with momentum or energy resolution:

	Tevatron	LHC
$\eta_{\text {max }}$	3.5	5.0

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:
\qquad

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then:
we can ignore rapidity cut \& pretend measurement is global

Proceed as follows:

- Calculate distribution without any rapidity cutoff - Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly.

Select events with central, hard jets (x_{1}, x_{2} not too small), with transverse momentum P_{\perp}.

From kinematics, emissions (k) near forward detector edges typically have small transverse momentum:

$$
k_{\perp} \sim P_{\perp} e^{-\eta_{0}} \ll P_{\perp}
$$

If event-shape value is always sufficiently large that such an emission contributes negligibly, then: we can ignore rapidity cut \& pretend measurement is global

Proceed as follows:

- Calculate distribution without any rapidity cutoff
- Determine smallest 'typical' value of observable
- Check self-consistency: i.e. that in comparison, emissions beyond cutoff contribute negligbly.

Banfi, Marchesini, Smye \& Zanderighi '01

Results that follow based on this (illustrative) event selection:

- Run longitudinally invariant inclusive k_{t} jet algorithm (could also use midpoint cone)
- Require hardest jet to have $P_{\perp, 1}>P_{\perp, \min }=50 \mathrm{GeV}$
- Require two hardest jets to be central $\left|\eta_{1}\right|,\left|\eta_{2}\right|<\eta_{c}=0.7$

> Pure resummed results
> no matching to NLO (or even LO) Shown for Tevatron run II

Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$
T_{\perp, g} \equiv \max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{q}_{\perp i} \cdot \vec{n}_{T}\right|}{\sum_{i} q_{\perp i}}, \quad \tau_{\perp, g}=1-T_{\perp, g}
$$

Some observables are naturally defined in terms of all particles in the event, e.g. Global Transverse Thrust

$$
T_{\perp, g} \equiv \max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{q}_{\perp i} \cdot \vec{n}_{T}\right|}{\sum_{i} q_{\perp i}}, \quad \tau_{\perp, g}=1-T_{\perp, g}
$$

and Global Thrust Minor

$$
T_{m, g} \equiv \frac{\sum_{i}\left|\vec{q}_{i} \cdot \vec{n}_{m}\right|}{\sum_{i} q_{\perp i}}, \quad \vec{n}_{m} \cdot \vec{n}_{T}=0
$$

3-jet resolution threshold

Use exclusive long. inv. k_{t} algorithm: successive recombination of pair with smallest closeness measure $d_{k l}, d_{k B}$:

$$
d_{k B}=q_{\perp k}^{2}, \quad d_{k l}=\min \left\{q_{\perp k}^{2}, q_{\perp l}^{2}\right\}\left(\left(\eta_{k}-\eta_{l}\right)^{2}+\left(\phi_{k}-\phi_{l}\right)^{2}\right) .
$$

Define $d^{(n)}$ as smallest $d_{k l}, d_{k B}$ when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold

$$
y_{23}=\frac{1}{\left(E_{\perp, 1}+E_{\perp, 2}\right)^{2}} d^{(3)}
$$

3-jet resolution threshold

Use exclusive long. inv. k_{t} algorithm: successive recombination of pair with smallest closeness measure $d_{k l}, d_{k B}$:

$$
d_{k B}=q_{\perp k}^{2}, \quad d_{k l}=\min \left\{q_{\perp k}^{2}, q_{\perp l}^{2}\right\}\left(\left(\eta_{k}-\eta_{l}\right)^{2}+\left(\phi_{k}-\phi_{l}\right)^{2}\right) .
$$

Define $d^{(n)}$ as smallest $d_{k l}, d_{k B}$ when only n pseudo-jets left. Examine (normalised) 3-jet resolution threshold

$$
y_{23}=\frac{1}{\left(E_{\perp, 1}+E_{\perp, 2}\right)^{2}} \max _{n \geq 3}\left\{d^{(n)}\right\}
$$

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons $C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons $C_{J}=$ total colour of Jet partons

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cut: $\tau_{\perp, g} \gtrsim 0.15 e^{-\eta_{\max }}$

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons $C_{J}=$ total colour of Jet partons

Beam cut: $T_{m, g} \gtrsim e^{-\eta_{\max }}$

Probability $P(v)$ that event shape is smaller than some value v :

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\tau_{\perp, g}$	$2 C_{B}+C_{J}$
$T_{m, g}$	$2 C_{B}+2 C_{J}$
y_{23}	$\frac{1}{2} C_{B}+\frac{1}{2} C_{J}$

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cut: $y_{23} \gtrsim e^{-2 \eta_{\text {max }}}$ [because $y_{23} \sim k_{t}^{2}$]

Divide event into central region $(\mathcal{C}$, say $|\eta|<1.1)$ and rest of event $(\overline{\mathcal{C}})$.
[NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets]
Define central \perp mom., and rapidity:
$Q_{\perp, \mathcal{C}}=\sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_{i} q_{\perp i}$ and an exponentially suppressed forward term,

$$
\mathcal{E}_{\overline{\mathcal{C}}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \notin \mathcal{C}} q_{\perp i} e^{-\left|\eta_{i}-\eta_{\mathcal{C}}\right|}
$$

Result is a global event shape, with suppressed sensitivity

Forward-suppressed observables

Divide event into central region $(\mathcal{C}$, say $|\eta|<1.1)$ and rest of event $(\overline{\mathcal{C}})$.
[NB: \exists considerable freedom in definition of \mathcal{C} : e.g. can also be two hardest jets]
Define central \perp mom., and rapidity:
$Q_{\perp, \mathcal{C}}=\sum_{i \in \mathcal{C}} q_{\perp i}, \quad \eta_{\mathcal{C}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \in \mathcal{C}} \eta_{i} q_{\perp i}$
and an exponentially suppressed forward term,

$$
\mathcal{E}_{\overline{\mathcal{C}}}=\frac{1}{Q_{\perp, \mathcal{C}}} \sum_{i \notin \mathcal{C}} q_{\perp i} e^{-\left|\eta_{i}-\eta_{\mathcal{C}}\right|} .
$$

Define a non-global event-shape in \mathcal{C}. Then add on $\mathcal{E}_{\overline{\mathcal{C}}}$.
Result is a global event shape, with suppressed sensitivity to forward region.

Examples

L_{2}. Forward-suppressed observables

- Split \mathcal{C} into two pieces: Up, Down
- Define jet masses for each

$$
\rho_{X, \mathcal{C}} \equiv \frac{1}{Q_{\perp, \mathcal{C}}^{2}}\left(\sum_{i \in \mathcal{C}_{X}} q_{i}\right)^{2}, \quad X=U, D
$$

Define sum and heavy-jet masses

$$
\rho_{S, \mathcal{C}} \equiv \rho_{U, \mathcal{C}}+\rho_{D, \mathcal{C}}, \quad \rho_{H, \mathcal{C}} \equiv \max \left\{\rho_{U, \mathcal{C}}, \rho_{D, \mathcal{C}}\right\}
$$

Define global extension, with extra forward-suppressed term

$$
\rho_{S, \mathcal{E}} \equiv \rho_{S, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}, \quad \rho_{H, \mathcal{E}} \equiv \rho_{H, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}
$$

- Similarly: total and wide jet-broadenings

$$
B_{T, \mathcal{E}} \equiv B_{T, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}, \quad B_{W, \mathcal{E}} \equiv B_{W, \mathcal{C}}+\mathcal{E}_{\overline{\mathcal{C}}}
$$

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\rho_{S, \mathcal{E}}$	$C_{B}+C_{J}$
$\rho_{H, \mathcal{E}}$	$C_{B}+C_{J}$
$B_{T, \mathcal{E}}$	$C_{B}+2 C_{J}$
$B_{W, \mathcal{E}}$	$C_{B}+2 C_{J}$
\vdots	\vdots

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

$$
P(v)=\exp \left[-G_{12} \frac{\alpha_{s} L^{2}}{2 \pi}+\cdots\right], \quad L=\ln \frac{1}{v}
$$

Ev.Shp.	G_{12}
$\rho_{S, \mathcal{E}}$	$C_{B}+C_{J}$
$\rho_{H, \mathcal{E}}$	$C_{B}+C_{J}$
$B_{T, \mathcal{E}}$	$C_{B}+2 C_{J}$
$B_{W, \mathcal{E}}$	$C_{B}+2 C_{J}$
\vdots	\vdots

$C_{B}=$ total colour of Beam partons
$C_{J}=$ total colour of Jet partons

Beam cuts: $B_{X, \mathcal{E}}, \rho_{X, \mathcal{E}} \gtrsim e^{-2 \eta_{\max }}$ [because $\left.\mathcal{E}_{\overline{\mathcal{C}}} \sim k_{t} e^{-|\eta|}\right]$

Recoil observables

ᄂ3. Recoil observables
By momentum conservation

$$
\sum_{i \in \mathcal{C}} \vec{q}_{\perp i}=-\sum_{i \notin \mathcal{C}} \vec{q}_{\perp i}
$$

Use central particles to define recoil term, which is indirectly sensitive to non-central emissions

$$
\mathcal{R}_{\perp, \mathcal{C}} \equiv \frac{1}{Q_{\perp, \mathcal{C}}}\left|\sum_{i \in \mathcal{C}} \vec{q}_{\perp i}\right|,
$$

Define event shapes exclusively in terms of central particles:

$$
\rho_{X, \mathcal{R}} \equiv \rho_{X, \mathcal{C}}+\mathcal{R}_{\perp, \mathcal{C}}, \quad B_{X, \mathcal{R}} \equiv B_{X, \mathcal{C}}+\mathcal{R}_{\perp, \mathcal{C}}, \ldots
$$

These observables are indirectly global
First studied at HERA ($B_{z E}$ broadening)

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ di-
verge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.

recoil transverse thrust

Quite large effect: $\sim 15 \%$ of X -sct is beyond cutoff

CAESAR resummation works for observables having direct exponentiation:

$$
P(v)=e^{L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\ldots}
$$

For recoil observables, exponentiation holds fully only after Fourier \& other integral transforms (generalised b-space resummation).
Manifestation: NLLs $\left(g_{2}\left(\alpha_{s} L\right)\right)$ diverge at some $\alpha_{s} L \sim 1$.
Consequently, cannot extend distribution to $v=0$ - must cut before divergence.
recoil thrust minor

Moderate effect: few \% of X -sct is beyond cutoff

