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Introduction Introduction

Jet finding at LEP/HERA:

◮ Clean environment

◮ Moderate number of particles
(. 50)

At LHC it will be more complex:

◮ Up to ∼ 25 simultaneous pp
collisions (10 in above event)

◮ Thousands of particles
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Introduction New issues at LHC

Two characteristically new issues appear for jet finding in the complex
environment of of LHC:

◮ How, computationally, to deal with the clustering of thousands of
particles Solutions exploit interesting links between

jet-finding and computational geometry

◮ How to reconstruct correct jet kinematics despite the significant
additional energy from the “pileup” events

Useful to introduce the concept of a jet area
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Introduction Jet finder defs.

Clustering jet finders

1. Calculate ‘distances’
◮ dij between all particles i and j
◮ diB between i and beam

2. Find smallest of dij and diB

◮ If dij is smallest, recombine i and j
◮ if diB is smallest call i a jet

3. Goto step 1 if anything’s left

Two variants (& one parameter, R)

◮ kt jet finder [1991]

dij = min(k2
ti , k

2
tj)∆R2

ij , diB = k2
tiR

2

◮ Cambridge/Aachen [1998]

dij = ∆R2
ij , diB = R2 [∆R2

ij = ∆y2
ij +∆φ2

ij ]
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Cone jet finders e.g.

[from W. Plano]
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Speed Time to cluster N particles
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t (
s)

N

KtJet

OJF

MidPoint

JetClu

(IR unsafe cone)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

Standard C++ (and
fortran) kt -clustering
takes time ∼ N3.

a Pb-Pb event

takes 1 day!

JetClu (cone) is fast,
but IR unsafe at NLO.

being phased out

at Tevatron

IR-safer cone (Mid-
point) is as slow as kt

IR unsafe at NNLO

Jet-clustering speed is an issue for high-luminosity pp (∼ 108 events)
and Pb-Pb (∼ 107 events) collisions at LHC.
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Speed Why is kt an N
3 algorithm?

1. Given the initial set of particles, construct a table of all the dij , diB .
[O

(

N2
)

operations, done once]

2. Scan the table to find the minimal value dmin of the dij , diB .
[O

(

N2
)

operations, done N times]

3. Merge or remove the particles corresponding to dmin as appropriate.
[O (1) operations, done N times]

4. Update the table of dij , diB to take into account the merging or
removal, and if any particles are left go to step 2.

[O (N) operations, done N times]

This is the “brute-force” or “naive” method
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Speed Can one do better than N
2?

There are N(N − 1)/2 distances dij — surely we have to calculate them all
in order to find smallest?

kt distance measure is partly geometrical:

◮ Consider smallest dij = min(k2
ti , k

2
tj )R

2
ij

◮ Suppose kti < ktj

◮ Then: Rij <= Riℓ for any ℓ 6= j . [If ∃ ℓ s.t. Riℓ < Rij then diℓ < dij ]

In words: if i , j form smallest dij then j is geometrical nearest neighbour
(GNN) of i .

kt distance need only be calculated between GNNs

Each point has 1 GNN → need only calculate N dij ’s
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Speed Finding Geom Nearest Neighbours
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Given a set of vertices on plane
(1. . . 10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex

Dirichlet ’1850, Voronoi ’1908

A vertex’s nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,8,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: N lnN time Fortune ’88

Update of 1 point in Voronoi diagram: lnN time
Devillers ’99 [+ related work by other authors]

Convenient C++ package available: CGAL http://www.cgal.org

http://www.cgal.org
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Speed Assembling fast kt clustering

The FastJet algorithm:

Construct the Voronoi diagram of the N particles with CGAL O (N ln N)

Find the GNN of each of the N particles, calculate dij store result in a
priority queue (C++ map) O (N ln N)

Repeat following steps N times:

◮ Find smallest dij , merge/eliminate i , j N × O (1)

◮ Update Voronoi diagram and distance map N × O (ln N)

Overall an O (N ln N) algorithm

Cacciari & GPS, hep-ph/0512210

http://www.lpthe.jussieu.fr/∼salam/fastjet/

Results identical to standard N3 implementations

http://www.lpthe.jussieu.fr/~salam/fastjet/
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Speed FastJet performance (kt)
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For N & 104, FastJet algorithm scales as N lnN

For N . 104, FastJet switches to a related geometrical N2 alg.
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Speed Jets ↔ Comp. Geom.

Brute force Geom.
jet.alg. scaling Geometrical concepts scaling

kt N3 dynamic nearest-neighbour graph N lnN

Dynamic voronoi diagram
Devillers ’99 (and others)

Cam / N3 dynamic closest pairs N lnN

Aachen Shuffles, quad-trees
T. Chan ’02

Seedless N 2N All circular partitions of a 2D set N5/2

Cone of points (+ range-searching)
not clear if studied

Cam/Aachen: Cacciari & GPS ’06

Seedless cone (replaces IR unsafe midpoint cone): GPS & Soyez, in progress
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Areas What is speed good for?

‘Standard hard’ event
Two well isolated jets

∼ 200 particles

Easy even with old methods
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Areas What is speed good for?

Add 10 min-bias events
(moderately high lumi)

∼ 2000 particles

Clustering takes O (10s) with old
methods.

20ms with FastJet.
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Areas What is speed good for?

Add dense coverage of in-
finitely soft “ghosts”

See how many end up in
jet to measure jet area

∼ 10000 particles

Clustering takes ∼ 20 minutes
with old methods.

0.6s with FastJet.
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Areas Jet areas
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Jet areas in kt algorithm are
quite varied

Because kt-alg adapts

to the jet structure

◮ Contamination from
min-bias ∼ area

Complicates corrections: min-
bias subtraction is different for
each jet.

Cone supposedly simpler

Area = πR2? (Not quite...)

But: area can be measured for
each jet, as can typical median
pt/area.
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Areas Application: semi-leptonic tt̄ @ LHC
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R=0.4, LHC
semileptonic
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kt, pileup, corrected

Each jet corrected
by area × median
(Pt/area)

Naive analysis: no cuts; assume both b’s tagged

Take two hardest non-b jets — call them a W

Take correct sign b, combine with W → top
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Areas Distribution of jet areas

Distribution of jet areas
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kt algorithm

purely soft jets

Since areas are a crucial quan-

tity in reconstructing jet kine-
matics, study them further. . .

Two simple cases:

1. run clustering on many soft

particles & look at areas of
jets that come out

2. Add one hard particle, and
examine area of its jet

Conclusion: jet area expands
when it is anchored by struc-
ture.

◮ Can one obtain analytical insight into this? To some extent in 1D

◮ ‘Hierarchical clustering’ is used in many fields (bio, computing, . . . ) —
are similar features of relevance there?
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Areas Conclusions

Jet finding in the context of LHC is a rich subject!

◮ Speed (a major issue) improves enormously when one exploits the
geometrical structures that underly jet algorithms — especially together
with recent developments by computational geometers.

◮ Jet areas are a new concept of particular relevance in high-noise

environments — much is still to be understood about them.
NB: more is known than could be shown here!
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Extra material

EXTRA MATERIAL
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Extra material Inclusive jets in Pb-Pb @ LHC
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FastJet

PRELIMINARY

scaled pp
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kt alg, R=0.4
Most HI studies use just
particles with pt > a few
GeV IR unsafe

affected by quenching

We use all particles and
area-based subtraction.

Good results despite the
huge subtraction being
performed.
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