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Introduction Jets in HI?

At RHIC, ‘jet’ studies look at high pt particles and their average
correlations.

Traditional (particle physics) jet studies instead seek to identify jets on an
event-by-event basis, as reliable proxies for the ‘original hard partons’.

To what extent (and how) can the traditional techniques be applied in the
heavy-ion environment?

Talk has two parts

◮ Introduction to jet definitions.

◮ Overview of some progress relevant to HI.
Discussion will be in context LHC (where jets will be common)
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Introduction Partons v. Jets?

Partons (quarks, gluons) are not trouble-free concepts...

quark
(LO) (LO)

hadron
(NLO) jet(s?)
quark jet?

quark jet
+ gluon jet?

◮ Partons split into further partons

◮ Jets are a a way of thinking of
the ‘original parton’

◮ A ‘jet’ is a fundamentally
ambiguous concept (e.g. requires
a resolution)

Jets are only meaningful once you’ve defined a jet algorithm
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Introduction Guidelines for jet definitions

General

◮ Infrared and collinear safety – i.e. soft emissions and collinear splittings
should not change jets otherwise pert. QCD cannot be used

◮ Definitions should be simple and detector independent
otherwise different experiments cannot compare results

Specific to HI

◮ It must be computationally feasible to run on the 104 − 105 particles
expected at LHC.

◮ Procedure to reduce large background noise should also satisfy above
‘safety’ properties.
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Introduction Jet finder defs.

Clustering jet finders

1. Calculate ‘distances’
◮ dij between all particles i and j
◮ diB between i and beam

2. Find smallest of dij and diB

◮ If dij is smallest, recombine i and j
◮ if diB is smallest call i a jet

3. Goto step 1 if anything’s left

Two variants (& one parameter, R)

◮ kt jet finder [1991]

dij = min(k2
ti , k

2
tj)∆R2

ij , diB = k2
tiR

2

◮ Cambridge/Aachen [1998]

dij = ∆R2
ij , diB = R2 [∆R2

ij = ∆y2
ij +∆φ2

ij ]
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Introduction Jet finder defs.

Clustering jet finders

1. Calculate ‘distances’
◮ dij between all particles i and j
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2. Find smallest of dij and diB
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◮ Cambridge/Aachen [1998]
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Cone jet finders e.g.

[from W. Plano]



Jet clustering in HI (G. Salam, LPTHE) (p. 6)

Introduction Concrete example

Example clustering with kt algo-
rithm, R = 0.7

φ assumed 0 for all towers

For Shanghai skyline, clustering is
a bit arbitrary. . .

But on QCD events, dij is re-
lated to divergences for branch-
ing — clustering attempts inverse
branching.
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Introduction

Advantages of clustering jet finders

◮ They are always infrared & collinear safe.

◮ Simplicity → extensively studied theoretically

◮ They have smaller hadronization corrections than cone jet finders.
More robust wrt fine details of quenching?

◮ They are the standard in e+e− and DIS colliders

◮ Starting to be used at Tevatron

Issues for HI:

◮ Long believed to be too computationally complex for high-multiplicity
environments (N > 1000).

◮ Subtraction of “background” had never been attempted
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Speed Time to cluster N particles
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t (
s)

N

KtJet

OJF

MidPoint

JetClu

(IR unsafe cone)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

Standard C++ (and
fortran) kt -clustering
takes time ∼ N3.

a Pb-Pb event

takes 1 day!

JetClu (cone) is fast.
But IR unsafe.

Discontinued

at Tevatron

IR-safe cone (Mid-
point) is as slow as kt

Jet-clustering speed is an issue for high-luminosity pp (∼ 108 events)
and Pb-Pb (∼ 107 events) collisions at LHC.

NB: want to rerun jet-alg. with a range of parameter choices

+ want to run on multiple MC samples of similar size
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Speed How to make clustering faster?

Have O
(

N2
)

distances dij to calculate. Is N2 the best that can be done?

Problem of finding smallest dij

dij = min(k2
ti , k

2
tj )∆R2

ij [kt]

dij = ∆R2
ij [Cambridge/Aachen]

can be separated into a momentum dependent part (kt ’s) and
geometrical part (∆Rij). Cacciari & GPS ’05

◮ mom.-dependent part depends on just one particle, O (N) complexity

◮ geometrical parts ⇔ proximity problems widely studied by
computational geometers → calculate only O (N lnN) ∆Rij ’s

Dynamic Voronoi diagrams: Devillers ’99 (and many others) / CGAL

Dynamic closest pair maintenance (quad-trees + shuffles): Chan ’02

Put together in a C++ code — FastJet

Cacciari & GPS ’05-’06
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Speed FastJet performance (kt)
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KtJet FastJet

OJF

MidPoint

JetClu

(almost IR unsafe)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

For N & 104, FastJet algorithm scales as N lnN

For N . 104, FastJet switches to a related geometrical N2 alg.

get code from http://www.lpthe.jussieu.fr/∼salam/fastjet

http://www.lpthe.jussieu.fr/~salam/fastjet
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HI background subtraction Heavy ion background subtraction

Compared to low-lumi pp, crucial difference in PbPb is huge background.

Estimate of Pt density (ρ) at LHC:

ρbackground ≡
dPt

dydφ
∼ 250 GeV

Hydjet 1.1 default, dNch/dy = 1600 y = 0 (optimistic?)

Jet contamination:
∆Pt,jet ≃ ρ × Areajet [Area ∼ πR2]

Correct before clustering

◮ by removing particles with pt < 1 − 2 GeV
Collinear unsafe; who knows how it’s affected by quenching. . .

◮ by subtracting energy from calorimeter cells
What to do with negative-energy cells? Experiment-dependent?

Correct after clustering

◮ Measure ρ and subtract ρ × Areajet. But what is jet area?
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◮ by removing particles with pt < 1 − 2 GeV
Collinear unsafe; who knows how it’s affected by quenching. . .

◮ by subtracting energy from calorimeter cells
What to do with negative-energy cells? Experiment-dependent?

Correct after clustering

◮ Measure ρ and subtract ρ × Areajet. But what is jet area?
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HI background subtraction Jet areas (e.g. in pp with pileup)

‘Standard hard’ event
Two well isolated jets

Jet boundaries completely
unclear

∼ 200 particles

Easy even with old methods
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HI background subtraction Jet areas (e.g. in pp with pileup)

Add 10 min-bias events
(moderately high lumi
LHC pp)

Jet boundaries still ill
defined — jets clearly
irregular

∼ 2000 particles

Clustering takes O (10s) with old
methods.

20ms with FastJet.
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HI background subtraction Jet areas (e.g. in pp with pileup)

Add dense coverage of in-
finitely soft “ghosts”

See how many end up in
jet to measure jet area

∼ 10000 particles

Clustering takes ∼ 20 minutes
with old methods.

0.6s with FastJet.
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HI background subtraction Background subtraction in HI event
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Start with a hard dijet event
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Embed it into a central Hydjet Pb Pb event
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Look at Pt/Area for each jet
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HI background subtraction Background subtraction in HI event
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Fit the background ρ(y)

[NB: more general functional form needs investigating]
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Subtract ρ(y) from Pt/Area for each jet
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HI background subtraction Background subtraction in HI event
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Look at resulting corrected Pt = Pt,orig − ρ(y) × Area

Hard jets with roughly correct Pt and y emerge clearly!
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HI background subtraction Background subtraction in HI event
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Try with Cambridge/Aachen instead of kt to check robustness!
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HI background subtraction

Reconstruction quality
Reconstruction efficiency & purity
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dNch/dy = 1500
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Efficiency

Purity

Procedure:

A reconstructed jet within ∆R <
0.2 of the original jet is consid-
ered to correspond the original
one.

NB: detector effects are likely to
adversely affect these figures.
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HI background subtraction

Reconstruction quality
Pt & angular resolution
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HI background subtraction

Reconstruction quality
Inclusive jets in Pb-Pb @ LHC
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Pb-Pb with subtraction

kt alg, R=0.4

Inclusive jet spectrum
is most basic measure-
ment in pp.

Interesting to check also
in PbPb?
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HI background subtraction
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Conclusions Conclusions

Clustering jet finders have attraction of simplicity when doing jet finding.
Important in complex environment like HI

Issues that “used to be”, are no longer

◮ Speed: was N3, now N lnN; these are the fastest particle-level jet
finders on the market!

◮ Ill-defined jet boundaries & area: add soft “ghosts” to track jet layout.

◮ FastJet code provides access to these tools.

Question of background subtraction is still open

◮ There are methods for doing it before clustering [ALICE, CMS, ATLAS],
and after clustering [this talk].

◮ Preliminary studies show both to be effective — maybe interesting to
combine strong points of each?

In a standardized, collinear-safe, detector-independent formulation?

◮ Is there any chance of doing subtraction well enough for RHIC energies?
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Extra material

EXTRA MATERIAL
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Extra material

kt speed-up
Why was kt an N

3 algorithm?

1. Given the initial set of particles, construct a table of all the dij , diB .
[O

(

N2
)

operations, done once]

2. Scan the table to find the minimal value dmin of the dij , diB .
[O

(

N2
)

operations, done N times]

3. Merge or remove the particles corresponding to dmin as appropriate.
[O (1) operations, done N times]

4. Update the table of dij , diB to take into account the merging or
removal, and if any particles are left go to step 2.

[O (N) operations, done N times]

This is the “brute-force” or “naive” method
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Extra material

kt speed-up
Can we do better than N

2?

There are N(N − 1)/2 distances dij — surely we have to calculate them all
in order to find smallest?

kt distance measure is partly geometrical:

◮ Consider smallest dij = min(k2
ti , k

2
tj )R

2
ij

◮ Suppose kti < ktj

◮ Then: Rij <= Riℓ for any ℓ 6= j . [If ∃ ℓ s.t. Riℓ < Rij then diℓ < dij ]

In words: if i , j form smallest dij then j is geometrical nearest neighbour
(GNN) of i .

kt distance need only be calculated between GNNs

Each point has 1 GNN → need only calculate N dij ’s
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Extra material

kt speed-up
Finding Geom Nearest Neighbours
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Given a set of vertices on plane
(1. . . 10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex

Dirichlet ’1850, Voronoi ’1908

A vertex’s nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,8,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: N lnN time Fortune ’88

Update of 1 point in Voronoi diagram: lnN time
Devillers ’99 [+ related work by other authors]

Convenient C++ package available: CGAL http://www.cgal.org

http://www.cgal.org
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Extra material

kt speed-up
Assembling fast kt clustering

The FastJet algorithm:

Construct the Voronoi diagram of the N particles with CGAL O (N ln N)

Find the GNN of each of the N particles, calculate dij store result in a
priority queue (C++ map) O (N ln N)

Repeat following steps N times:

◮ Find smallest dij , merge/eliminate i , j N × O (1)

◮ Update Voronoi diagram and distance map N × O (ln N)

Overall an O (N ln N) algorithm

Cacciari & GPS, hep-ph/0512210

http://www.lpthe.jussieu.fr/∼salam/fastjet/

Results identical to standard N3 implementations

http://www.lpthe.jussieu.fr/~salam/fastjet/
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Extra material

Jet area distribution
Jet areas vary
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Jet Area (A) / π R2

Fake jets

Jets with
Pt > 100 GeV

Each jet has a different area

True jets can have internal struc-
ture (parton branching) — jet
area expands to accomodate
this.

Fake jets little internal structure
→ jet areas smaller.

NB: jet areas often < πR2
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