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Introduction

Jets?

Electrons & muons are fundamental, weakly coupled particles — it makes
sense physically and experimentally to think of them as concrete objects.

Partons (quarks, gluons) are not so simple...

quark jet?
(NLO)

quark
(LO)

» Partons split into further partons

» Jets are a a way of thinking of
the ‘original parton’

quark jet
+gluon jet? hadron
(LO) jet(s?)

> A ‘jet’ is a fundamentally
ambiguous concept (e.g. requires
a resolution)
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Introduction

Jets?

Electrons & muons are fundamental, weakly coupled particles — it makes
sense physically and experimentally to think of them as concrete objects.

Partons (quarks, gluons) are not so simple...

quark jet?
(NLO)

» Partons split into further partons

» Jets are a a way of thinking of
the ‘original parton’

quark jet
+gluon jet? hadron
(LO) jet(s?)

> A ‘jet’ is a fundamentally
ambiguous concept (e.g. requires
a resolution)

Jets are only meaningful once you've defined a jet algorithm
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L ntroduction Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn't change jets
collinear splitting shouldn’t change jets

» Must be identical procedure at parton level, hadron-level
So that theory calculations can be compared to experimental measurements

What is nice for a jet algorithm

» Shouldn’t be too sensitive to hadronisation, underlying event, pileup
Because we can only barely model them
» Should be realistically applicable at detector level
Not too slow, not too complex to correct
> Should behave ‘sensibly’

e.g. don't want it to spuriously ignore large energy deposits
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U introduction Jet algorithm types

Mainstream jet-algorithms

» lIterative cone algorithms (JetClu, ILCA/Midpoint, .. .)
Searches for cones centred on regions of energy flow
Dominant at hadron colliders

» Sequential recombination algorithms (k;, Cambridge/Aachen, Jade)
Recombine closest pair of particles, next closest, etc.
and ep colliders

Dominant at eTe

Other approaches

» ‘Optimal Jet Finder’, Deterministic Annealing
Fit jet axes (and #) so as to minimise a weight function
[forms of 'k-means’ clustering]

> Jet energy flow project

> ...
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L Introduction O Utl | ne

As LHC startup approaches it's important for the choice of jet algorithm
to be well-motivated.

This talk

» Overview of iterative cone algorithms (& what's wrong with them)

» Clustering algorithms
» How they work
» Where they've been criticised (speed, underlying-event (UE) sensitivity)
» How to solve the speed problem
» Work in progress on understanding and reducing sensitivity to UE.
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I—Cone algorithms Cone OI’IgInS

First ‘cone algorithm’ dates back to Sterman and Weinberg (1977) — the
original infrared-safe cross section:

To study jets, we consider the partial cross section
olE,8,8,¢c,8) for e’a” hadron production events, in which all but
a fraction e <<l of the total e'e” energy E is emitted within
some pair of oppositely directed cones of half-angla § c< 1,
lying within two fixed cones of s0lid angle I {with n8® << << 1)

.l. e
at an angle & to the e & beam line., We expect this to be measurc-

o(E,0.0,e,8) = (du/dm,n[l = (gg/n‘){sm §+44n4 tn 2¢ +1;.-%ﬂ
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L Cone algorithms Modern cones address various issues

Where do you put the cones?

» Place a cone at some trial location
» Sum four-momenta of particles in cone — find corresponding axis
» Use that axis as a new trial location, and iterate

» Stop when you reach a stable axis [or when you get bored]

What are the initial trial locations?

> ‘Seedless’ — i.e. everywhere But too slow on computer

» Use locations with energy flow above some threshold as seeds
Issue: is seed threshold = parton energy, hadron energy (collinear unsafe)?
Or calorimeter tower energy (experiment and r-dependent)?



Jet clustering (G. Salam, LPTHE) (p. 8)
Cone algorithms

Iteration example

cone iteration

- — cone axis

500
400
300
200
100

P (GeVic)

> cone

rapidity

[These and related figures adapted/copied from Markus Wobisch]
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L Cone algorithms Ite ration exam p|e

cone iteration — — cone axis
> cone

500
400
300
200
100

P (GeVic)

rapidity

[These and related figures adapted/copied from Markus Wobisch]
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Cone algorithms

Iteration example

- | cone iteration | - — cone axis
500 — < cone
—~ B /_J\
L 400 ¥L/
% B |
S—?, 300 i :
— 200 — |
Q - |
100 !
i | ®| : |®
0 1 Il 1 1 1 I 1 1 1
-1 0 1
rapidity

[These and related figures adapted/copied from Markus Wobisch]
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rapidity

[These and related figures adapted/copied from Markus Wobisch]
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L Cone slgorithms Iteration example
- | cone iteration | - — cone axis
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L Cone algorithms Ite ration exam p|e
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L Cone algorithms Iterat|on examp|e
- | cone iteration - — cone axis
500 — > cone
g a0 o]
(0] L
Q, 300 i
— 200 —
o N
100
i | @ |
0 1 1 1 1 1 1 1
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rapidity

[These and related figures adapted/copied from Markus Wobisch]



Jet clustering (G. Salam, LPTHE) (p. 9)

I—Cone algorithms Overl a ppl ng Jets

Jets can overlap

overlapping cones

500 =
400 =
300 —
200 —
100

p; (GeVic)

rapidity
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Cone algorithms

Overlapping Jets

Jets can overlap

500
400
300
200
100

p; (GeVic)

overlapping cones

rapidity

They are either split if the overlap-
ping energy is

Eoverlap < foverlap Esofter—jet
otherwise they are merged.

NB: foverlap IS parameter of cone-algo
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I—Cone algorithms Overl a ppl ng Jets

Jets can overlap

L overlapping cones They are either Sp/it if the overlap—
500 — . .
= INg ener IS
5 w0 | ping energy
% 300 =
e r Eoverlap < foverlap Esofter—jet
~ 200 -
o .
100 — .
- otherwise they are merged.
0

NB: foverlap is parameter of cone-algo

rapidity

NB: when many jets overlap, procedure for merging/splitting must be
specified (e.g. wrt order in which jets are treated).



Jet clustering (G. Salam, LPTHE) (p. 10)
Cone algorithms

Midpoints

Use of seeds is dangerous

500
400
300
200
100

p; (GeVic)

stable cones from seeds
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Cone algorithms

Midpoints

Use of seeds is dangerous

p; (GeVic)

500
400
300
200
100

add soft particle

Extra soft particle adds new
seed — changes final jet con-
figuration.

This is IR unsafe.
Kilgore & Giele '97
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Cone algorithms

Midpoints

Use of seeds is dangerous

500
400
300
200
100

p; (GeVic)

resolve overlaps

Extra soft particle adds new
seed — changes final jet con-
figuration.

This is IR unsafe.
Kilgore & Giele '97



Jet clustering (G. Salam, LPTHE) (p. 10)

I—Cone algorithms M |d pOI ntS

Use of seeds is dangerous

500 resolve overlaps Extra soft particle adds new
g 200 - ?eed - changes final jet con-
200 [ iguration.
:»;— 200 + This is IR unsafe.

100 Kilgore & Giele '97

0 C 1 I 1 1 I 1 1
-1 0 1

Solution: add extra seeds at midpoints of all pairs, triplets, ... of stable
cones. Seymour '97 (?)

NB: only in past 1-2 years has this fix appeared in CDF and DO
analyses. . .
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Cone algorithms

ILCA

All of these considerations led
recommendation of the /Improved
Legacy Cone Algorithm (ILCA),
a.k.a. Midpoint algorithm.
hep-ex,/0005012

Quite complex and has several pa-
rameters:

cone radius (R)
seed threshold (Ep)

foverlap

Only one of these is remotely
physical: R.

Generate By ordered
list of towers

Find protojets
around towers with
E; > threshold

Generate midpoint
lst from protojets

Find protojets
around midpoints

Goto
split/merge

Does the
proto-jet share
towers?

split proto jets
Assign shared cells

to nearest

proto-jets

Recalculate proto-jets
Goto Start

merge proto-jets
Add neighbor’s cells
to this proto-jet
and drop neighbor
Recalculate this
oto-jet

Goto Start

2/3 of ILCA flowchart



ILCA has “Dark Towers”

(G. Salam, LPTHE) (p. 12)
thms

Jet clustering
I—Cone algori
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Dark Towers

Considerable energy can be left out of jets

S. Ellis, Huston & Tonnesmann '01
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I—Cone algorithms Sea I’Ch Cone

Dark towers are consequence of particles that are never in stable cones:

midpoint algorithm I | searchcone algorithm - — cone axis
=00 i unclustered L | < searchcone
< 400 energy - < jet cone
% L
o 300 no stable B
~ solution L
& 200 - r
100 |® ~ (b)
0 Ll L1 .
1 -1 0 1

rapidity
Ellis, Huston and Tonnesmann suggest iterating a smaller ‘search-cone’
and then drawing final cone around it.

Searchcone adopted by CDF (to confuse issue they call it ‘midpoint’...).
hep-ex/0505013, hep-ex,/0512020
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L Cone algorithms Search Cone is IR unsafe

searchcone algorithm - - cone axis
500 <> searchcone
’\G 400 < jetcone
>
8 300
\r_ 200 adding
Qo a soft
100 (b) : particle
0 L P L |
-1 0 1

rapidity

Whether you see 1 or 2 jets depends on presence and position of a soft
gluon — this is /R unsafe (and unphysical). Wobisch, '06
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L Cone algorithms Search Cone is IR unsafe
searchcone algorithm - - cone axis
500 <> searchcone
’\G 400 < jetcone
>
8 300
\r_ 200 adding
Qo a soft
100 particle
0 L |
-1 0 1
rapidity

Whether you see 1 or 2 jets depends on presence and position of a soft
gluon — this is /R unsafe (and unphysical). Wobisch, '06
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I—Cone algorithms Cone summa I’y

» Cone algorithms are complicated beasts.
» So much so, it's often not clear which cone algorithm is being used!
> They often behave in unforeseen ways.
» Patching them makes them more complex and error-prone.
Didn't even mention the hacks people put into
cone theory calculations to ‘tune’ them to

hadron level: (cf. Rsep, which breaks the NLO jet
X-section).

LHC experiments should be wary of cone
algorithms
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L ¢ and Com slgorithms Sequential Recombination Algorithms

Best known is k; algorithm:

1.

Calculate (or update) distances between all particles i and j, and

between /i and beam:
2

: 2 42 AR 2 2
dij = min(kg, kij)—5- R2 ) dip = kij , ARj; Ayu + Aqb
Find smallest of dj; and dig
> If djj is smallest, recombine i and j (add result to particle list, remove i, j)

> if dig is smallest call i a jet (remove it from list of particles)

If any particles are left, repeat from step 1.

Catani, Dokshitzer, Olsson, Turnock, Seymour & Webber '91-93
S. Ellis & Soper, '93
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L ¢ and Com slgorithms Sequential Recombination Algorithms

Best known is k; algorithm:

1.

Calculate (or update) distances between all particles i and j, and

between /i and beam:
2

: 2 42 AR 2 2
dij = min(kg, kij)—5- R2 ) dip = kij , ARj; Ayu + Aqb
Find smallest of dj; and dig
> If djj is smallest, recombine i and j (add result to particle list, remove i, j)

> if dig is smallest call i a jet (remove it from list of particles)

If any particles are left, repeat from step 1.

Catani, Dokshitzer, Olsson, Turnock, Seymour & Webber '91-93
S. Ellis & Soper, '93

One parameter: R (like cone radius), whose natural value is 1

Optional second parameter: stopping scale dc,; ‘exclusive’ k; algorithm
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Lk and Cam slgorithms k: algorithm in action (R =1)

W(t algorithm l

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

| d; = 500GeV 2 |

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

| d; =1600GeV ? |

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

i | d;F137000 GeV ? |
500 -
© 400 [~ :
% - jet
o) 300 N
~ 200 —
o -
100 [
0 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
-1 0 1
rapidity

dj = min(ki;, ki) ARG, dig = ki
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Lk and Cam slgorithms k: algorithm in action (R =1)

500
400
300
200
100

p (GeVic)

rapidity

dj = min(ki;, ki) ARG, dig = ki



Jet clustering (G. Salam, LPTHE) (p. 17)

Lk and Cam slgorithms k: algorithm in action (R =1)

i jet  dg325000 Gev? |

500 |-
© 400
%) -
§ 800
~ 200
o L
100 |-

0 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1

-1 0 1
rapidity

dj = min(ki;, ki) ARG, dig = ki
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I—k[ and Cam algorithms Why kt?

k: distance measures

dj = min(kg;, k)ARE,  dig = ki

are closely related to structure of divergences for QCD emissions

aSCA dktj dAR,'J'

dk:]| M? k)| ~ ki < ki, AR; <1
[ ./” g—>g,'gj( _/)| o min(ktiaktj) ARU ’ (tl<< tiy _I<< )

and
Qg CA dkt,'

T, dni, (ki< {31t 10})

[dkl] | M%eam—> Beam-+g; (kl) ‘ ~
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I—k[ and Cam algorithms Why kt?

k: distance measures

12 2 2 2
dij = min(k, ki) AR, dig = ki
are closely related to structure of divergences for QCD emissions

aSCA dktj dAR,'j

dk; (kj)| ~ ki < ki, ARj <1
and
(6% CA dk, A
[dki]|M%eam—>Beam+g,( )‘ ~ = k: dn;, (ktz, < {S, t, u})

k: algorithm attempts approximate inversion of
branching process
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I—k[ and Cam algorithms kt V. cone

k; algorithm seems better than cone

» it's simpler, safer and better-defined
» exclusive variant is more flexible (allows cuts on momentum scales)

> less sensitive to hadronization

» In MC studies k; alg. is systematically as good as, or better than cone

algorithms for typical reconstruction tasks Seymour '94
Butterworth, Cox & Forshaw '02

Benedetti et al (Les Houches) '06

But seldom used at Tevatron. Why?

1. Because it’s slow?
2. Because it includes more underlying event?

3. Because it's harder to understand detector effects?
But all LEP and HERA experiments managed fine
And as of '05, CDF too
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ke and Com slgorithms Time to cluster N particles
Speed
ot F JetQu 1  Standard C++ (and
(IR unsafe cone) fortran) k.-clustering
0 M dPoi nt . 3
10° | QrF 1 takes time ~ N>.
L a Pb-Pb event
107+ 1
Kt Jet takes 1 day!
o
~ -2
= 107 ¢ 1 IR-unsafe cone (Jet-
10 Clu) is much faster.
_ IR-safe cone (Mid-
4 LHC (single  LHC (c. 20 LHC
107" | Tevatron interaction) interactions) Heavy lon 7 point) is as bad as k¢
: A
10
10° 10 10* 10
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Lk and Com sigorichms Time to cluster N particles
Speed
ot F Tetdu 1  Standard C++ (and
(R tmsate cone) fortran) ke-clustering
M dPoi nt .
10° + QF 3 takes time ~ N3.
a Pb-Pb event
10t t 3
Kt Jet takes 1 day!
w
~ -2
= 107 1 IR-unsafe cone (Jet-
i Clu) is much faster.
10° t 1
_ IR-safe cone (Mid-
4 LHC (single  LHC (c. 20 LHC
107" F Tevatron interaction) interactions) Heavy lon 7 point) is as bad as k;
R i
10
102 10° 10* 10°
N

Jet-clustering speed is an issue for high-luminosity pp (~ 10% events)
and Pb-Pb (~ 107 events) collisions at LHC.
NB: want to rerun jet-alg. with a range of parameter choices
+ want to run on multiple MC samples of similar size
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C ke and Cam algrithms Why is k; an N3 algorithm?

L Speed

1. Given the initial set of particles, construct a table of all the dj;, dig.
[O (N?) operations, done once]
2. Scan the table to find the minimal value dn;, of the dj;, dis.
[O (N2) operations, done N times]
3. Merge or remove the particles corresponding to dmin as appropriate.
[O (1) operations, done N times]
4. Update the table of dj;, dig to take into account the merging or
removal, and if any particles are left go to step 2.
[O (N) operations, done N times]

This is the “brute-force” or “naive” method
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Lk, and Cam algorithms k: is a form of Hierarchical Clustering

L Speed

Fast Hierarchical Clustering and Other Applications of k¢ a|g IS so good it's

Dynamic Closest Pairs .
’ used throughout sci-

(=)
=N David Eppstei
ppstein
UC Irvine encel
—
Q
)
Q We develop data structures for dynamic closest pair problems with arbitrary distance functions,
that do not necessarily come from any geometric structure on the objects. Based on a technique
(@] previously used by the author for Euclidean closest pairs, we show how to insert and delete objects
(@] from an n-object set, maintaining the closest pair, in O(n log? 1) time per update and O(n) space.
With quadratic space, we can instead use a quadtree-like structure to achieve an optimal time
y— bound, O(n) per update. We apply these data structures to hierarchical clustering, greedy match-
> ing, and TSP heuristics, and discuss other potential applications in machine learning, Grubnel
hasesyandlac thms for partition an ems. E:
<t i fiew rethiodsbi e Paster o practics thian previbusly used Heuristics
—
= Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms]: N ic Algorith
— General Terms: Closest Pair, Agglomerative Clustering
(@) Additional Key Words and Phrases: TSP, matching, conga line data structure, quadtree, nearest
(@)Y neighbor heuristic
=
0]
8 1. INTRODUCTION
S Hierarchical clustering has long been a mainstay of statistical analysis, and cluster-
o— ing based methods have attracted attention in other fields: computational biology
< (reconstruction of evolutionary trees; tree-based multiple sequence alignment), sci-
f_:‘s entific simulation (n-hody problems), theoretical computer science (network design

and nearest neighbor searching) and of course the web (hierarchical indices such as
Yahoo). Many clustering methods have been devised and used in these applications,
but less effort has gone into algorithmic speedups of these methods.

In this paper we identify and demonstrate speedups for a key subroutine used in
several clustering algorithms, that of maintaining closest pairs in a dynamic set of
objects. We also describe several other applications or potential applications of the
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kt and Cam algorithms

L Speed

k: is a form of Hierarchical Clustering

22 Dec 1999

.DS/9912014 vl

Fast Hierarchical Clustering and Other Applications of
Dynamic Closest Pairs

David Eppstein
UC Irvine

We develop data structures for dynamic closest pair problems with arbitrary distance functions,
that do not necessarily come from any geometric structure on the objects. Based on a technique
previously used by the author for Euclidean closest pairs, we show how to insert and delete objects
from an n-object set, maintaining the closest pair, in O(n log? 1) time per update and O(n) space.
With quadratic space, we can instead use a quadtree-like structure to achieve an optimal time
bound, O(n) per update. We apply these data structures to hierarchical clustering, greedy match-
ing, and TSP heuristics, and discuss other potential applications in ma,chme learning, Grubhel
hases;and local Igorithms for partition and blems. Exp:

our new methods to be faster in practice than previously used heuristics.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms]: Nonnumeric Algorithms
General Terms: Closest Pair, Agglomerative Clustering

Additional Key Words and Phrases: TSP, matching, conga line data structure, quadtree, nearest
neighbor heuristic

Of these naive methods, brate force recomputation may be most commonly used,
due 1o its low space requirements and ease of implementation. Three hierarchical
cluslering codes we examined, Zupan’s [Zupan 1982], CLUSTAL W [Thompson
cl al. 1994], and PHYLIP [Felseustein 1995] use brute foree. (Indeed, they do not
even save space by doing so, since they all store the distance matrix.) Pazzani’s
learning code [Pazzani 1997] also uses brute force (M. Pazzani, personal commu-
nication), as does Mathematica’s Grébner basis code (D. Lichtblau, personal com-
munication)

k: alg. is so good it's
used throughout sci-
encel!

NB HEP is not only
field to use brute-
force. ..

For general distance

measures problem re-

duces to ~ N2 (fac-

tor ~ 20 for N =
1000).

Eppstein '99

+ Cardinal '03
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Lk, and Cam algorithms Can we do better than N2?

L Speed

There are N(N — 1) /2 distances djj — surely we have to calculate them all
in order to find smallest?



Jet clustering (G. Salam, LPTHE) (p. 23)
C ke and Cam algrithms Can we do better than N??

L Speed

There are N(N — 1) /2 distances djj — surely we have to calculate them all
in order to find smallest?

k; distance measure is partly geometrical:

> Consider smallest dj; = min(kg, k7)R5
> Suppose ki < kij
» Then: R;j <= Rj, for any { # j. [If 3¢s.t. Rig < Rj then djp < djj]

In words: if i, j form smallest dj; then j is geometrical nearest neighbour
(GNN) of /.
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C ke and Cam algrithms Can we do better than N??

L Speed

There are N(N — 1) /2 distances djj — surely we have to calculate them all
in order to find smallest?

k; distance measure is partly geometrical:

> Consider smallest dj; = min(kg, k7)R5
> Suppose ki < kij
» Then: R;j <= Rj, for any { # j. [If 3¢s.t. Rig < Rj then djp < djj]

In words: if i, j form smallest dj; then j is geometrical nearest neighbour
(GNN) of .
k: distance need only be calculated between GNNs

Each point has 1 GNN — need only calculate N dj;'s
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L ¢ and Cam slgorithms Finding Geom Nearest Neighbours

L Speed

Given a set of vertices on plane
(1...10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex
Dirichlet "1850, Voronoi '1908

A vertex's nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,3 (it turns out to be 3)


http://www.cgal.org
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L ¢ and Cam slgorithms Finding Geom Nearest Neighbours

L Speed

Given a set of vertices on plane
(1...10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex
Dirichlet "1850, Voronoi '1908

A vertex's nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: NIn /N time Fortune '88
Update of 1 point in Voronoi diagram: In N time
Devillers '99 [+ related work by other authors|


http://www.cgal.org

Jet clustering (G. Salam, LPTHE) (p. 24)

L ¢ and Cam slgorithms Finding Geom Nearest Neighbours

L Speed

Given a set of vertices on plane
(1...10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex
Dirichlet "1850, Voronoi '1908

A vertex's nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: NIn /N time Fortune '88
Update of 1 point in Voronoi diagram: In N time
Devillers '99 [+ related work by other authors|

Convenient C++ package available: CGAL http://www.cgal.org


http://www.cgal.org

Jet clustering (G. Salam, LPTHE) (p. 25)

Lk and Cam slgorithms Assembling fast k; clustering

L Speed

The FastJet algorithm:

Construct the Voronoi diagram of the N particles with CGAL O (N In N)

Find the GNN of each of the N particles, calculate dj; store result in a
priority queue (C++ map) O (NInN)

Repeat following steps N times:

» Find smallest dj;, merge/eliminate /,j N x O (1)
» Update Voronoi diagram and distance map N x O (InN)


http://www.lpthe.jussieu.fr/~salam/fastjet/

Jet clustering (G. Salam, LPTHE) (p. 25) . .
Lk and Cam slgorithms Assembling fast k; clustering

L Speed

The FastJet algorithm:

Construct the Voronoi diagram of the N particles with CGAL O (N In N)

Find the GNN of each of the N particles, calculate dj; store result in a

priority queue (C++ map) O (NInN)
Repeat following steps N times:

» Find smallest dj;, merge/eliminate /,j N x O (1)
» Update Voronoi diagram and distance map N X O (InN)

Overall an O (N In N) algorithm \

Cacciari & GPS, hep-ph/0512210
http://wuw.lpthe. jussieu.fr/"salam/fastjet/
Results identical to standard N3 implementations


http://www.lpthe.jussieu.fr/~salam/fastjet/

Jet clustering (G. Salam, LPTHE) (p. 26)
Lk, and Cam algorithms FastJet performance

L Speed

101 F Jetdu 4
(almost IR unsafe)

M dPoi nt

Kt Jet Fast Jet
»
Z 102} ;
10° ¢ .
4 LHC (single LHC (c. 20 LHC
10" t Tevatron interaction) interactions) Heavy lon 7
g !
10
10 10° 10* 10°
N

NB: for N < 10*, FastJet switches to a related geometrical N? alg.



Jet clustering (G. Salam, LPTHE) (p. 27)

Lk and Com sigorichms What is speed good for?

Areas

‘Standard hard’ event
Two well isolated jets

50GeV jets

~ 200 particles

Easy even with old methods VNN
y AT
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Jet clustering (G. Salam, LPTHE) (p. 27)
kt and Cam algorithms
Areas

What is speed good for?

50GeV jets + minbias

~ 2000 particles

Clustering takes O (10s) with old
methods.

20ms with FastJet.

T g
ummnnmm “f‘ulf ﬂHHI‘ﬂH g Hlﬂl

Add 10 min-bias events
(moderately high lumi)

7 7 Ry
LI A e /////I/III/
/fl/IIIIIIIIIII/lIl/ /I/lll.’llllllllflllﬂﬂllllﬂfl({\\\\\\\\\ W

-
////////I;///

W
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Jet clustering (G. Salam, LPTHE) (p. 27)

Lk and Cam algorithms What is speed good for?

Areas

50GeV jets + minbias + ghosts I

Add dense coverage of in-
finitely soft ‘ghosts”

See how many end up in
jet to measure jet area

- g ;|
~ 10000 particles skl il i Ay
i Aflll Ilf /I/Il/ll/ll
Clustering takes ~ 20 minutes “"““'{{{{{Hﬁ'" umwmn ‘t‘\‘\‘n'\'\'\‘fi'i{‘t‘ ;}m}m}m}m}m
with old methods. \g;“\\}\‘\ f VIIIIIIIIIIIIIIIIIII
SR i

0.6s with FastJet.



Jet clustering (G. Salam, LPTHE) (p. 28)

I—k[ and Cam algorithms Jet areas

Areas

iev @ (irepeat 24): number of particles = 1428
strategy used = NLnN

number of particles = 9851

Total area: 76.8265

Expected area: 76.02€5

ijet  eta phi Pt area +- err

@ 0.15050 3.24498 206250+ ©.020

1 ©.18579 0.13150 1.896 +- ©.020

2 Z2.3384@ 749+ 0.028

3 -3.41796 3.084 +- 0.021

4 2.688 +- ©.023

5 2.780 +- @.012

--------- 6 3.592 +- @.028
72 114 +- G MR

Approximate linear relation
between Pt and area for
minimum bias jets.

Can be used on an event-by-
event basis to correct the hard
jets



Jet clustering (G. Salam, LPTHE) (p. 29)
kt and Cam algorithms

Areas

Jet areas

80

60

40

Pt,jet

20

median (ﬁt/area) ‘
)
" °
dijet event
"+ 10 minbias
(Kt-alg, R=1)
°
L . )
o o
e 2%
% eg
0 1 2 3 4

jet area

Jet areas in k; algorithm are
quite varied

Because k;-alg adapts

to the jet structure

» Contamination from
min-bias ~ area

Complicates corrections: min-

bias subtraction is different for
each jet.

Cone supposedly simpler

Area = TR??



Jet clustering (G. Salam, LPTHE) (p. 30)
Lk, and Cam sigorithms Z mass: k; v. cone (uncorrected)

Areas

Try reconstructing Mz from Z — 2 jets  [Use inv. mass of two hardest jets]

On same events, compare uncorrected k; v. ILCA (midpoint) cone

‘ ki, no pileﬁp  —
0.04 r ko highlumi —— 1 k; allegedly more sensi-
tive to min-bias.

@ 0.03 1 Is this true?
[
E
S
% 002 | 1
z R=0.7, LHC
Ll

0.01 | i

0 _A--l"'nr"-r’ 1 L
0 50 100 150 200 250

reconstructed Z mass [GeV]



Jet clustering (G. Salam, LPTHE) (p. 30)
Lk, and Cam sigorithms Z mass: k; v. cone (uncorrected)

Areas

Try reconstructing Mz from Z — 2 jets  [Use inv. mass of two hardest jets]

On same events, compare uncorrected k; v. ILCA (midpoint) cone

ki, no pileﬁp _
0.04 r ko highlumi —— 1 k; allegedly more sensi-
ILCA cone (f = 0.50), high lumi —— tive to min-bias.

@ 0.03 {1 Is this true?
]
£ .
3 ILCA with standard pa-

02 | | .
2 0.0 R=0.7, LHC rameters (foveriap = 0.5)
- fares very poorly

001 f |

0 sl ‘
0 50 100 150 200 250

reconstructed Z mass [GeV]



Jet clustering (G. Salam, LPTHE) (p. 30)

kt and Cam algorithms

Areas

Z mass: k; v. cone (uncorrected)

Try reconstructing Mz from Z — 2 jets

[Use inv. mass of two hardest jets]

On same events, compare uncorrected k; v. ILCA (midpoint) cone

0.04

0.03

0.02

1/N dN/dmass

0.01

ki, no pileﬁp _
ki, high lumi ——
ILCA cone (f = 0.50), high lumi ——
ILCA cone (f = 0.75), high lumi

R=0.7, LHC
_ﬂ it |
—"’{ o “'\-_
_A._,-—"‘r-";‘-r L g _b“‘;‘—-";m
50 100 150 200

reconstructed Z mass [GeV]

k; allegedly more sensi-
tive to min-bias.
Is this true?

ILCA with standard pa-
rameters (foveriap = 0.5)
fares very poorly

ILCA with modified
params. is no better

250 than k.



Jet clustering (G. Salam, LPTHE) (p. 31) . . . R
L ¢ and Cam algorithms Use jet areas to correct jet kinematics
Areas
kt, no lJE _—
0.04 | + UE 1
+ high-lumi (100 b /yr) Correction procedure:
o 003 | 1
a Measure area A of each
£ :
S Jet
5 002 | _ _
£ Find median p;/A = Qo
001 f Subtract Ap; = A X @
from each jet.
0 ;A_nl—/-r‘.—r' L I
0 50 100 150 200 250

reconstructed Z mass [GeV]



Jet clustering (G. Salam, LPTHE) (p. 31)
kt and Cam algorithms

Areas

Use jet areas to correct jet kinematics

1/N dN/dmass

0.04

0.03

0.02

0.01

kt, n

;H‘F/J‘HJ 1 h

o UE

+ UE
+ high-lumi (100 b /yr)
- correction

50 100 150
reconstructed Z mass [GeV]

200

250

Correction procedure:

Measure area A of each
jet
Find median p;/A = Qo

Subtract Ap; = A X @
from each jet.



Jet clustering (G. Salam, LPTHE) (p. 31)
kt and Cam algorithms

Areas

Use jet areas to correct jet kinematics

1/N dN/dmass

0.04

0.03

0.02

0.01

;H‘F/J‘HJ 1 h

kt, no UE

+ UE
+ high-lumi (100 b /yr)
- correction

50 100 150
reconstructed Z mass [GeV]

200

250

Correction procedure:

Measure area A of each
jet
Find median p;/A = Qo

Subtract Ap; = A X @
from each jet.

NB: cone much harder to correct this way — too slow to add 10* ghosts



Jet clustering (G. Salam, LPTHE) (p. 32)

L k¢ and Cam algorithms Analytical results for mean areas

Areas

Suppose incoming partons (colour charge C;) and outgoing jets (col.
charge = C,) are not colour connected.

Mean outgoing jet area (A) depends on jet P; as follows:

P2
(A) = R? <7T + (a0 Co + azC;Rz)% In Q—t2+(9 ((1;5, (1§L2)>
m
0
GPS & Cacciari, prelim.

| a0 | a | comment
ke | +1.771 | +0.325 | significant, positive
ILCA (cone) | —0.200 | —0.325 small, negative
Cam / Aachen | +0.249 0 small, positive

For Qo ~ 10 GeV, P; ~ 100 — 1000 GeV, 2= In P2/Q3 ~0.2—0.4

Cambridge / Aachen algorithm? Like k¢ with but dj; = Rg /R? and
dg = 1. Dokshitzer, Leder, Moretti & Webber '97; Wobisch '00



Jet clustering (G. Salam, LPTHE) (p. 33)

Lt and Cam algorithms Reconstruct Z' mass [2 TeV]

Areas

0.012 T T
kt, no pileup ——

0.01 I kt + high-lumi —— |

0.008 - b

0.006 - B

R=0.7, LHC

1/N dN/dmass

0.004 -

0.002 _H_.!_'_ﬁ_,_r

0 L L L L
1850 1900 1950 2000 2050 2100 2150 2200
reconstructed Z' mass [GeV]




Jet clustering (G. Salam, LPTHE) (p. 33)

kt and Cam algorithms

Areas

Reconstruct Z' mass [2 TeV]

1/N dN/dmass

0.012

0.01

0.008 -

0.006 -

0.004 -

0.002 aﬁ

kt, no pileup
kt + high-lumi
cone + high-lumi

R=0.7,

LHC

0
1850

1900

1950 2000 2050 2100
reconstructed Z' mass [GeV]

2150

2200

Uncorrected cone better
than k;.



Jet clustering (G. Salam, LPTHE) (p. 33)
kt and Cam algorithms

Areas

Reconstruct Z' mass [2 TeV]

1/N dN/dmass

0.012

0.01

0.008

0.006

0.004

0.002

0
1850

kt, no‘pileup

kt + high-lumi
cone + high-lumi
cam + high-lumi

R=0.7,

LHC

1950 2000 2050 2100
reconstructed Z' mass [GeV]

2150

2200

Uncorrected cone better
than k;.

Cam is intermediate

(<Acam> =~ <Acone>, bUt
fluctuations larger)



Jet clustering (G. Salam, LPTHE) (p. 33)
Lt and Cam algorithms Reconstruct Z' mass [2 TeV]
Areas
0.012 T T
kt, no pileup ——

0.01 kt + high-lumi —— |
cone + high-lumi —— Uncorrected cone better
0.008 cam + high-lumi ] than kt-

- correction ——
Cam is intermediate

R=0.7, LHC ({(Acam) =~ (Acone), but
fluctuations larger)

0.006

1/N dN/dmass

0.004

Corrected Cam (and k¢)
is best.

0.002

0
1850 1900 1950 2000 2050 2100 2150 2200
reconstructed Z' mass [GeV]



Jet clustering (G. Salam, LPTHE) (p. 34)
Lk and Cam algorithms kt summa ry

Summary

> k; alg. is fast (faster than IR unsafe JetClu) — key observation is
geometrical reformulation
Get code from http://www.lpthe. jussieu.fr/“salam/fastjet

» Jet areas (— min. bias. contributions) do fluctuate
Some aspects of areas amenable to analytical calculations

» But areas can (should) be measured and used for correction on
jet-by-jet basis. Preliminary studies very promising

> k; is part of a class of algorithms — other example deserving more
attention is Cambridge/Aachen alg. It too can be made fast


http://www.lpthe.jussieu.fr/~salam/fastjet
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