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Introduction Jets?

Electrons & muons are fundamental, weakly coupled particles — it makes
sense physically and experimentally to think of them as concrete objects.

Partons (quarks, gluons) are not so simple...

quark
(LO) (LO)

hadron
(NLO) jet(s?)
quark jet?

quark jet
+ gluon jet?

I Partons split into further partons

I Jets are a a way of thinking of
the ‘original parton’

I A ‘jet’ is a fundamentally
ambiguous concept (e.g. requires
a resolution)

Jets are only meaningful once you’ve defined a jet algorithm
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Introduction Jet algorithm requirements

What is needed of a jet algorithm

I Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets

collinear splitting shouldn’t change jets

I Must be identical procedure at parton level, hadron-level
So that theory calculations can be compared to experimental measurements

What is nice for a jet algorithm

I Shouldn’t be too sensitive to hadronisation, underlying event, pileup
Because we can only barely model them

I Should be realistically applicable at detector level
Not too slow, not too complex to correct

I Should behave ‘sensibly’
e.g. don’t want it to spuriously ignore large energy deposits
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Introduction Jet algorithm types

Mainstream jet-algorithms

I Iterative cone algorithms (JetClu, ILCA/Midpoint, . . . )
Searches for cones centred on regions of energy flow

Dominant at hadron colliders

I Sequential recombination algorithms (kt , Cambridge/Aachen, Jade)
Recombine closest pair of particles, next closest, etc.

Dominant at e+e− and ep colliders

Other approaches

I ‘Optimal Jet Finder’, Deterministic Annealing
Fit jet axes (and #) so as to minimise a weight function

[forms of ‘k-means’ clustering]

I Jet energy flow project

I . . .
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Introduction Outline

As LHC startup approaches it’s important for the choice of jet algorithm
to be well-motivated.

This talk

I Overview of iterative cone algorithms (& what’s wrong with them)

I Clustering algorithms
I How they work
I Where they’ve been criticised (speed, underlying-event (UE) sensitivity)
I How to solve the speed problem
I Work in progress on understanding and reducing sensitivity to UE.
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Cone algorithms Cone Origins

First ‘cone algorithm’ dates back to Sterman and Weinberg (1977) — the
original infrared-safe cross section:
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Cone algorithms Modern cones address various issues

Where do you put the cones?

I Place a cone at some trial location

I Sum four-momenta of particles in cone – find corresponding axis

I Use that axis as a new trial location, and iterate

I Stop when you reach a stable axis [or when you get bored]

What are the initial trial locations?

I ‘Seedless’ — i.e. everywhere But too slow on computer

I Use locations with energy flow above some threshold as seeds
Issue: is seed threshold = parton energy, hadron energy (collinear unsafe)?

Or calorimeter tower energy (experiment and η-dependent)?



Jet clustering (G. Salam, LPTHE) (p. 8)

Cone algorithms Iteration example
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Cone algorithms Overlapping Jets

Jets can overlap
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overlapping cones They are either split if the overlap-
ping energy is

Eoverlap < foverlap Esofter-jet

otherwise they are merged.

NB: foverlap is parameter of cone-algo

NB: when many jets overlap, procedure for merging/splitting must be
specified (e.g. wrt order in which jets are treated).
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Cone algorithms Midpoints

Use of seeds is dangerous
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Extra soft particle adds new
seed → changes final jet con-
figuration.

This is IR unsafe.
Kilgore & Giele ’97

Solution: add extra seeds at midpoints of all pairs, triplets, . . . of stable
cones. Seymour ’97 (?)

NB: only in past 1-2 years has this fix appeared in CDF and D0
analyses. . .
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Cone algorithms ILCA

All of these considerations led
recommendation of the Improved
Legacy Cone Algorithm (ILCA),
a.k.a. Midpoint algorithm.

hep-ex/0005012

Quite complex and has several pa-
rameters:

cone radius (R)

seed threshold (E0)

foverlap

Only one of these is remotely
physical: R .
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Cone algorithms ILCA has “Dark Towers”
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S. Ellis, Huston & Tönnesmann ’01
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Cone algorithms Search Cone

Dark towers are consequence of particles that are never in stable cones:
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Ellis, Huston and Tönnesmann suggest iterating a smaller ‘search-cone’
and then drawing final cone around it.

Searchcone adopted by CDF (to confuse issue they call it ‘midpoint’...).
hep-ex/0505013, hep-ex/0512020
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Cone algorithms Search Cone is IR unsafe
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Whether you see 1 or 2 jets depends on presence and position of a soft
gluon — this is IR unsafe (and unphysical). Wobisch, ’06
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Cone algorithms Cone summary

I Cone algorithms are complicated beasts.

I So much so, it’s often not clear which cone algorithm is being used!

I They often behave in unforeseen ways.

I Patching them makes them more complex and error-prone.

Didn’t even mention the hacks people put into
cone theory calculations to ‘tune’ them to

hadron level: (cf. Rsep , which breaks the NLO jet
X-section).

LHC experiments should be wary of cone
algorithms
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kt and Cam algorithms Sequential Recombination Algorithms

Best known is kt algorithm:

1. Calculate (or update) distances between all particles i and j , and
between i and beam:

dij = min(k2
ti , k

2
tj )

∆R2
ij

R2
, diB = k2

ti , ∆R2
ij = ∆y2

ij + ∆φ2
ij

2. Find smallest of dij and diB

I If dij is smallest, recombine i and j (add result to particle list, remove i , j)
I if diB is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.

Catani, Dokshitzer, Olsson, Turnock, Seymour & Webber ’91–93

S. Ellis & Soper, ’93

One parameter: R (like cone radius), whose natural value is 1

Optional second parameter: stopping scale dcut ‘exclusive’ kt algorithm
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)

d iB=137000 GeV 2
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kt and Cam algorithms kt algorithm in action (R = 1)
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kt and Cam algorithms kt algorithm in action (R = 1)

d iB=325000 GeV 2jet
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kt and Cam algorithms Why kt?

kt distance measures

dij = min(k2
ti , k

2
tj )∆R2

ij , diB = k2
ti

are closely related to structure of divergences for QCD emissions

[dkj ]|M
2
g→gigj

(kj )| ∼
αsCA

2π

dktj

min(kti , ktj )

d∆Rij

∆Rij

, (ktj � kti , ∆Rij � 1)

and

[dki ]|M
2
Beam→Beam+gi

(ki )| ∼
αsCA

π

dkti

kti

dηi , (k2
ti � {ŝ, t̂, û})

kt algorithm attempts approximate inversion of
branching process
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kt and Cam algorithms kt v. cone

kt algorithm seems better than cone

I it’s simpler, safer and better-defined

I exclusive variant is more flexible (allows cuts on momentum scales)

I less sensitive to hadronization

I In MC studies kt alg. is systematically as good as, or better than cone
algorithms for typical reconstruction tasks Seymour ’94

Butterworth, Cox & Forshaw ’02

Benedetti et al (Les Houches) ’06

But seldom used at Tevatron. Why?

1. Because it’s slow?

2. Because it includes more underlying event?

3. Because it’s harder to understand detector effects?
But all LEP and HERA experiments managed fine

And as of ’05, CDF too
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kt and Cam algorithms

Speed
Time to cluster N particles
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N

KtJet

OJF
MidPoint

JetClu
(IR unsafe cone)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

Standard C++ (and
fortran) kt -clustering
takes time ∼ N3.

a Pb-Pb event

takes 1 day!

IR-unsafe cone (Jet-
Clu) is much faster.

IR-safe cone (Mid-
point) is as bad as kt

Jet-clustering speed is an issue for high-luminosity pp (∼ 108 events)
and Pb-Pb (∼ 107 events) collisions at LHC.

NB: want to rerun jet-alg. with a range of parameter choices

+ want to run on multiple MC samples of similar size
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kt and Cam algorithms
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kt and Cam algorithms

Speed
Why is kt an N

3 algorithm?

1. Given the initial set of particles, construct a table of all the d ij , diB .
[O

(

N2
)

operations, done once]

2. Scan the table to find the minimal value dmin of the dij , diB .
[O

(

N2
)

operations, done N times]

3. Merge or remove the particles corresponding to dmin as appropriate.
[O (1) operations, done N times]

4. Update the table of dij , diB to take into account the merging or
removal, and if any particles are left go to step 2.

[O (N) operations, done N times]

This is the “brute-force” or “naive” method
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kt and Cam algorithms

Speed
kt is a form of Hierarchical Clustering

kt alg. is so good it’s
used throughout sci-
ence!

NB HEP is not only
field to use brute-
force. . .

For general distance
measures problem re-
duces to ∼ N2 (fac-
tor ∼ 20 for N =
1000).

Eppstein ’99

+ Cardinal ’03
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kt and Cam algorithms

Speed
Can we do better than N

2?

There are N(N − 1)/2 distances dij — surely we have to calculate them all
in order to find smallest?

kt distance measure is partly geometrical:

I Consider smallest dij = min(k2
ti , k

2
tj )R

2
ij

I Suppose kti < ktj

I Then: Rij <= Ri` for any ` 6= j . [If ∃ ` s.t. Ri` < Rij then di` < dij ]

In words: if i , j form smallest dij then j is geometrical nearest neighbour
(GNN) of i .

kt distance need only be calculated between GNNs

Each point has 1 GNN → need only calculate N dij ’s
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Speed
Finding Geom Nearest Neighbours
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9
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6

Given a set of vertices on plane
(1. . . 10) a Voronoi diagram parti-
tions plane into cells containing all
points closest to each vertex

Dirichlet ’1850, Voronoi ’1908

A vertex’s nearest other vertex is al-
ways in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: N lnN time Fortune ’88

Update of 1 point in Voronoi diagram: lnN time
Devillers ’99 [+ related work by other authors]

Convenient C++ package available: CGAL http://www.cgal.org

http://www.cgal.org
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Speed
Assembling fast kt clustering

The FastJet algorithm:

Construct the Voronoi diagram of the N particles with CGAL O (N ln N)

Find the GNN of each of the N particles, calculate dij store result in a
priority queue (C++ map) O (N ln N)

Repeat following steps N times:

I Find smallest dij , merge/eliminate i , j N × O (1)

I Update Voronoi diagram and distance map N × O (ln N)

Overall an O (N ln N) algorithm

Cacciari & GPS, hep-ph/0512210

http://www.lpthe.jussieu.fr/~salam/fastjet/

Results identical to standard N3 implementations

http://www.lpthe.jussieu.fr/~salam/fastjet/
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Speed
FastJet performance

10-5

10-4

10-3

10-2

10-1

100

101

102 103 104 105

t (
s)

N

KtJet FastJet

OJF
MidPoint

JetClu
(almost IR unsafe)

Tevatron
LHC (single LHC (c. 20 LHC
interaction) interactions) Heavy Ion

NB: for N < 104, FastJet switches to a related geometrical N2 alg.
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Areas
What is speed good for?

‘Standard hard’ event
Two well isolated jets

∼ 200 particles

Easy even with old methods



Jet clustering (G. Salam, LPTHE) (p. 27)

kt and Cam algorithms

Areas
What is speed good for?

Add 10 min-bias events
(moderately high lumi)

∼ 2000 particles

Clustering takes O (10s) with old
methods.

20ms with FastJet.
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Areas
What is speed good for?

Add dense coverage of in-
finitely soft “ghosts”

See how many end up in
jet to measure jet area

∼ 10000 particles

Clustering takes ∼ 20 minutes
with old methods.

0.6s with FastJet.
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Jet areas
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Areas
Jet areas

 0

 20
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 80

 0  1  2  3  4  5

P
t,j

et

jet area

dijet event
+ 10 minbias

(Kt-alg, R=1)

median (pt/area)
Jet areas in kt algorithm are
quite varied

Because kt-alg adapts

to the jet structure

I Contamination from
min-bias ∼ area

Complicates corrections: min-
bias subtraction is different for
each jet.

Cone supposedly simpler

Area = πR2?
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kt and Cam algorithms

Areas
Z mass: kt v. cone (uncorrected)

Try reconstructing MZ from Z → 2 jets [Use inv. mass of two hardest jets]

On same events, compare uncorrected kt v. ILCA (midpoint) cone
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R=0.7, LHC

kt, no pileup

kt, high lumi kt allegedly more sensi-
tive to min-bias.
Is this true?

ILCA with standard pa-
rameters (foverlap = 0.5)
fares very poorly

ILCA with modified
params. is no better
than kt .
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Areas
Use jet areas to correct jet kinematics
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+ high-lumi (100 fb-1/yr) Correction procedure:

Measure area A of each
jet

Find median pt/A = Q0

Subtract ∆pt = A× Q0

from each jet.

NB: cone much harder to correct this way — too slow to add 104 ghosts



Jet clustering (G. Salam, LPTHE) (p. 31)

kt and Cam algorithms

Areas
Use jet areas to correct jet kinematics

 0

 0.01

 0.02

 0.03

 0.04

 0  50  100  150  200  250

1/
N

 d
N

/d
m

as
s

reconstructed Z mass [GeV]

R=0.7, LHC

kt, no UE

+ UE

+ high-lumi (100 fb-1/yr)
− correction

Correction procedure:

Measure area A of each
jet

Find median pt/A = Q0

Subtract ∆pt = A× Q0

from each jet.

NB: cone much harder to correct this way — too slow to add 104 ghosts



Jet clustering (G. Salam, LPTHE) (p. 31)

kt and Cam algorithms

Areas
Use jet areas to correct jet kinematics

 0

 0.01

 0.02

 0.03

 0.04

 0  50  100  150  200  250

1/
N

 d
N

/d
m

as
s

reconstructed Z mass [GeV]

R=0.7, LHC

kt, no UE

+ UE

+ high-lumi (100 fb-1/yr)
− correction

Correction procedure:

Measure area A of each
jet

Find median pt/A = Q0

Subtract ∆pt = A× Q0

from each jet.

NB: cone much harder to correct this way — too slow to add 104 ghosts



Jet clustering (G. Salam, LPTHE) (p. 32)

kt and Cam algorithms

Areas
Analytical results for mean areas

Suppose incoming partons (colour charge Ci ) and outgoing jets (col.
charge = Co) are not colour connected.

Mean outgoing jet area 〈A〉 depends on jet Pt as follows:

〈A〉 = R2

(

π + (a0Co + a2CiR
2)

αs

π
ln

P2
t

Q2
0

+O
(

αs, α
2
s L

2
)

)

GPS & Cacciari, prelim.

a0 a2 comment

kt +1.771 +0.325 significant, positive
ILCA (cone) −0.200 −0.325 small, negative

Cam / Aachen +0.249 0 small, positive

For Q0 ∼ 10 GeV, Pt ∼ 100− 1000 GeV, αs

π
ln P2

t /Q2
0 ∼ 0.2 − 0.4

Cambridge / Aachen algorithm? Like kt with but dij = R2
ij/R

2 and
diB = 1. Dokshitzer, Leder, Moretti & Webber ’97; Wobisch ’00
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Corrected Cam (and kt)
is best.
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kt and Cam algorithms

Summary
kt summary

I kt alg. is fast (faster than IR unsafe JetClu) — key observation is
geometrical reformulation

Get code from http://www.lpthe.jussieu.fr/~salam/fastjet

I Jet areas (→ min. bias. contributions) do fluctuate
Some aspects of areas amenable to analytical calculations

I But areas can (should) be measured and used for correction on
jet-by-jet basis. Preliminary studies very promising

I kt is part of a class of algorithms — other example deserving more
attention is Cambridge/Aachen alg. It too can be made fast

http://www.lpthe.jussieu.fr/~salam/fastjet
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