Fall and rise of the gluon splitting function (at small x)

Gavin Salam LPTHE — Univ. Paris VI & VII and CNRS

In collaboration with M. Ciafaloni, D. Colferai and A. Staśto

DIS 2004 — Štrbské Pleso 16 April 2004 Small-x gluon splitting function has logarithmic enhancements:

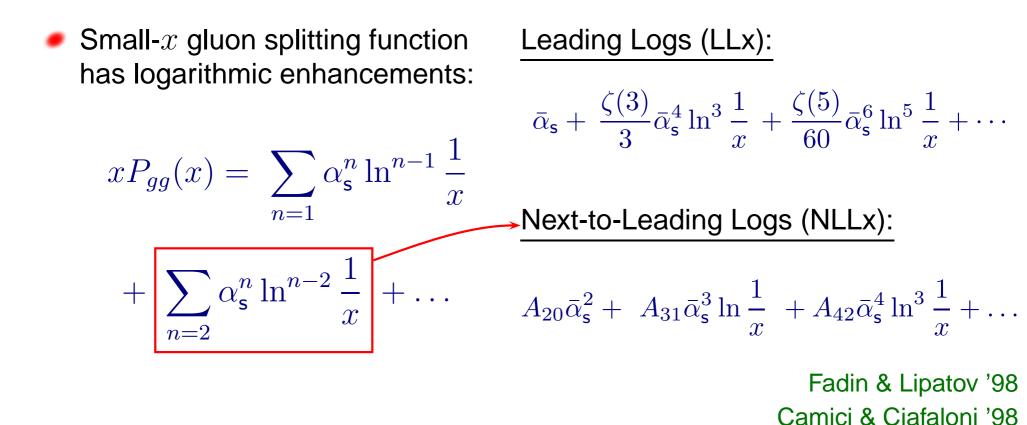
$$xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_{\mathsf{s}}^n \ln^{n-1} \frac{1}{x}$$

$$+ \sum_{n=2}^{n} \alpha_{\mathsf{s}}^n \ln^{n-2} \frac{1}{x} + \dots$$

Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_{s}^{n} \ln^{n-1} \frac{1}{x}$$
$$+ \sum_{n=2}^{\infty} \alpha_{s}^{n} \ln^{n-2} \frac{1}{x} + \dots$$

Leading Logs (LLx): $\bar{\alpha}_{s} + \frac{\zeta(3)}{3}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \frac{\zeta(5)}{60}\bar{\alpha}_{s}^{6}\ln^{5}\frac{1}{x} + \cdots$



Fall and rise of the gluon splitting function(at small \boldsymbol{x}) – p.2/14

Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_{s}^{n} \ln^{n-1} \frac{1}{x}$$

+
$$\sum_{n=2}^{n} \alpha_{s}^{n} \ln^{n-2} \frac{1}{x} + \dots$$

Leading Logs (LLx):

$$\bar{\alpha}_{s} + \frac{\zeta(3)}{3} \bar{\alpha}_{s}^{4} \ln^{3} \frac{1}{x} + \frac{\zeta(5)}{60} \bar{\alpha}_{s}^{6} \ln^{5} \frac{1}{x} + \cdots$$
Next-to-Leading Logs (NLLx):

$$A_{20}\bar{\alpha}_{s}^{2} + A_{31}\bar{\alpha}_{s}^{3}\ln\frac{1}{x} + A_{42}\bar{\alpha}_{s}^{4}\ln^{3}\frac{1}{x} + \dots$$

Fadin & Lipatov '98 Camici & Ciafaloni '98

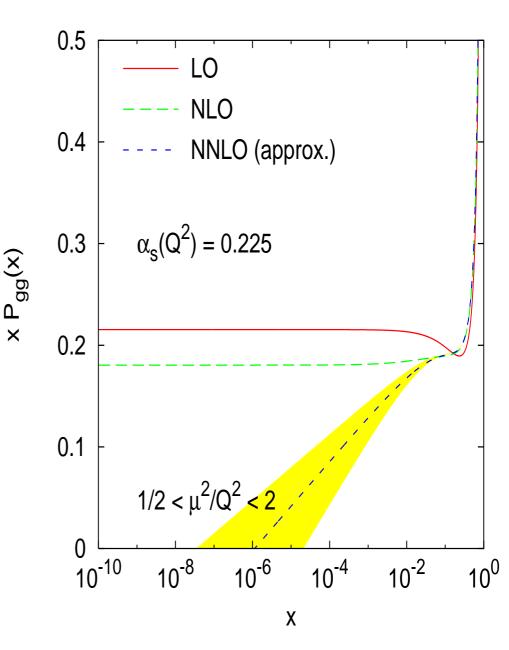
NNLO (α_s^3) : first small-x enhancement in gluon splitting function.

Small-x gluon splitting function has logarithmic enhancements:

$$xP_{gg}(x) = \sum_{n=1}^{\infty} \alpha_{\mathsf{s}}^n \ln^{n-1} \frac{1}{x}$$

$$+ \sum_{n=2}^{\infty} \alpha_{\mathsf{s}}^n \ln^{n-2} \frac{1}{x} + \dots$$

NNLO (α_s^3) : first small-x enhancement in gluon splitting function.



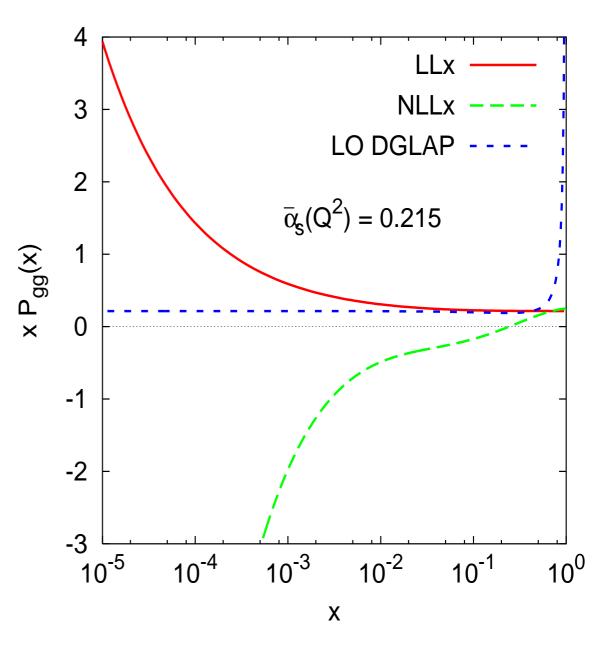
LLx, NLLx

Reminder

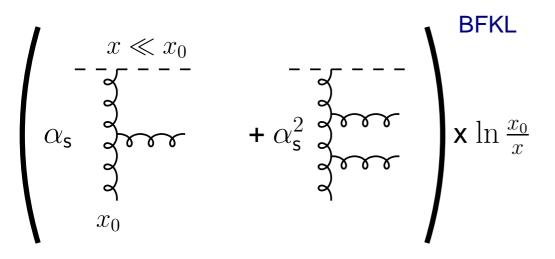
- LLx terms rise very fast, $xP_{gg}(x) \sim x^{-0.5}$.
 Incompatible with data. Ball & Forte '95
- NLLx terms go negative very fast.

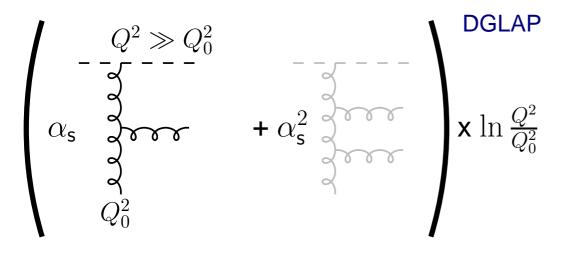
No one's even tried fitting the data!

[NB: Taking NLLx terms of P_{gg} is almost the worst possible expansion]



'Improving' on NLLx? Start with kernel...

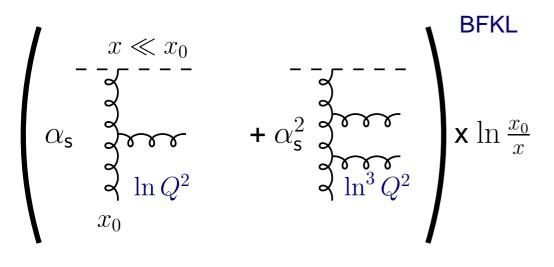


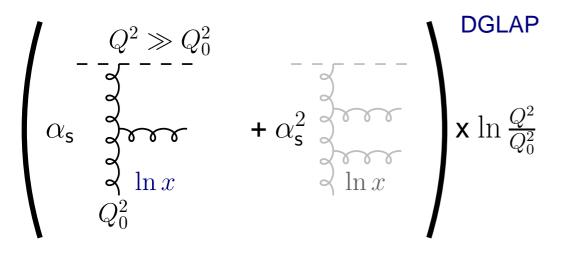


 $+Q^2 \Leftrightarrow Q_0^2$

anti-DGLAP

'Improving' on NLLx? Start with kernel...

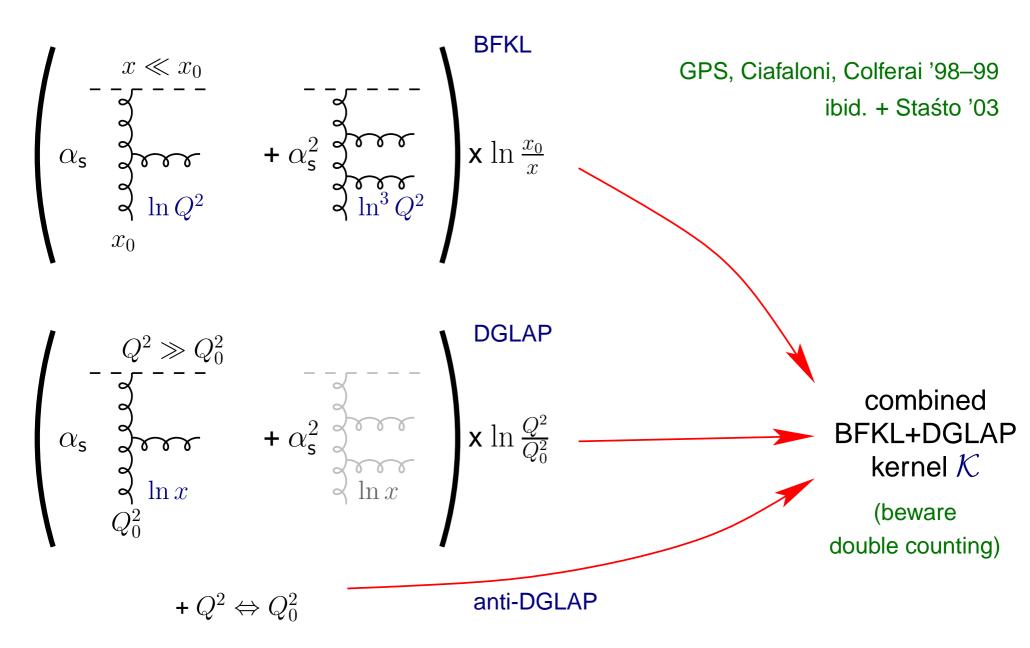


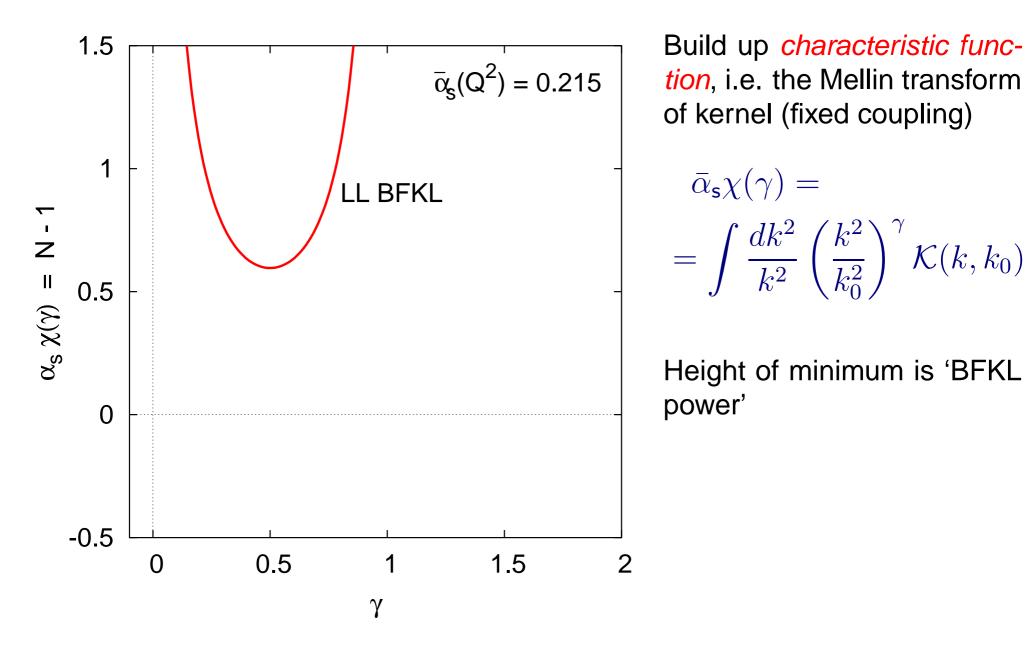


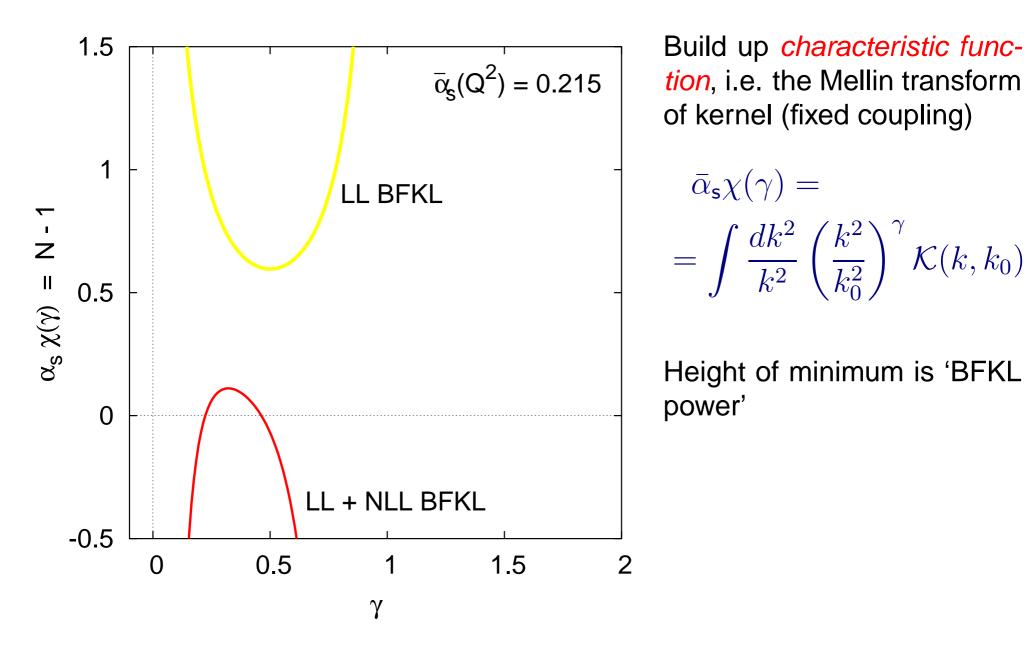
+ $Q^2 \Leftrightarrow Q_0^2$

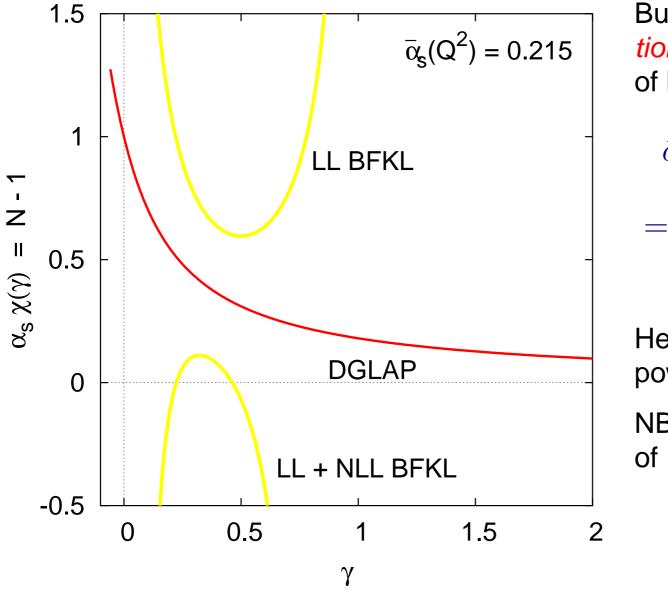
anti-DGLAP

'Improving' on NLLx? Start with kernel...







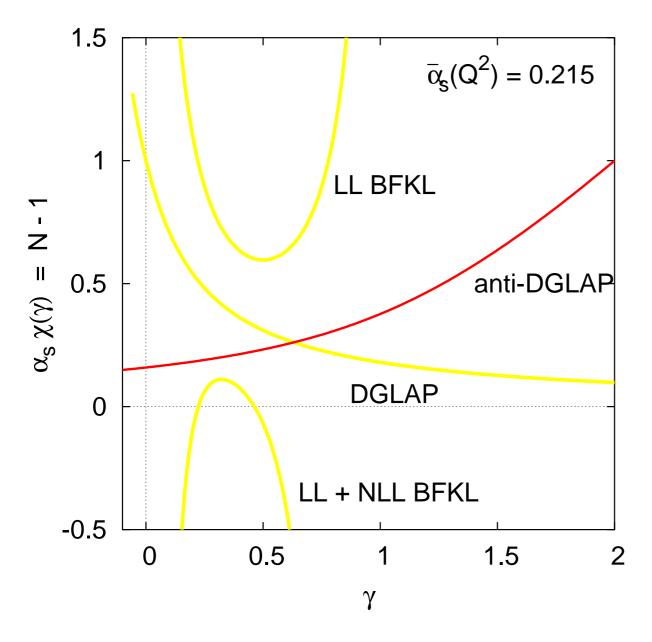


Build up *characteristic function*, i.e. the Mellin transform of kernel (fixed coupling)

$$\bar{\alpha}_{s}\chi(\gamma) = \int \frac{dk^2}{k^2} \left(\frac{k^2}{k_0^2}\right)^{\gamma} \mathcal{K}(k,k_0)$$

Height of minimum is 'BFKL power'

NB: DGLAP = 'rotated' plot of $\gamma(N)$

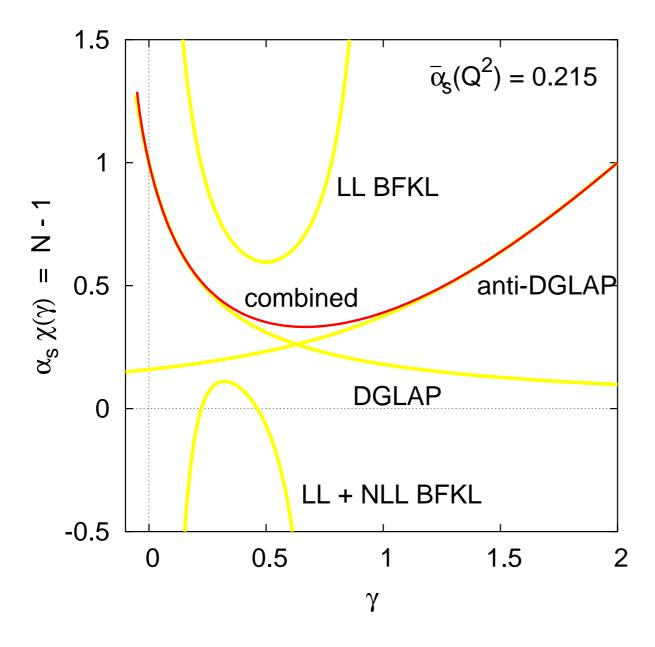


Build up *characteristic function*, i.e. the Mellin transform of kernel (fixed coupling)

$$\bar{\alpha}_{s}\chi(\gamma) = \int \frac{dk^2}{k^2} \left(\frac{k^2}{k_0^2}\right)^{\gamma} \mathcal{K}(k,k_0)$$

Height of minimum is 'BFKL power'

NB: DGLAP = 'rotated' plot of $\gamma(N)$



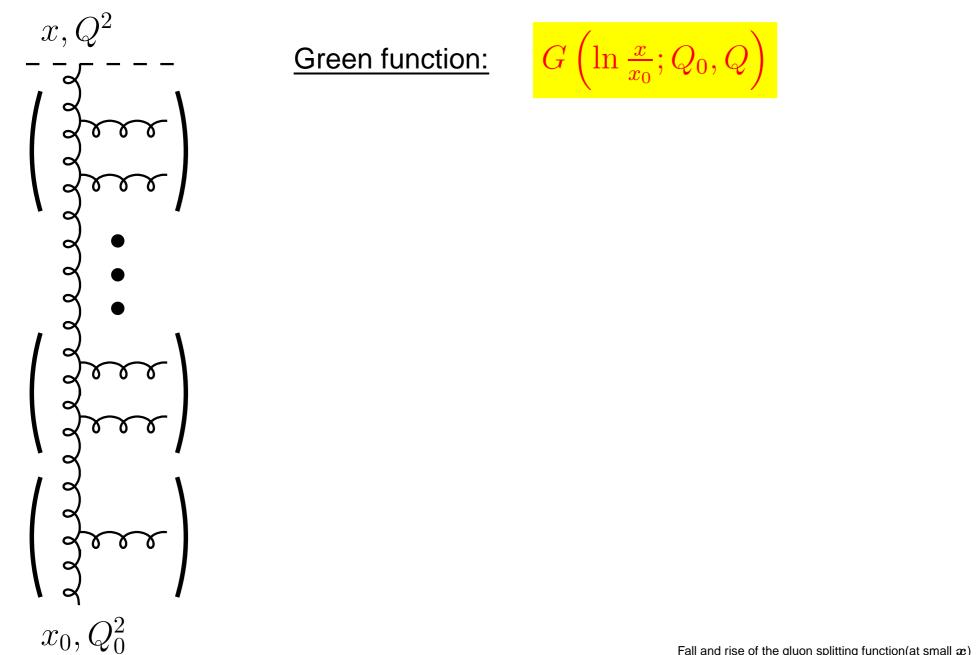
Build up *characteristic function*, i.e. the Mellin transform of kernel (fixed coupling)

$$\bar{\alpha}_{s}\chi(\gamma) = \int \frac{dk^2}{k^2} \left(\frac{k^2}{k_0^2}\right)^{\gamma} \mathcal{K}(k,k_0)$$

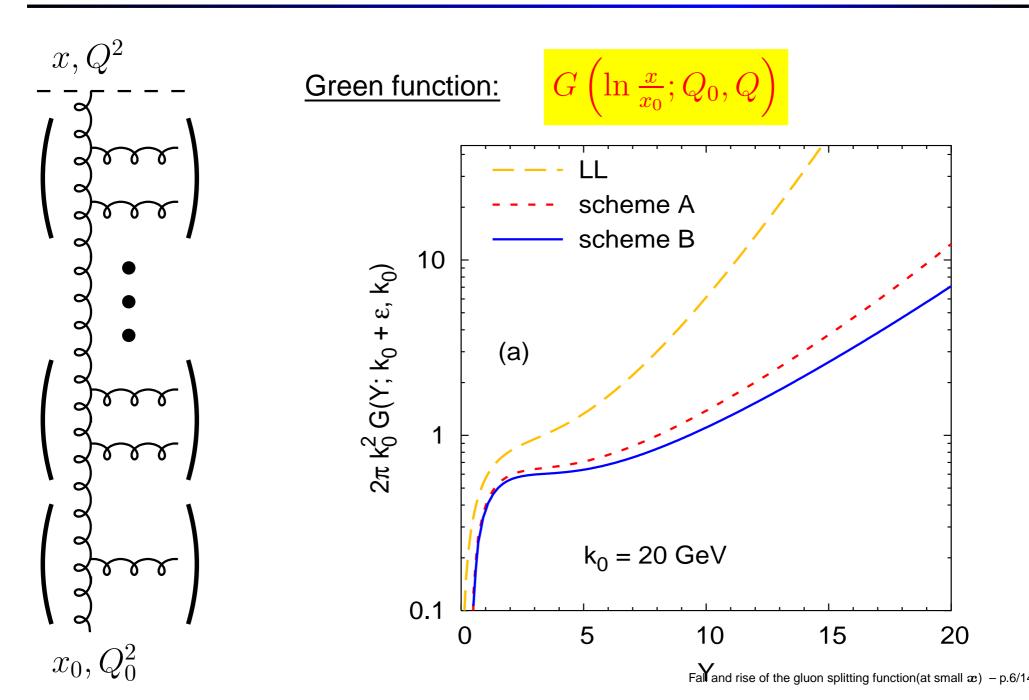
Height of minimum is 'BFKL power'

NB: DGLAP = 'rotated' plot of $\gamma(N)$

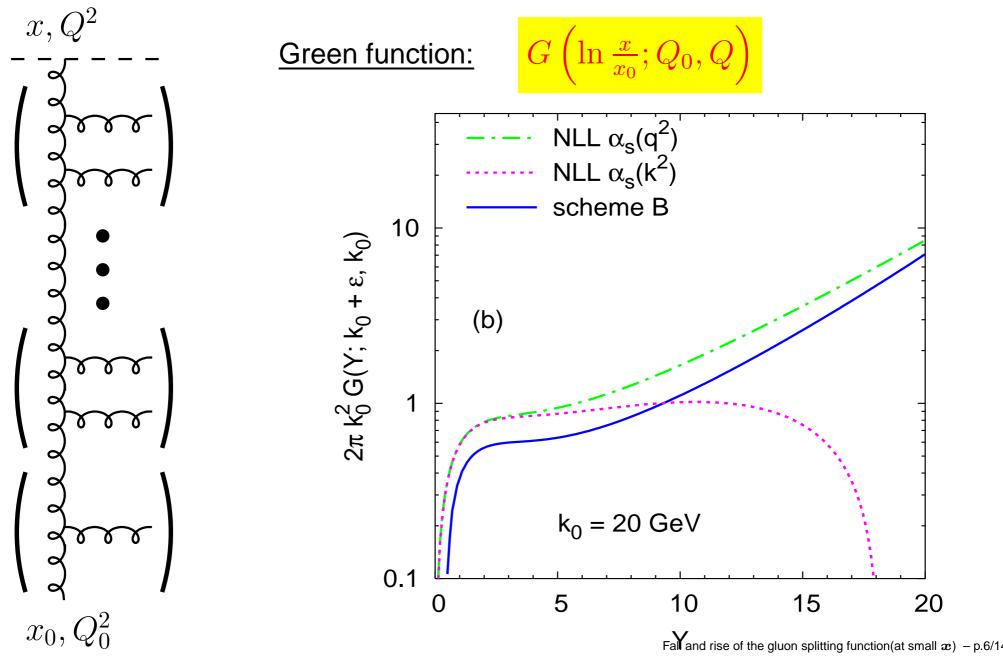
Iteration of kernel \Rightarrow Green function



Iteration of kernel \Rightarrow Green function



Iteration of kernel \Rightarrow Green function



Green function \Rightarrow effective DGLAP splitting function

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Green function \Rightarrow effective DGLAP splitting function

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Numerically solve equation for effective splitting function, $P_{gg,eff}(z,Q^2)$:

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,\text{eff}}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Green function \Rightarrow effective DGLAP splitting function

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

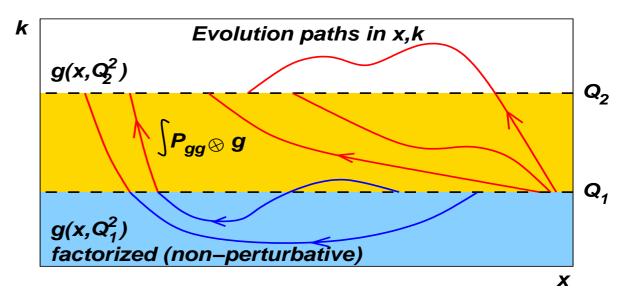
Numerically solve equation for effective splitting function, $P_{gg, eff}(z, Q^2)$:

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,\text{eff}}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

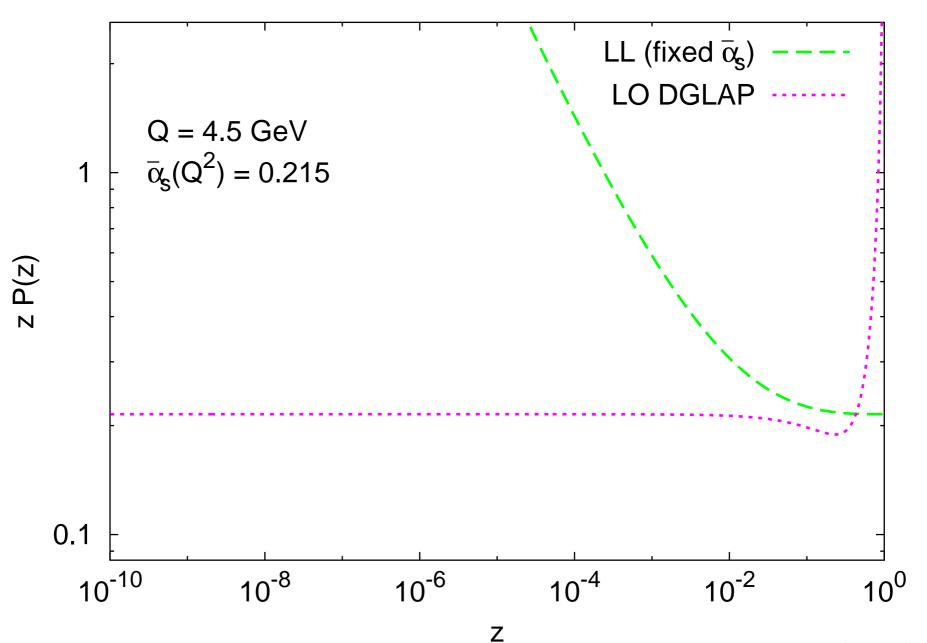
Factorisation

- Splitting function: red paths
- Green function:

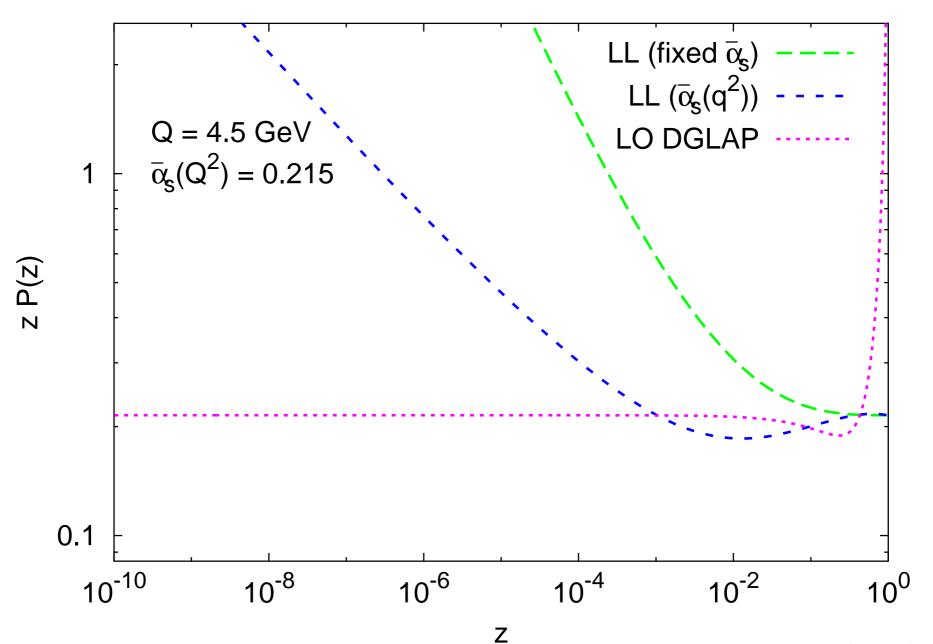
all paths



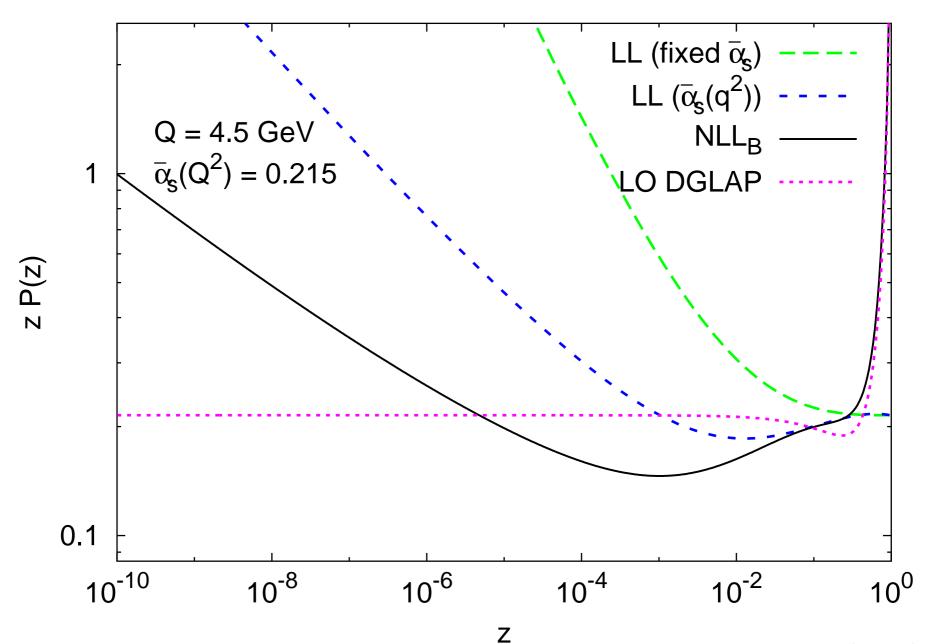
$P_{gg}(z)$ splitting function results



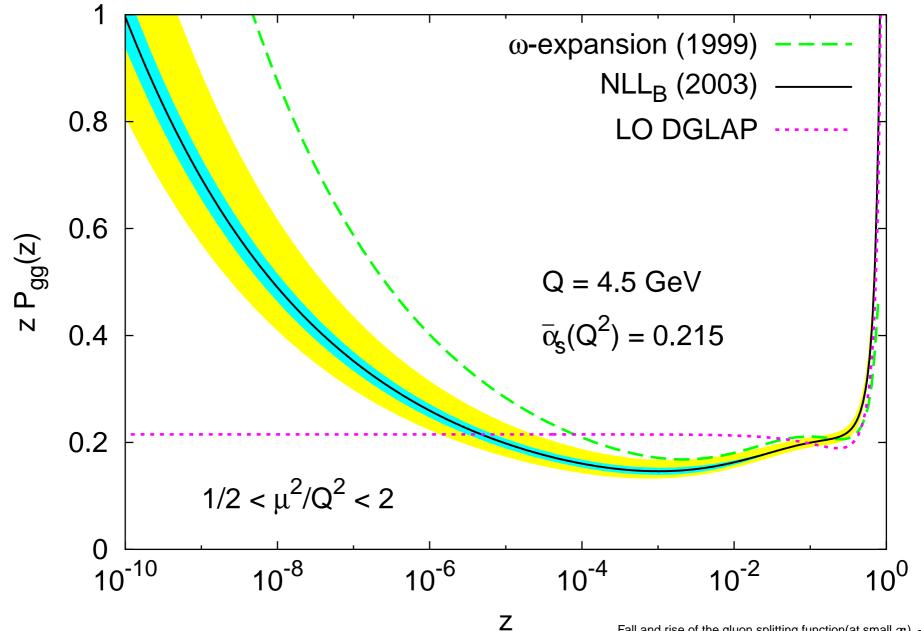
$P_{gg}(z)$ splitting function results



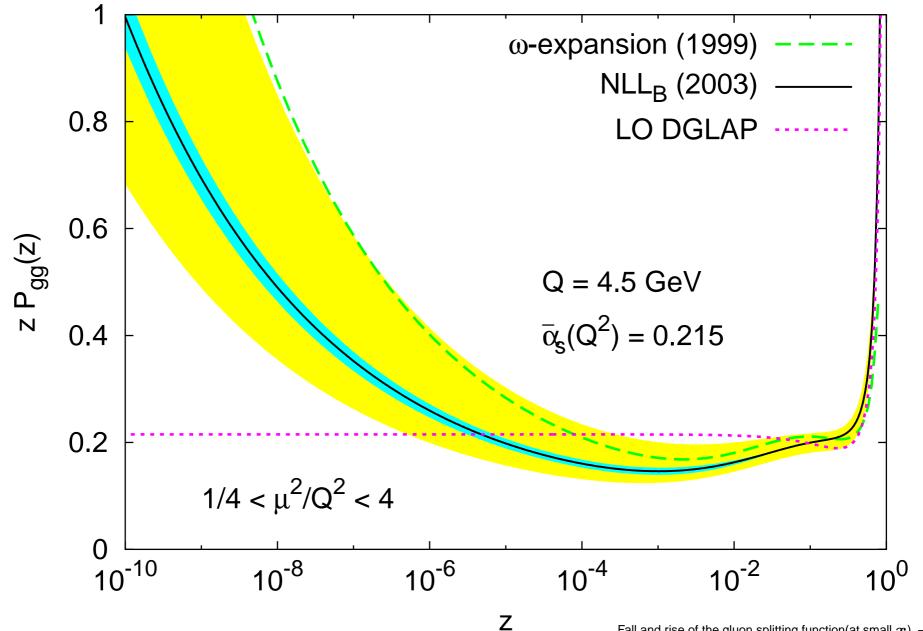
$P_{gg}(z)$ splitting function results



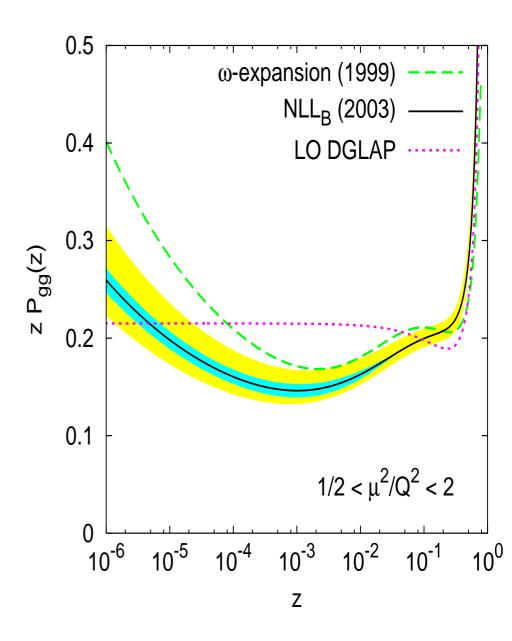
$P_{qq}(z)$ splitting function results



$P_{qq}(z)$ splitting function results



- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$



- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

Questions:

Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

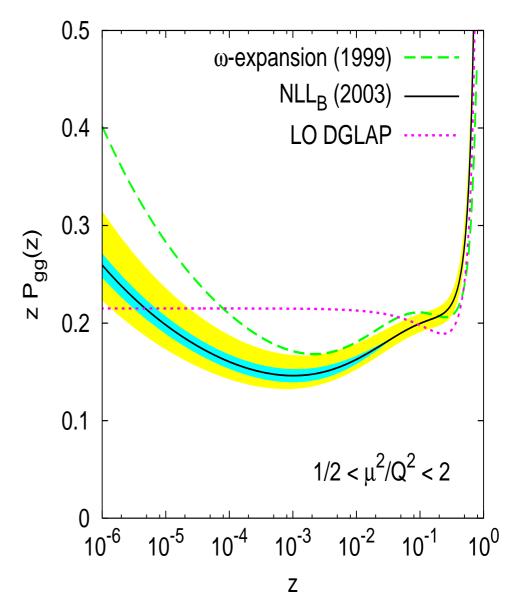
 Is it always the same dip?

0.5 ω -expansion (1999) NLL_B (2003) 0.4 LO DGLAP 0.3 P_{gg}(z) Ν 0.2 0.1 $1/2 < \mu^2/Q^2 < 2$ 0 10⁻⁵ 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10⁻⁶ 10^{0} 7

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

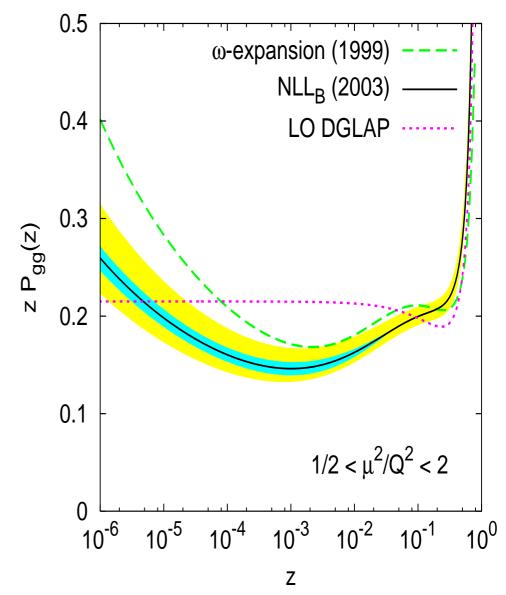
 Is it always the same dip?
 - Is the dip a rigorous prediction?



- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

 Is it always the same dip?
- Is the dip a rigorous prediction?
- What is its origin? Running α_s , momentum sum rule...?

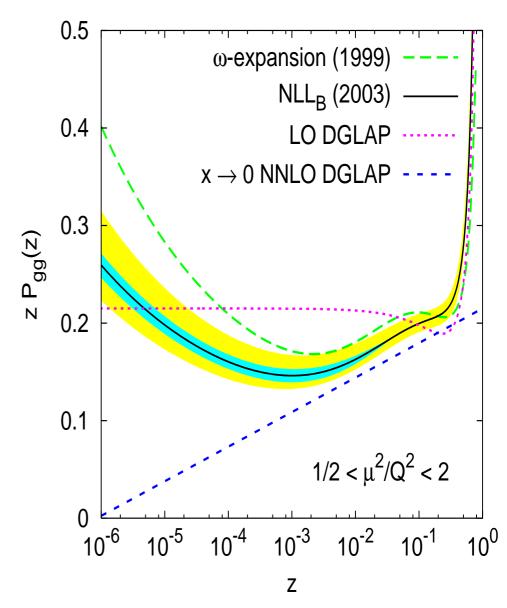


- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

 Is it always the same dip?
- Is the dip a rigorous prediction?
- What is its origin? Running α_s , momentum sum rule...?

```
NNLO DGLAP gives a clue...
-1.54 \,\bar{\alpha}_{\rm s}^3 \ln \frac{1}{x}
```

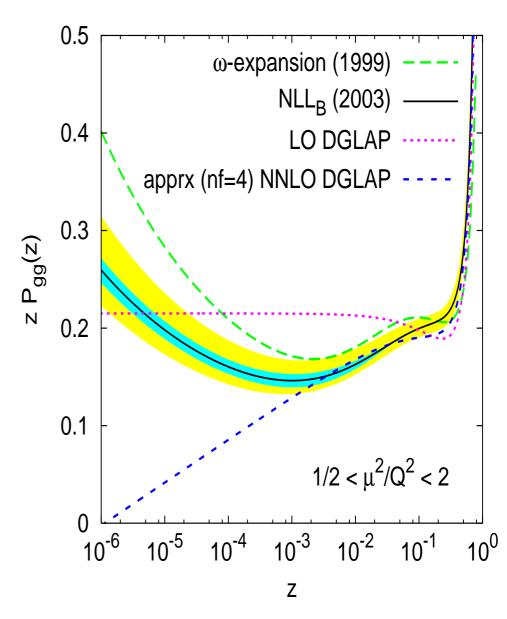


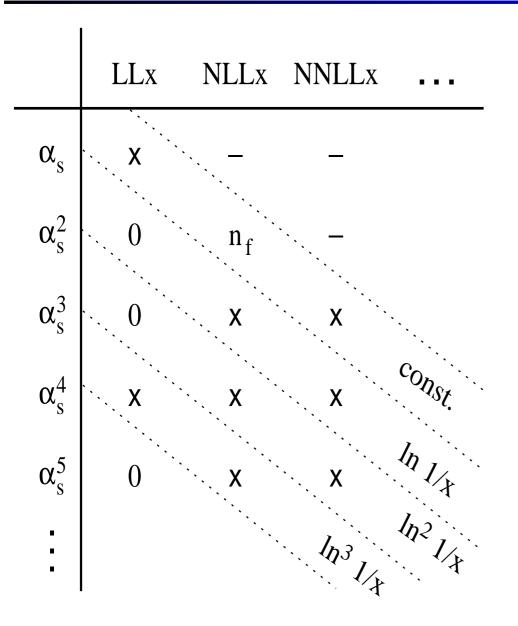
- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

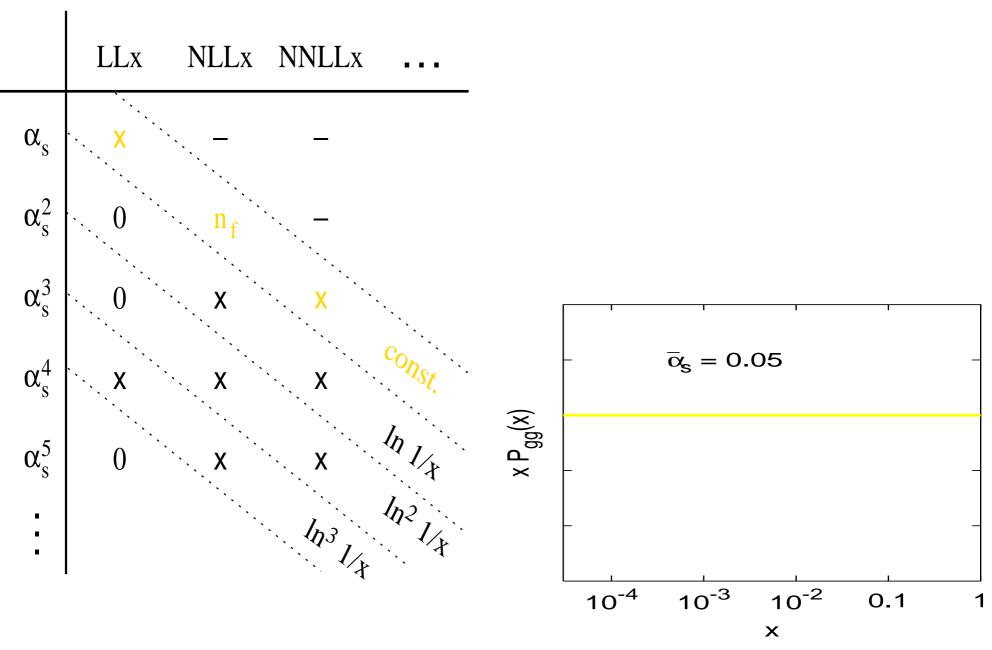
- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

 Is it always the same dip?
- Is the dip a rigorous prediction?
- What is its origin? Running α_s , momentum sum rule...?

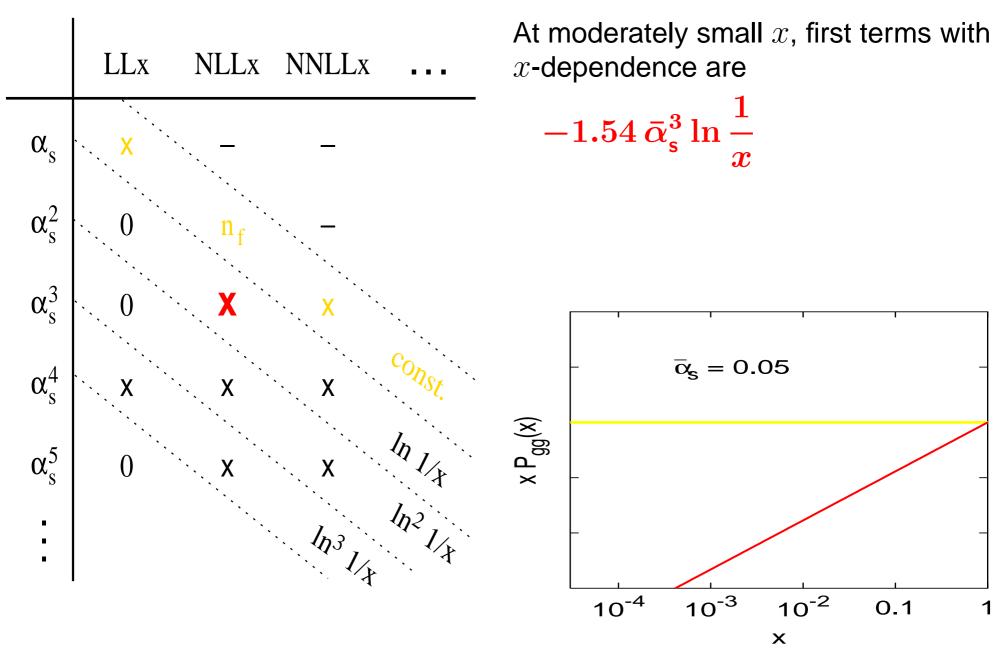
```
NNLO DGLAP gives a clue...
-1.54 \,\bar{\alpha}_{s}^{3} \ln \frac{1}{x}
```



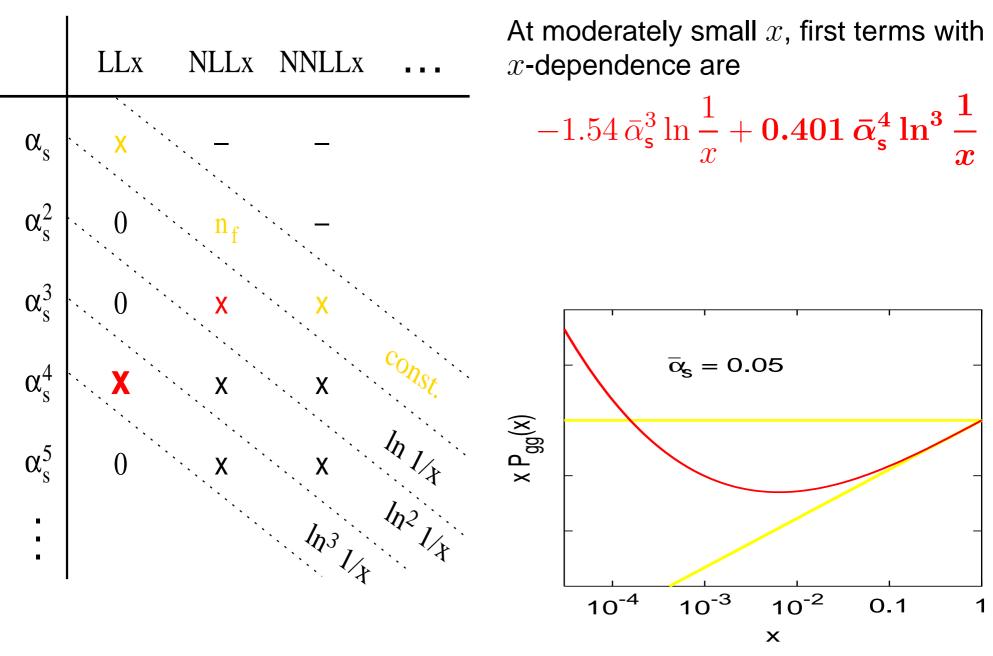




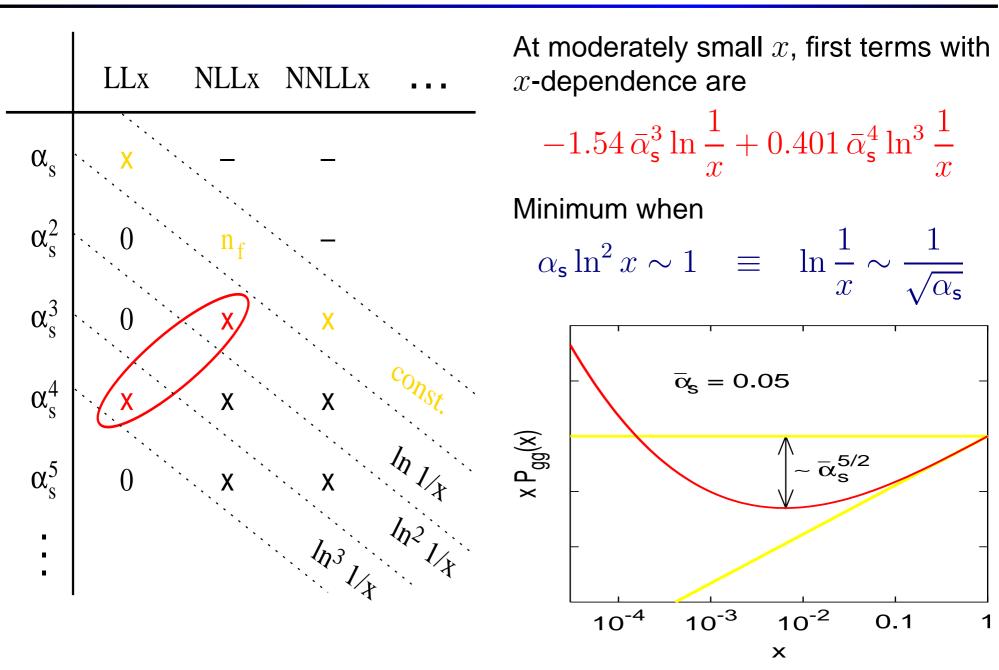
Fall and rise of the gluon splitting function(at small \boldsymbol{x}) – p.10/14



Fall and rise of the gluon splitting function(at small \boldsymbol{x}) – p.10/14

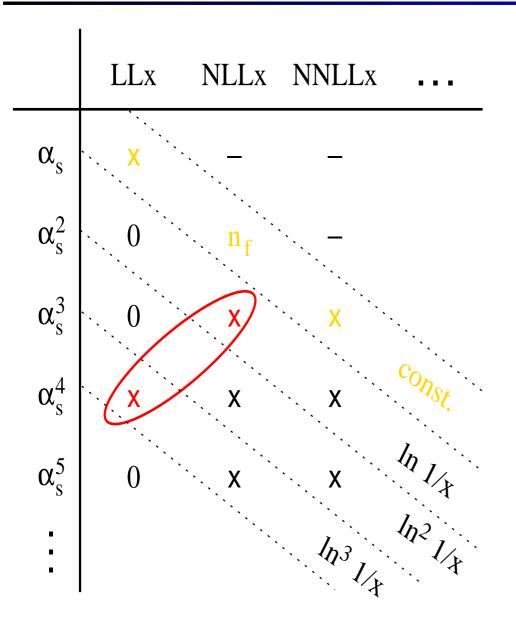


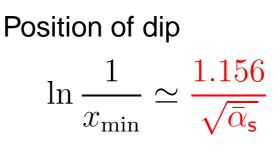
Fall and rise of the gluon splitting function(at small \boldsymbol{x}) – p.10/14



Fall and rise of the gluon splitting function(at small \boldsymbol{x}) – p.10/14

Systematic expansion in $\sqrt{lpha_{ m s}}$

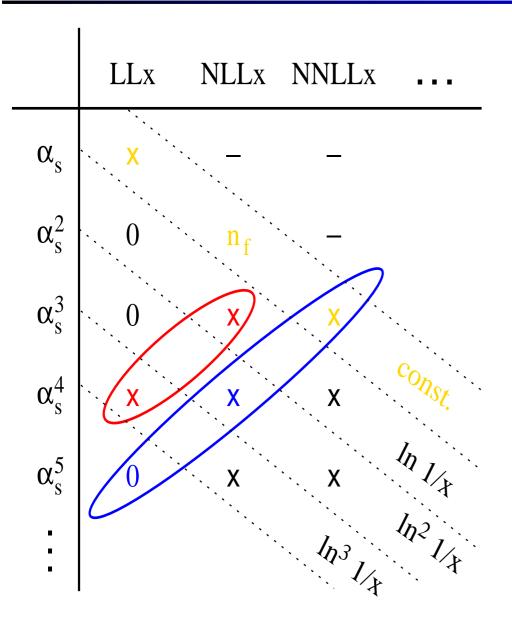


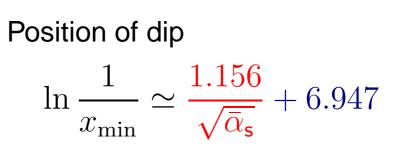


Depth of dip

 $-d\simeq -1.237\bar{\alpha}_{\rm s}^{5/2}$

Systematic expansion in $\sqrt{lpha_{ m s}}$

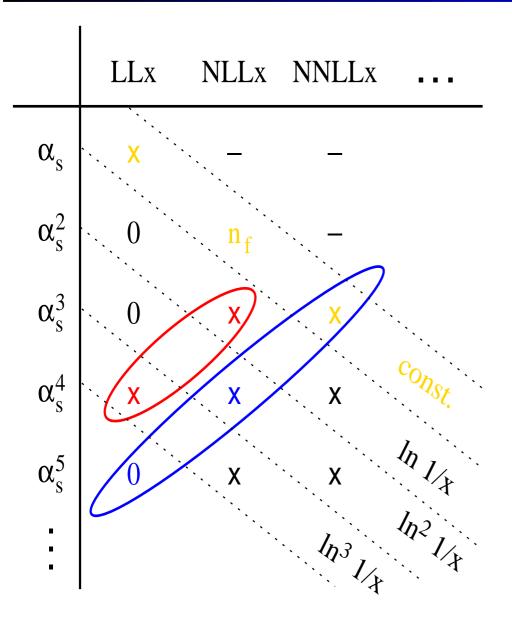




Depth of dip

 $-d \simeq -1.237 \bar{\alpha}_{\rm s}^{5/2} - 11.15 \bar{\alpha}_{\rm s}^3$

Systematic expansion in $\sqrt{lpha_{ m s}}$



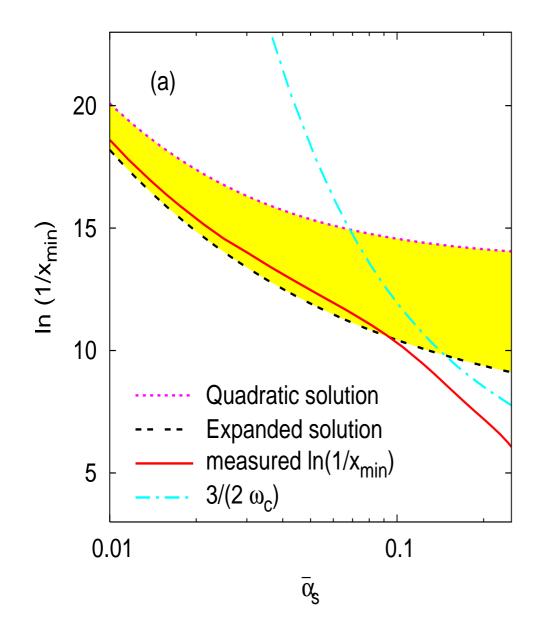
Position of dip
$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_s}} + 6.947 + \cdots$$

Depth of dip $-d \simeq -1.237 \bar{\alpha}_{\rm s}^{5/2} - 11.15 \bar{\alpha}_{\rm s}^3 + \cdots$

<u>NB:</u>

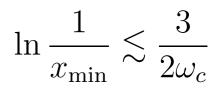
- convergence is very poor As ever at small x!
- higher-order terms in expansion need NNLLx info

Test dip properties v. BFKL+DGLAP resummation



Test position of dip v. $\alpha_{\rm s}$

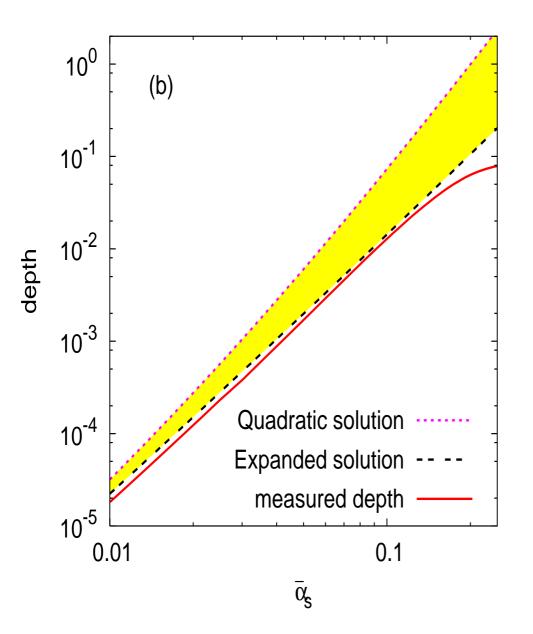
- Band is uncertainty due to higher orders in $\sqrt{\alpha_s}$
- At small α_s , good agreement \rightarrow confirmation of 'dip mechanism'
- At moderate \(\alpha_s\), normal small-x resummation effects 'collide' with dip



Dip then comes from interplay between $\alpha_{\rm s}^3\ln x$ (NNLO) term and full resummation.

[Actually, story more complex]

Test dip properties v. BFKL+DGLAP resummation



Test depth of dip v. $\alpha_{\rm s}$

similar conclusions!

Conclusions

Progress being made on *practical* implementation of BFKL+DGLAP resummations

Conclusions

- Progress being made on *practical* implementation of BFKL+DGLAP resummations
- Main feature of $xP_{gg}(x)$ splitting function is a dip at $x \sim 10^{-3}$

- Progress being made on *practical* implementation of BFKL+DGLAP resummations
- Main feature of $xP_{gg}(x)$ splitting function is a dip at $x \sim 10^{-3}$
- Dip is rigorous property of $xP_{gg}(x)$ at small $lpha_{s}$
 - New formal expansion in powers of $\sqrt{\alpha_s}$ (at moderately small x)
 - dip position is $\ln 1/x \sim \alpha_{
 m s}^{-1/2}$ and depth $\sim \alpha_{
 m s}^{5/2}$
 - at realistic α_s dip persists, but detailed understanding is more complex
 - dip signals start of significant resummation effects limit of applicability of NNLO DGLAP

- Progress being made on *practical* implementation of BFKL+DGLAP resummations
- Main feature of $xP_{gg}(x)$ splitting function is a dip at $x \sim 10^{-3}$
- Dip is rigorous property of $xP_{gg}(x)$ at small $lpha_{s}$
 - New formal expansion in powers of $\sqrt{\alpha_s}$ (at moderately small x)
 - dip position is $\ln 1/x \sim \alpha_{
 m s}^{-1/2}$ and depth $\sim \alpha_{
 m s}^{5/2}$
 - at realistic α_s dip persists, but detailed understanding is more complex
 - dip signals start of significant resummation effects limit of applicability of NNLO DGLAP
- Further work needed on various phenomenological fronts...
 - Inclusion of quarks \rightarrow matrix of splitting functions
 - Coefficient functions (depending on scheme)
 - Comparison to data