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Perturbative structure

Small-x gluon splitting function
has logarithmic enhancements:
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3

s
ln

1

x
+ A42ᾱ
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LLx, NLLx

Reminder

LLx terms rise very
fast, xPgg(x) ∼ x−0.5.

Incompatible with data.
Ball & Forte ’95

NLLx terms go
negative very fast.

No one’s even tried fit-
ting the data!

[NB: Taking NLLx terms of
Pgg is almost the worst pos-
sible expansion]
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‘Improving’ on NLLx? Start with kernel. . .
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‘Improving’ on NLLx? Start with kernel. . .
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Building up the kernel. . .
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Iteration of kernel ⇒ Green function
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Green function ⇒ effective DGLAP splitting function

Construct a gluon density from Green function (take k � k0):

xg(x,Q2) ≡
∫ Q

d2k G(ν0=k2)(ln 1/x, k, k0)

Numerically solve equation for effective splitting function, Pgg,eff(z,Q2) :

dg(x,Q2)

d ln Q2
=

∫

dz

z
Pgg,eff(z,Q2) g

(x

z
,Q2

)

Factorisation

Splitting function:
red paths

Green function:
all paths

x
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g(x,Q )1
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Evolution paths in x,k

factorized (non−perturbative)

g
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Pgg(z) splitting function results
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Pgg(z) splitting function results

ω-expansion (1999)
NLLB (2003)

LO DGLAP
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Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!

Main feature is a dip at x ∼ 10−3

Questions:

Various ‘dips’ have been seen
Thorne ’99, ’01 (running αs, NLLx)

ABF ’99–’03 (fits, running αs)
CCSS ’01,’03 (running αs, NLLB)

Is it always the same dip?

Is the dip a rigorous prediction?

What is its origin?
Running αs, momentum sum rule. . . ?

NNLO DGLAP gives a clue. . .
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s
ln 1

x

ω-expansion (1999)
NLLB (2003)

LO DGLAP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-6 10-5 10-4 10-3 10-2 10-1 100

z
 P

g
g
(z

)

z

1/2 < µ2/Q2 < 2

Fall and rise of the gluon splitting function(at small x) – p.9/14



Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!

Main feature is a dip at x ∼ 10−3

Questions:

Various ‘dips’ have been seen
Thorne ’99, ’01 (running αs, NLLx)

ABF ’99–’03 (fits, running αs)
CCSS ’01,’03 (running αs, NLLB)

Is it always the same dip?

Is the dip a rigorous prediction?

What is its origin?
Running αs, momentum sum rule. . . ?

NNLO DGLAP gives a clue. . .

−1.54 ᾱ3
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Reorganise perturbative series
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s
ln

1

x
+ 0.401 ᾱ4
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Reorganise perturbative series
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Systematic expansion in
√

αs
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NB:

convergence is very poor
As ever at small x!

higher-order terms in expansion
need NNLLx info
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Test dip properties v. BFKL+DGLAP resummation

Quadratic solution
Expanded solution
measured ln(1/xmin)
3/(2 ωc)

 5

 10

 15

 20

 0.01  0.1

ln
 (

1
/x

m
in

)

α−s

(a)

Test position of dip v. αs

Band is uncertainty due to
higher orders in

√
αs

At small αs, good agreement
→ confirmation of ‘dip
mechanism’

At moderate αs, normal small-x
resummation effects ‘collide’
with dip

ln
1

xmin
.

3

2ωc

Dip then comes from interplay
between α3

s
ln x (NNLO) term

and full resummation.
[Actually, story more complex]
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Test dip properties v. BFKL+DGLAP resummation

Quadratic solution

Expanded solution

measured depth
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100

 0.01  0.1

d
e
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(b)

Test depth of dip v. αs

similar conclusions!
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Conclusions

Progress being made on practical implementation of BFKL+DGLAP
resummations

Main feature of xPgg(x) splitting function is a dip at x ∼ 10−3

Dip is rigorous property of xPgg(x) at small αs

New formal expansion in powers of
√

αs (at moderately small x)

dip position is ln 1/x ∼ α
−1/2
s and depth ∼ α

5/2
s

at realistic αs dip persists, but detailed understanding is more complex
dip signals start of significant resummation effects — limit of applicability
of NNLO DGLAP

Further work needed on various phenomenological fronts. . .
Inclusion of quarks → matrix of splitting functions
Coefficient functions (depending on scheme)
Comparison to data

Fall and rise of the gluon splitting function(at small x) – p.14/14
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