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Event shapes

Event shapes are a good compromise between

# simplicity (it is feasible to make theoretical predictions about them)
# sensitivity to properties of QCD
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Event shapes

Event shapes are a good compromise between

# simplicity (it is feasible to make theoretical predictions about them)

# sensitivity to properties of QCD

Provide a wealth of information, e.q.:

# Measurements of the coupling o
and its renormalization group
running

» Measurements/cross checks of the
values of the colour factors of QCD

# Studies of connection between
parton-level (QCD calculations of
guarks and gluons) and (the real)
hadron-level
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Perturbative QCD ingredients for study of event-shapes

At the base of all these studies lie perturbative predictions for the distribution of
the event shape.

Leading order (LO) = O (as):
# By hand

1 do asCr [2(3T7% — 3T + 2) e 33T —2)(2-1T)

cdl—T) 2« T1-7) 1-T - T
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# By hand or numerically o0 |
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Perturbative QCD ingredients for study of event-shapes

At the base of all these studies lie perturbative predictions for the distribution of
the event shape.

Leading order (LO) = O (as): T o
| LO+NLO

# By hand or numerically oo |

Next-to-Leading order (NLO) = O (o?):

S

# Usually only done numerically.
EERAD, Event, Event2

1/oc do/d(1-T)

=
o
T

LO, NLO, ...all diverge in two-jet re-
gion,i.e.forl — 1 — 0.
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Perturbative QCD ingredients for study of event-shapes

At the base of all these studies lie perturbative predictions for the distribution of
the event shape.

Leading order (LO) = O («s): | A
# By hand or numerically ' LO+NLO
100 P RESUMMED - - - -

Next-to-Leading order (NLO) = O (o?):

S

# Usually only done numerically.
EERAD, Event, Event2

1/oc do/d(1-T)

=
o
T

LO, NLO, ...all diverge in two-jet re-
gion,i.e.forl — 1 — 0.

Reliable predictions need

FINAL-STATE RESUMMATION 1 L

of large, logarithmically enhanced
terms.
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Large Logarithms

Going to the 2-jet limit = forbidding gluon radiation.

This has an unequal effect on real and virtual contributions to Feynman
diagrams:
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Large Logarithms

Going to the 2-jet limit = forbidding gluon radiation.

This has an unequal effect on real and virtual contributions to Feynman
diagrams:

# hard emissions forbidden (no 3-jet like configurations)
# soft and collinear real emissions

dFE df E<Q
f?@s(eE) M Bx1
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Large Logarithms

Going to the 2-jet limit = forbidding gluon radiation.
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Large Logarithms

Going to the 2-jet limit = forbidding gluon radiation.

This has an unequal effect on real and virtual contributions to Feynman
diagrams:

# hard emissions forbidden (no 3-jet like configurations)
#» soft and collinear real emissions are almost all forbidden

d 6 E<Q
%@E) 27 e

# virtual corrections are unaffected

dE db E<Q
—??Oés(gE) m p<x1
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Large Logarithms

Going to the 2-jet limit = forbidding gluon radiation.

This has an unequal effect on real and virtual contributions to Feynman
diagrams:

# hard emissions forbidden (no 3-jet like configurations)
#» soft and collinear real emissions are almost all forbidden

d 6 E<Q
%@E) 27 e

# virtual corrections are unaffected
dE db E<Q
—??Oés(gE) m p<x1

Imbalance leads to large logarithms in distribution of event shape:

Prob(1-T <71)~1-— T+ ... (T < 1)
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Large Logarithms at all orders

There is a soft and a collinear divergence (— logs) for each emitted gluon.

At all orders, probability of event being two-jet like has poorly convergent
perturbation series:

P1-T<1)=3(7) :1—|—2Rn,2na?1n2”7+...

n=1
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There is a soft and a collinear divergence (— logs) for each emitted gluon.

At all orders, probability of event being two-jet like has poorly convergent
perturbation series:

P1-T<1)=3(7) :1—|—2Rn,2na?1n2”7+...

n=1

Resummation involves determining the whole set of dominant terms (and
summing them).
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Large Logarithms at all orders

There is a soft and a collinear divergence (— logs) for each emitted gluon.

At all orders, probability of event being two-jet like has poorly convergent
perturbation series:

P1-T<1)=3(7) :1—|—ZRn,2nag’ln2”T+...
n=1

Resummation involves determining the whole set of dominant terms (and
summing them).

Today'’s state of the art involves exponentiation and resummation of Leading
Logs (LL) and Next-to-Leading Logs (NLL):

2(7') ~ exXp [Z (Gn,n—l—l Oé? 1Iln+1 T + Gnm/ ()4? In"7 + --- )
" LL NLL

n—+1

NB: o In*"7 in 3, but only o In" "' 7 in exponent.
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Automating it?

Possible approaches?
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Automating it?

Possible approaches?

# Symbolic manipulation programs (Mathematica, etc.)? E.g. like Feyncalc.
» Observables have complex definitions (jet algorithms, maximisations)
» Problem is too ‘open’ to be amenable to such approaches

# Event generators? E.g. Herwig, Pythia, Ariadne,. ..

All programs contain some of the logs
Some of the programs maybe contain all the (NLL) logs some of the time

Only know if program is suitable for observable if you've already done
most of the resummation. ..

Matching with fixed order (LO, NLO, NNLO) is complex
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Alternative approach?

Hybrid analytical & numerical

# Derive, analytically, a resummed result, for a general observable, in terms
of clearly identifiable properties of that observable.
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Hybrid analytical & numerical

# Derive, analytically, a resummed result, for a general observable, in terms
of clearly identifiable properties of that observable.

# Derive associated applicability conditions to ensure that result is applied
only to observables for which it is valid.

# Use computer subroutine for observable & high-precision numerics to

» test applicability conditions
» determine observable-specific ‘properties’ needed for the explicit
resummed answer.
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Alternative approach?

Hybrid analytical & numerical

# Derive, analytically, a resummed result, for a general observable, in terms
of clearly identifiable properties of that observable.

# Derive associated applicability conditions to ensure that result is applied
only to observables for which it is valid.

# Use computer subroutine for observable & high-precision numerics to

» test applicability conditions
» determine observable-specific ‘properties’ needed for the explicit
resummed answer.

Computer Automated Expert Semi-Analytical Resummation
(CAESAR)
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In practice (1)?

Single emission properties

# Observable must have standard functional form for soft & collinear gluon
emission

Ky

ViR —di () e (o).
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In practice (1)?

Single emission properties

# Observable must have standard functional form for soft & collinear gluon

emission

Y
V({ph k) = d (—) egy(6).
) @

Born momenta
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In practice (1)?

Single emission properties

# Observable must have standard functional form for soft & collinear gluon

emission

k. “.
V{p) k) = do (—) e gy(6)
) Q

Born momenta soft collinear emission
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In practice (1)?

Single emission properties

# Observable must have standard functional form for soft & collinear gluon

emission
ko
V({p}. k) = d, (—) e gy(6).
) \ ¢
Born momenta soft collinear emission

# Determine coefficients ay, by, dy and g,(¢) for emissions close to each
hard Born parton (leg) /.
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In practice (1)?

Single emission properties

# Observable must have standard functional form for soft & collinear gluon

emission
k. e
V({{p}t. k) =d (-) e Mg, (o) .
(i) >\ 5 (4)
Born momenta soft collinear emission

# Determine coefficients ay, by, dy and g,(¢) for emissions close to each
hard Born parton (leg) /.

# Require continuous globalness, i.e. uniform dependence on k;
Independently of emission direction (a1 = a9 = - -+ = a)
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In practice (2)?

Multiple emission properties

# Require recursive infrared & collinear safety (schematic)

1
{lim, lim} — V({p},eki,c'eky,...) =0

e—0 € —0 €
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In practice (2)?

Multiple emission properties

# Require recursive infrared & collinear safety (schematic)

1
{lim, lim} — V({p},eki,c'eky,...) =0

e—0 € —0 €

[= Extra emissions should not introduce different IR/Coll scaling]
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In practice (2)?

Multiple emission properties

# Require recursive infrared & collinear safety (schematic)
L 1 ,
{1111%, lm%} — V({p}, eki,eeky,...) =0
€— e/ — €

[= Extra emissions should not introduce different IR/Coll scaling]

# Guarantees exponentiation of double logs & ‘reconstruction of running
coupling’
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In practice (2)?

Multiple emission properties

# Require recursive infrared & collinear safety (schematic)

1
{lim, lim} — V({p},eki,c'eky,...) =0

e—0 € —0 €

[= Extra emissions should not introduce different IR/Coll scaling]

# Guarantees exponentiation of double logs & ‘reconstruction of running
coupling’

# For NLL accuracy, determine function F (by MC)

F(Ciry,...,Cprl) = <exp{—R’ln Viky - F) }>

max{V (k1),...,V(kn)}

JF contains all relevant info about observable’s dependence on multiple
emissions.
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In practice (2)?

Multiple emission properties

# Require recursive infrared & collinear safety (schematic)

1
{hm hm} — V({p},eki,c'eky,...) =0
€

e—0 € —0

[= Extra emissions should not introduce different IR/Coll scaling]

# Guarantees exponentiation of double logs & ‘reconstruction of running
coupling’

# For NLL accuracy, determine function F (by MC)

E/R/ m+1 n dsz, 2m dqbz
F_ehino 7 Z <Z 1 ;C’gm / / ) (In¢y) x
X eXp <_R/ ln hH(l) ({p}7 K’l(CiE)? c /{m+1(<m+1€))) .
€E—> €

J contains all relevant info about observable’s dependence on multiple

. . CAESAR: Computer automated resummations — p.10/14
emissions.



General Result (ete™, DIS, hh; 2, 3, 4 jets)

Given info from previous pages, answer is analytical:

2F
In¥(v Z Cl [rg + 75(v) (ln dy — by In —€>

Q
In1/v fo(ze, v a“”/if)
+B€T(a+be>] Zln fo(xe, 17)

a

1 1
+1nS (T ( 1 /U>> —I—IIlf(OlT,l,...,CnT;l),
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General Result (ete™, DIS, hh; 2, 3, 4 jets)

Given info from previous pages, answer is analytical:

25
In¥(v ZCg [Tg )+ 7y(v) (h’ldg — by 1n —€>

@
In1/v fe flfeavwbeﬂf)
+BeT(a+b€)] Zln e

a

1 1
+1nS (T ( 1 /U>> —I—IIlf(Cﬂ“ll,...,Cn?“;),
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General Result (ete™, DIS, hh; 2, 3, 4 jets)

Given info from previous pages, answer is analytical:

2F
In¥(v ZCg [Tg )+ 1r,(v) (lﬂdg — by In _€>

@
In1/v fe flfeavwbeﬂf)
+BgT(a+b€)] Zln RENT

a

1 1
+1nS (T ( 1 /U>> —I—IIlf(Cﬂ“ll,...,Cn?“;),
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General Result (ete™, DIS, hh; 2, 3, 4 jets)

Given info from previous pages, answer is analytical:

2F
In¥(v ZCg [Tg )+ 1r,(v) (lﬂdg — by In _€>

Q
+BgT(ln 1/?})] Zlﬂ fe(zg,v o atE u2)
(g, Mf)
+1nS (T (lni/?})) +In F(Chry, ..., Cary)
Cy = colour factor (C'r or Cy), fo(xy, ,u?c) — parton distributions
ro(L) = v;;b; Q> dkk; Oés;—kt) In (Ul,%@)a/be N fi?be N d:2 asgrkt) In kt ’

S(T(% In1/v)) = large-angle logarithms (process dependence)
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Example: global thrust in hadronic dijet production

1-17; , = 1—max 2 |Pui - 7|

it D> i Dt 7
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Example: global thrust in hadronic dijet production

1-17; , = 1—max 2 |Pui - 7| :
it > i Dui

Test result
continuously global T
rec. IRC safe (cond. 1) T
rec. IRC safe (cond. 2a) T
rec. IRC safe (cond. 2b) T
additivity T
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Example: global thrust in hadronic dijet production

o e m
1-T1; 4, = 1—max 2 |Pui - 7| ,
i ZZ Pt
Test result
continuously global T

rec. IRC safe (cond. 1) T
rec. IRC safe (cond. 2a) T
rec. IRC safe (cond. 2b) T
additivity T
leg £ | ay be 9¢(9) dy (In go(0))

1 1.000 | 0.000 | tabulated | 1.02062 | —1.859
2 | 1.000 | 0.000 | tabulated | 1.02062 | —1.859
3 | 1.000 | 1.000 | sin“¢ | 1.042 | —2In(2)
4 11000 |1.000 | sin®¢ | 1.042 | —21In(2)
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Example: global thrust in hadronic dijet production

1-1; , = 1—max 2 |Pui - 7| : 1
" ZZ Pti 0.8
Test result
continuously global T | s T
rec. IRC safe (cond. 1) T 7 oal
rec. IRC safe (cond. 2a) T .
rec. IRC safe (cond. 2b) T
additivity T 0 - . - -
¢
leg £ | ay be 9¢(9) dg (In go(0))
1 1.000 | 0.000 | tabulated | 1.02062 | —1.859
2 1.000 | 0.000 | tabulated | 1.02062 | —1.859
3 |1.000 | 1.000 | sin¢ | 1.042 | —2In(2)
4 | 1.000 | 1.000 | sin® 1.042 | —2In(2)
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Resummed thrust for Tevatron

# run Il regime /s = 1.96 TeV # cut on rapidity |n| < 1
# cut on jet transverse energy E; > 50GeV

D(tp) [nb]

PRELIMINARY!
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Resummed thrust for Tevatron

# run Il regime /s = 1.96 TeV # cut on rapidity |n| < 1
# cut on jet transverse energy E; > 50GeV

D(tp) [nb]

Ln(ty)

PRELIMINARY!
Many other observables are being studied
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Conclusions/Outlook

Status

# Powerful new tool
# In the past year it has moved from ‘proof of concept’ to near completion.
# Many observables have been studied
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# Making program available
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Conclusions/Outlook

Status

# Powerful new tool
# In the past year it has moved from ‘proof of concept’ to near completion.
# Many observables have been studied

Short-term Outlook
# Completion of some details & writeup

# Referee review
# Making program available

Longer-term Outlook

# Matching with fixed order (in progress) — Phenomenology
# Extending scope (e.g. non-global observables?)
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