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Introduction

Contents inspired by discussion during workshop

Relative importance of running coupling versus higher orders (cf. Mueller)
Many features common to all problems with cutoffs:
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splitting function (will explain why ≡ cutoff)
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Many features common to all problems with cutoffs:

saturation
splitting function (will explain why ≡ cutoff)

Give discussion in context of CCSS approach (cf. Ciafaloni)

NLL BFKL supplemented with DGLAP effects
numerical solutions of resulting equations (‘no approximations’)
extraction of splitting function

Characteristic result: significant preasymptotic effects
impact on phenomenology? (question by Strikman)

convolution of splitting function with CTEQ gluon
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Improved NLL x? Start with kernel. . .
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Iteration of kernel ⇒ Green function
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Green function ⇒ effective DGLAP splitting function

Construct a gluon density from Green function (take k � k0):

xg(x,Q2) ≡
∫ Q

d2k G(ν0=k2)(ln 1/x, k, k0)
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xg(x,Q2) ≡
∫ Q
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Numerically solve equation for effective splitting function, Pgg,eff(z,Q2) :
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Green function ⇒ effective DGLAP splitting function

Construct a gluon density from Green function (take k � k0):

xg(x,Q2) ≡
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d2k G(ν0=k2)(ln 1/x, k, k0)

Numerically solve equation for effective splitting function, Pgg,eff(z,Q2) :
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d ln Q2
=

∫
dz

z
Pgg,eff(z,Q2) g

(x

z
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)

Factorisation

Splitting function:
red paths

Green function:
all paths

Splitting function ≡
evolution with cutoff x
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BFKL ‘power’

Two classes of correction, to power growth ω:

ω = 4 ln 2 ᾱs(Q
2)



1 − 6.5 ᾱs
︸ ︷︷ ︸

NLL

− 4.0 ᾱ2/3
s

︸ ︷︷ ︸

running

+ · · ·





ᾱs = αsNc/π

NLL piece is universal

running piece appears only in problems with cutoffs

a consequence of asymmetry
due to cutoff (only scales higher
than cutoff contribute)

αs(Q
2) → αs(Q

2e−X/(bαs)1/3

)

Hancock & Ross ’92
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Two classes of correction, to power growth ω:

ω = 4 ln 2 ᾱs(Q
2)



1 − 6.5 ᾱs
︸ ︷︷ ︸

NLL

− 4.0 ᾱ2/3
s

︸ ︷︷ ︸

running

+ · · ·





ᾱs = αsNc/π

NLL piece is universal

running piece appears only in problems with cutoffs

a consequence of asymmetry
due to cutoff (only scales higher
than cutoff contribute)

αs(Q
2) → αs(Q

2e−X/(bαs)1/3

)

Hancock & Ross ’92

Beyond first terms, not possible to separate effects of ‘pure’ higher orders &
running coupling
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BFKL splitting function power growth – results

ω
c 

(s
pl

itt
in

g 
fn

)

αs

Q [GeV]

LL, fixed αs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

1.93.26.824300

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.7/16



BFKL splitting function power growth – results

ω
c 

(s
pl

itt
in

g 
fn

)

αs

Q [GeV]

LL, fixed αs
LL, running αs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

1.93.26.824300

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.7/16



BFKL splitting function power growth – results

ω
c 

(s
pl

itt
in

g 
fn

)

αs

Q [GeV]

LL, fixed αs
LL, running αs
NLLB, fixed αs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

1.93.26.824300

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.7/16



BFKL splitting function power growth – results

ω
c 

(s
pl

itt
in

g 
fn

)

αs

Q [GeV]

LL, fixed αs
LL, running αs
NLLB, fixed αs

NLLB, running αs
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

1.93.26.824300

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.7/16



Can one neglect NLL terms? Examine full Pgg(z) splitting fn
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Interim conclusion

Individually, running coupling and NLL effects are large

BFKL ‘power’ has only moderate extra suppression when combining both
non-linearities between higher-orders and running coupling

αs(Q
2) → αs(Q

2e−X/(bαs)1/3

) − Cα2
s
(Q2e−X/(bαs)1/3

)
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BUT: power is not the most relevant characteristic for forseeable energies

good estimate of splitting function requires all effects (running, NLL) to be
accounted for

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.9/16



Interim conclusion

Individually, running coupling and NLL effects are large

BFKL ‘power’ has only moderate extra suppression when combining both
non-linearities between higher-orders and running coupling

αs(Q
2) → αs(Q

2e−X/(bαs)1/3

) − Cα2
s
(Q2e−X/(bαs)1/3

)

BUT: power is not the most relevant characteristic for forseeable energies

good estimate of splitting function requires all effects (running, NLL) to be
accounted for

Likely to be true also for saturation scale Q2
s(x). . .
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Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!

Main feature is a dip at x ∼ 10−3
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Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!
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Questions:

Various ‘dips’ have been seen
Thorne ’99, ’01 (running αs, NLLx)
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Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!

Main feature is a dip at x ∼ 10−3

Questions:

Various ‘dips’ have been seen
Thorne ’99, ’01 (running αs, NLLx)

ABF ’99–’03 (fits, running αs)
CCSS ’01,’03 (running αs, NLLB)

Is it always the same dip?

Is the dip a rigorous prediction?

What is its origin?
Running αs, momentum sum rule. . . ?

NNLO DGLAP gives a clue. . .

−1.54 ᾱ3
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Reorganise perturbative series
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Systematic expansion in
√
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Systematic expansion in
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Systematic expansion in
√
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s

− 11.15ᾱ3
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NB:

convergence is very poor
As ever at small x!

higher-order terms in expansion
need NNLLx info
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Phenomenological impact?

Phenomenological relevance comes through impact on growth of small-x gluon
with Q2.

∂g(x,Q2)

d ln Q2
= Pgg ⊗ g + Pgq ⊗ q

Assorted NLL small-xxx comments (with emphasis on preasymptotics) – p.13/16



Phenomenological impact?

Phenomenological relevance comes through impact on growth of small-x gluon
with Q2.

∂g(x,Q2)

d ln Q2
= Pgg ⊗ g + Pgq ⊗ q

At small x, Pgg ⊗ g dominates.

Take CTEQ6M gluon as ‘test’ case for convolution.

Because it’s nicely behaved at small-x
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Phenomenological impact? Pgg ⊗ g(x)
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Phenomenological impact? Pgg ⊗ g(x)
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Pgg ⊗ g(x)
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Conclusions

Quantities such as ‘BFKL power’ are nice for discussing certain asymptotic
properties

BUT: Preasymptotic effects cannot be neglected, often even for cosmic-ray
energies.

Specifically for Pgg

Pgg has dip, strongly influenced by NNLO DGLAP

For low Q, after convolution with gluon, dip and rise compensate →
similar to NLO!
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