Assorted NLL small-*x* comments (with emphasis on preasymptotics)

Gavin Salam LPTHE — Univ. Paris VI & VII and CNRS

In collaboration with M. Ciafaloni, D. Colferai and A. Staśto

QCD at cosmic energies Erice, August 30 – September 4, 2004 Contents inspired by discussion during workshop

- Relative importance of running coupling versus higher orders (cf. Mueller) Many features common to all problems with cutoffs:
 - saturation
 - splitting function (will explain why \equiv cutoff)

Contents inspired by discussion during workshop

- Relative importance of running coupling versus higher orders (cf. Mueller) Many features common to all problems with cutoffs:
 - saturation
 - splitting function (will explain why \equiv cutoff)
- Give discussion in context of CCSS approach
 - NLL BFKL supplemented with DGLAP effects
 - numerical solutions of resulting equations ('no approximations')
 - extraction of splitting function

(cf. Ciafaloni)

Contents inspired by discussion during workshop

- Relative importance of running coupling versus higher orders (cf. Mueller) Many features common to all problems with cutoffs:
 - saturation
 - splitting function (will explain why \equiv cutoff)
- Give discussion in context of CCSS approach
 - NLL BFKL supplemented with DGLAP effects
 - numerical solutions of resulting equations ('no approximations')
 - extraction of splitting function
- Characteristic result: significant preasymptotic effects
 - impact on phenomenology?
 - convolution of splitting function with CTEQ gluon

(question by Strikman)

(cf. Ciafaloni)

Improved NLLx? Start with kernel...

+ $Q^2 \Leftrightarrow Q_0^2$

anti-DGLAP

Improved NLLx? Start with kernel...

+ $Q^2 \Leftrightarrow Q_0^2$

anti-DGLAP

Improved NLLx? Start with kernel...

Iteration of kernel \Rightarrow Green function

Iteration of kernel \Rightarrow Green function

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Numerically solve equation for effective splitting function, $P_{gg, eff}(z, Q^2)$:

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,\text{eff}}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Numerically solve equation for effective splitting function, $P_{gg, eff}(z, Q^2)$:

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,eff}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

 Splitting function: red paths

Green function:

all paths

Construct a gluon density from Green function (take $k \gg k_0$):

$$xg(x,Q^2) \equiv \int^Q d^2k \ G^{(\nu_0=k^2)}(\ln 1/x,k,k_0)$$

Numerically solve equation for effective splitting function, $P_{gg, {
m eff}}(z, Q^2)$:

$$\frac{dg(x,Q^2)}{d\ln Q^2} = \int \frac{dz}{z} P_{gg,\text{eff}}(z,Q^2) g\left(\frac{x}{z},Q^2\right)$$

Factorisation

- Splitting function: red paths
- Green function: all paths

Splitting function \equiv evolution with cutoff

Two classes of correction, to power growth ω :

$$\omega = 4\ln 2\,\bar{\alpha}_{\mathsf{s}}(Q^2) \left(1 - \underbrace{6.5\,\bar{\alpha}_{\mathsf{s}}}_{NLL} - \underbrace{4.0\,\bar{\alpha}_{\mathsf{s}}^{2/3}}_{running} + \cdots \right)$$

 $\bar{\alpha}_{\rm s} = \alpha_{\rm s} N_c / \pi$

- NLL piece is universal
- running piece appears only in problems with cutoffs
 - a consequence of asymmetry due to cutoff (only scales higher than cutoff contribute)

 $\alpha_{\rm s}(Q^2) \to \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$

Hancock & Ross '92

Two classes of correction, to power growth ω :

$$\omega = 4\ln 2\,\bar{\alpha}_{\mathsf{s}}(Q^2) \left(1 - \underbrace{6.5\,\bar{\alpha}_{\mathsf{s}}}_{NLL} - \underbrace{4.0\,\bar{\alpha}_{\mathsf{s}}^{2/3}}_{running} + \cdots \right)$$

 $\bar{\alpha}_{\rm s} = \alpha_{\rm s} N_c / \pi$

- NLL piece is universal
- running piece appears only in problems with cutoffs
 - a consequence of asymmetry due to cutoff (only scales higher than cutoff contribute)

 $\alpha_{\rm s}(Q^2) \to \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$

Hancock & Ross '92

Beyond first terms, not possible to separate effects of 'pure' higher orders & running coupling

Can one neglect NLL terms? Examine full $P_{gg}(oldsymbol{z})$ splitting fn

Can one neglect NLL terms? Examine full $P_{gg}(oldsymbol{z})$ splitting fn

Assorted NLL small- \boldsymbol{x} comments (with emphasis on preasymptotics) – p.8/16

Can one neglect NLL terms? Examine full $P_{gg}(oldsymbol{z})$ splitting fn

- Individually, running coupling and NLL effects are large
- BFKL 'power' has only moderate extra suppression when combining both non-linearities between higher-orders and running coupling

$$\alpha_{s}(Q^{2}) \to \alpha_{s}(Q^{2}e^{-X/(b\alpha_{s})^{1/3}}) - C\alpha_{s}^{2}(Q^{2}e^{-X/(b\alpha_{s})^{1/3}})$$

- Individually, running coupling and NLL effects are large
- BFKL 'power' has only moderate extra suppression when combining both non-linearities between higher-orders and running coupling

$$\alpha_{\rm s}(Q^2) \to \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}}) - C\alpha_{\rm s}^2(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$$

- BUT: power is not the most relevant characteristic for forseeable energies
- good estimate of splitting function requires all effects (running, NLL) to be accounted for

- Individually, running coupling and NLL effects are large
- BFKL 'power' has only moderate extra suppression when combining both non-linearities between higher-orders and running coupling

$$\alpha_{\rm s}(Q^2) \to \alpha_{\rm s}(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}}) - C\alpha_{\rm s}^2(Q^2 e^{-X/(b\alpha_{\rm s})^{1/3}})$$

- BUT: power is not the most relevant characteristic for forseeable energies
- good estimate of splitting function requires all effects (running, NLL) to be accounted for

Likely to be true also for saturation scale $Q^2_s(x)$...

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

Questions:

 Various 'dips' have been seen Thorne '99, '01 (running α_s, NLLx) ABF '99–'03 (fits, running α_s) CCSS '01,'03 (running α_s, NLL_B)

Is it always the same dip?

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

Questions:

Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

Is it always the same dip?

Is the dip a rigorous prediction?

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

Questions:

- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)
 - Is it always the same dip?
 - Is the dip a rigorous prediction?
- What is its origin? Running α_s , momentum sum rule...?

- Rapid rise in P_{gg} is not for today's energies!
- Main feature is a dip at $x \sim 10^{-3}$

Questions:

- Various 'dips' have been seen
 Thorne '99, '01 (running α_s, NLLx)
 ABF '99–'03 (fits, running α_s)
 CCSS '01,'03 (running α_s, NLL_B)

 Is it always the same dip?
- Is the dip a rigorous prediction?
- What is its origin? Running α_s , momentum sum rule...?

```
NNLO DGLAP gives a clue. . . -1.54 \ \bar{\alpha}_{\rm s}^3 \ln \frac{1}{x}
```


Assorted NLL small-*x* comments (with emphasis on preasymptotics) - p.11/16

Assorted NLL small- \boldsymbol{x} comments (with emphasis on preasymptotics) – p.11/16

Assorted NLL small-*a* comments (with emphasis on preasymptotics) - p.11/16

Assorted NLL small-æ comments (with emphasis on preasymptotics) - p.11/16

Systematic expansion in $\sqrt{\alpha_{\rm s}}$

Depth of dip $-d\simeq -1.237\bar{\alpha}_{\rm s}^{5/2}$

Systematic expansion in $\sqrt{\alpha_{\rm s}}$

Position of dip
$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_s}} + 6.947$$

Depth of dip

$$-d \simeq -1.237 \bar{\alpha}_{\rm s}^{5/2} - 11.15 \bar{\alpha}_{\rm s}^3$$

Systematic expansion in $\sqrt{\alpha_{\rm s}}$

Position of dip
$$\ln \frac{1}{x_{\min}} \simeq \frac{1.156}{\sqrt{\bar{\alpha}_s}} + 6.947 + \cdots$$

Depth of dip $-d \simeq -1.237 \bar{\alpha}_{s}^{5/2} - 11.15 \bar{\alpha}_{s}^{3} + \cdots$

<u>NB:</u>

- convergence is very poor As ever at small x!
- higher-order terms in expansion need NNLLx info

Phenomenological impact?

Phenomenological relevance comes through impact on growth of small-x gluon with Q^2 .

$$\frac{\partial g(x,Q^2)}{d\ln Q^2} = P_{gg} \otimes g + P_{gq} \otimes q$$

Phenomenological relevance comes through impact on growth of small-x gluon with Q^2 .

$$\frac{\partial g(x,Q^2)}{d\ln Q^2} = P_{gg} \otimes g + P_{gq} \otimes q$$

At small x, $P_{gg} \otimes g$ dominates.

Take CTEQ6M gluon as 'test' case for convolution.

Because it's nicely behaved at small-x

Phenomenological impact? $P_{gg}\otimes g(x)$

Phenomenological impact? $P_{gg}\otimes g(x)$

$P_{gg}\otimes g(x)$

Assorted NLL small- \boldsymbol{x} comments (with emphasis on preasymptotics) - p.15/16

$P_{gg}\otimes g(x)$

Conclusions

- Quantities such as 'BFKL power' are nice for discussing certain asymptotic properties
- BUT: Preasymptotic effects cannot be neglected, often even for cosmic-ray energies.
- Specifically for P_{gg}
 - P_{gg} has *dip*, strongly influenced by NNLO DGLAP
 - For low Q, after convolution with gluon, dip and rise compensate \rightarrow similar to NLO!