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Introduction

At high energies (
√

s) ≡ small x, cross sections are supposed to rise
rapidly — domain of BFKL physics ≡ resummation of logarithms of s (or x):

σ ∼
∑

n=0

αn
s
lnn s ∼ s4 ln 2

αsNC

π ∼ s0.5

Balitsky, Fadin, Kuraev & Lipatov ∼ ’76

Calculation & measurement of the power growth is ‘holy grail’ (but only a
fraction of the story) in studies of high-energy limit of QCD.

But perturbative calculations hold only for purely perturbative problems
(e.g. γ∗γ∗ scattering), corresponding to rare kinematical configurations.

Hard to measure experimentally
&

of limited wider relevance
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Intro: semi-perturbative studies

Proton structure function, F2(x,Q2), is most widely-studied high-energy
quantity (x ≡ Bjorken x, Q2 ≡ photon virtuality).

Extensively studied at HERA
Important for LHC & high-energy ν scattering

x-dependence is non-perturbative, but Q2 dependence is predicted by
DGLAP equations, in terms of quark (q(x,Q2)) and gluon (g(x,Q2))
distributions:

F2 = C2q ⊗ q + C2g ⊗ g

∂ln Q2q = Pqq ⊗ q + Pqg ⊗ g

∂ln Q2g = Pgq ⊗ q + Pgg ⊗ g

Coefficient (C2i) and splitting (Pij) functions are perturbative.

Pij and C2i both have small-x enhancements, (αs ln 1/x)n, at all orders
➥ poor perturbative convergence ⇒ need BFKL resummation

xPgg(x) ∼ x−4 ln 2
αsNC

π
+···
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Perturbative structure

Small-x gluon splitting function
has logarithmic enhancements:

xPgg(x) =
∑

n=1

αn
s
lnn−1 1

x

+
∑

n=2

αn
s
lnn−2 1

x
+ . . .

NNLO (α3
s
): first small-x

enhancement in gluon splitting
function.

Moch, Vermaseren & Vogt, ’04

Leading Logs (LLx):

ᾱs +
ζ(3)

3
ᾱ4

s
ln3 1

x
+

ζ(5)

60
ᾱ6

s
ln5 1

x
+ · · ·

x
 P

g
g
(x

)

x

LO

NLO

NNLO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-5 10-4 10-3 10-2 10-1 100

αs(Q
2) = 0.225

1/2 < µ2/Q2 < 2

Fall and rise of the gluon splitting function(at small x) – p.4/18



Perturbative structure

Small-x gluon splitting function
has logarithmic enhancements:

xPgg(x) =
∑

n=1

αn
s
lnn−1 1

x

+
∑

n=2

αn
s
lnn−2 1

x
+ . . .

NNLO (α3
s
): first small-x

enhancement in gluon splitting
function.

Moch, Vermaseren & Vogt, ’04

Leading Logs (LLx):
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3

s
ln

1

x
+ A42ᾱ
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4

s
ln3 1

x
+ . . .

Fadin & Lipatov ’98
Camici & Ciafaloni ’98

x
 P

g
g
(x

)

x

LO

NLO

NNLO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-5 10-4 10-3 10-2 10-1 100

αs(Q
2) = 0.225

1/2 < µ2/Q2 < 2

Fall and rise of the gluon splitting function(at small x) – p.4/18



Perturbative structure

Small-x gluon splitting function
has logarithmic enhancements:

xPgg(x) =
∑

n=1

αn
s
lnn−1 1

x

+
∑

n=2

αn
s
lnn−2 1

x
+ . . .

NNLO (α3
s
): first small-x

enhancement in gluon splitting
function.

Moch, Vermaseren & Vogt, ’04

x
 P

g
g
(x

)

x

LO

NLO

NNLO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-5 10-4 10-3 10-2 10-1 100

αs(Q
2) = 0.225

1/2 < µ2/Q2 < 2

Fall and rise of the gluon splitting function(at small x) – p.4/18



NLO DGLAP versus data
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description of data
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Evidence of some problems for
very small x . 10−3
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LLx, NLLx?

Resummation status

LLx terms rise very
fast, xPgg(x) ∼ x−0.5.

Incompatible with data.
Ball & Forte ’95

NLLx terms go
negative very fast.

No one’s even tried fit-
ting the data!

[NB: Taking NLLx terms of
Pgg is almost the worst pos-
sible expansion]
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x
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LO DGLAP
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‘Improving’ on NLLx? Start with kernel. . .

αs + α2
s

x ln
x0

x

x0

x � x0

αs x ln
Q2

Q2
0

Q2
0

Q2 � Q2
0

+ α2
s

BFKL

DGLAP

anti-DGLAP+ Q2 ⇔ Q2
0
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‘Improving’ on NLLx? Start with kernel. . .

αs x ln
Q2

Q2
0

Q2
0

Q2 � Q2
0

+ α2
s

combined
BFKL+DGLAP

kernel K

αs + α2
s

x ln
x0

x

x0

x � x0

ln x ln x

ln Q2 ln2 Q2

BFKL

DGLAP

anti-DGLAP

(beware
double counting)

+ Q2 ⇔ Q2
0

GPS, Ciafaloni, Colferai ’98–99

ibid. + Staśto ’03
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Building up the kernel. . .

-0.5

 0
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 1

 1.5

 0  0.5  1  1.5  2

α s
 χ

(γ
)  

=
  N

 -
 1

γ

LL BFKL

α−s(Q
2) = 0.215

Build up characteristic func-
tion, i.e. the Mellin transform
of kernel (fixed coupling)

ᾱsχ(γ) =

=

∫

dk2

k2

(

k2

k2
0

)γ

K(k, k0)

Height of minimum is ‘BFKL
power’

NB: DGLAP = ‘rotated’ plot
of

γ(N)
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Examine ‘BFKL power’ as a function of αs

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1

0.2

0.3

0.4

0.5

Αs

Ωs

scheme B

scheme A

Ω-expansion

NLL BFKL

LL BFKL

Combining BFKL + DGLAP
gives significant stabilisation of
power.

With same logic, other
theorists find similar results!
Forshaw, Ross & Sabio Vera ’99
Altarelli, Ball, Forte, ’04 prelim.

Power is roughly consistent
with experiments

Good starting point for
phenomenology

NB: power shown here is
property of kernel, not of
cross sections. . .
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Iteration of kernel ⇒ Green function

x0, Q
2
0

x,Q2

Green function: G
(

ln x
x0

;Q0, Q
)

Fall and rise of the gluon splitting function(at small x) – p.10/18



Iteration of kernel ⇒ Green function

x0, Q
2
0

x,Q2

Green function: G
(

ln x
x0

;Q0, Q
)

 0.1

 1

 10

 0  5  10  15  20

2π
 k

02  G
(Y

; k
0 

+ 
ε,

 k
0)

Y

k0 = 20 GeV

(a)

LL
scheme A
scheme B

Fall and rise of the gluon splitting function(at small x) – p.10/18



Iteration of kernel ⇒ Green function

x0, Q
2
0

x,Q2

Green function: G
(

ln x
x0

;Q0, Q
)

 0.1

 1

 10

 0  5  10  15  20

2π
 k

02  G
(Y

; k
0 

+ 
ε,

 k
0)

Y

k0 = 20 GeV

(b)

NLL αs(q
2)

NLL αs(k
2)

scheme B

Fall and rise of the gluon splitting function(at small x) – p.10/18



Green function ⇒ effective DGLAP splitting function

Construct a gluon density from Green function (take k � k0):

xg(x,Q2) ≡
∫ Q

d2k G(ν0=k2)(ln 1/x, k, k0)

Numerically solve equation for effective splitting function, Pgg,eff(z,Q2) :

dg(x,Q2)

d ln Q2
=

∫

dz

z
Pgg,eff(z,Q2) g

(x

z
,Q2

)

Factorisation

Splitting function:
red paths

Green function:
all paths

x

Q1

Q2

g(x,Q )1

g(x,Q2 )

k

2

2

Pgg

Evolution paths in x,k

factorized (non−perturbative)

g
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Pgg(z) splitting function results
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Pgg(z) splitting function results

ω-expansion (1999)
NLLB (2003)

LO DGLAP
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Dominant phenomenological structure is dip

Rapid rise in Pgg is not for today’s
energies!

Main feature is a dip at x ∼ 10−3

Questions:

Various ‘dips’ have been seen
Thorne ’99, ’01 (running αs, NLLx)

ABF ’99–’03 (fits, running αs)
CCSS ’01,’03 (running αs, NLLB)

Is it always the same dip?

Is the dip a rigorous prediction?

What is its origin?
Running αs, momentum sum rule. . . ?

NNLO DGLAP gives a clue. . .
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Reorganise perturbative series

ln 1/x
ln 2 1/xln 3 1/x

αs

αs

αs

αs

αs

const.

LLx NLLx NNLLx . . .

0

0

x

0

−−

−

x

n f

x

x

x

x

x

x

. 
. 
.

2

3

4

5

At moderately small x, first terms with
x-dependence are

−1.54 ᾱ3
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Systematic expansion in
√

αs
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s

+ · · ·

NB:

convergence is very poor
As ever at small x!

higher-order terms in expansion
need NNLLx info

Fall and rise of the gluon splitting function(at small x) – p.15/18



Systematic expansion in
√

αs

ln 1/x
ln 2 1/xln 3 1/x

αs

αs

αs

αs

αs

const.

LLx NLLx NNLLx . . .

0

0

−−

−

x

x

x

. 
. 
.

x

x

x

n f

x

0

x

2

3

4

5

Position of dip

ln
1

xmin
' 1.156√

ᾱs
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Test dip properties v. BFKL+DGLAP resummation

Quadratic solution
Expanded solution
measured ln(1/xmin)
3/(2 ωc)
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with dip
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Dip then comes from interplay
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ln x (NNLO) term

and full resummation.
[Actually, story more complex]
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Test dip properties v. BFKL+DGLAP resummation

Quadratic solution

Expanded solution
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similar conclusions!
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Conclusions

Proton F2 data seem consistent with plain fixed-order DGLAP

Straightforward small-x (LLx, NLLx) resummation:
Converges very poorly
inconsistent with data

Solution to problem looks circular (but isn’t!):

Combine BFKL+DGLAP (+anti-DGLAP) →
→ iterate resulting kernel → Green function →

→ factorisation → effective DGLAP splitting function

Result for Pgg splitting function is:

Stable and theoretically understood (e.g. dip)

Similar to NNLO, for x & 10−3

➥ should be compatible with HERA data
➥ will it solve DGLAP problems for x . 10−3?

Work still needed for phenomenology. . .
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