Towards Jetography

Gavin Salam

LPTHE, CNRS and UPMC (Univ. Paris 6)

DESY Theory Seminar 18 November 2008

Based on papers with

Jon Butterworth, Matteo Cacciari, Mrinal Dasgupta, Adam Davison, Lorenzo Magnea, Juan Rojo, Mathieu Rubin & Gregory Soyez

We never see quarks or gluons, only jets

We never see quarks or gluons, only jets

Jets are commong language of experiment and theory

And the input to nearly all hadronic analyses

Seeing v. defining jets

Jets are what we see. Clearly(?) 2 of them.

2 partons? $E_{parton} = M_z/2?$ How many jets do you see? Do you really want to ask yourself this question for 10⁸ events?

Seeing v. defining jets

Jets are what we see. Clearly(?) 2 of them.

2 partons? $E_{parton} = M_z/2?$

How many jets do you see?

Do you really want to ask yourself this question for 10^8 events?

Seeing v. defining jets

Jets are what we see. Clearly(?) 2 of them.

> 2 partons? $E_{parton} = M_z/2?$

How many jets do you see? Do you really want to ask yourself this question for 10^8 events?

Les Houches 2007 proceedings, arXiv:0803.0678

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate QCD & Searches, G. Salam (p. 5)

Jets as projections

Projection to jets should be resilient to QCD effects

Which jet definition(s) for LHC? Can we address this question scientifically?

Jetography

Which jet definition(s) for LHC? Can we address this question scientifically?

Jetography

Jetography dates back to 1955

Jetography dates back to 1955

Question #1: What's wrong with what we have?

HERA:

- ▶ jets from 5 100 GeV
- very quiet environment

use single jet-def: k_t with R = 1

Tevatron:

- ▶ jets from 50 500 GeV
- ▶ some noise: 2 10 GeV/unit rapidity
- multi-jet important (e.g. $t\overline{t} \rightarrow 6$ jets)

use two jet-defs: cone with R = 0.4, R = 0.7

LHC:

- ▶ jets from 50 5000 GeV [that's why it's being built]
- ▶ lots of noise: 10 100 GeV/unit rapidity [high-lumi pileup]
- multi-jet still important (e.g. $t\overline{t} \rightarrow 6$ jets)

2 orders of magnitude in jet energy + 1 order of magnitude in noise **"Fixed-focus" jet finding just won't be good enough at LHC**

HERA, Tevatron v. LHC

HERA:

- ▶ jets from 5 100 GeV
- very quiet environment

use single jet-def: k_t with R = 1

Tevatron:

- ▶ jets from 50 500 GeV
- ▶ some noise: 2 − 10 GeV/unit rapidity
- multi-jet important (e.g. $t\overline{t} \rightarrow 6$ jets)

use two jet-defs: cone with R = 0.4, R = 0.7

LHC:

- ▶ jets from 50 5000 GeV [that's why it's being built
- ▶ lots of noise: 10 100 GeV/unit rapidity [high-lumi pileup]
- multi-jet still important (e.g. $t\overline{t} \rightarrow 6$ jets)

2 orders of magnitude in jet energy + 1 order of magnitude in noise "Fixed-focus" jet finding just won't be good enough at LHC

HERA:

- ▶ jets from 5 100 GeV
- very quiet environment

use single jet-def: k_t with R = 1

Tevatron:

- ▶ jets from 50 500 GeV
- some noise: 2 10 GeV/unit rapidity
- multi-jet important (e.g. $t\overline{t} \rightarrow 6$ jets)

use two jet-defs: cone with R = 0.4, R = 0.7

LHC:

- ▶ jets from 50 5000 GeV [that's why it's being built]
- ▶ lots of noise: 10 100 GeV/unit rapidity [high-lumi pileup]
- multi-jet still important (e.g. $t\bar{t} \rightarrow 6$ jets)

2 orders of magnitude in jet energy + 1 order of magnitude in noise "Fixed-focus" jet finding just won't be good enough at LHC

HERA:

- ▶ jets from 5 100 GeV
- very quiet environment

use single jet-def: k_t with R = 1

Tevatron:

- ▶ jets from 50 500 GeV
- ▶ some noise: 2 − 10 GeV/unit rapidity
- multi-jet important (e.g. $t\overline{t} \rightarrow 6$ jets)

use two jet-defs: cone with R = 0.4, R = 0.7

LHC:

- ▶ jets from 50 5000 GeV [that's why it's being built]
- ▶ lots of noise: 10 100 GeV/unit rapidity [high-lumi pileup]
- multi-jet still important (e.g. $t\overline{t} \rightarrow 6$ jets)

2 orders of magnitude in jet energy + 1 order of magnitude in noise "Fixed-focus" jet finding just won't be good enough at LHC

Question #2: what jet algorithms are out there? sequential recombination (*k*_t) & cone type

Sequential recombination $(k_t \text{ alg})$

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

k_t algorithm: Catani et al '91–93 Ellis & Soper '93

 $a_{ij} =$ $\min(k_{ti}^2, k_{tj}^2) (\Delta y_{ij}^2 + \Delta \phi_{ij}^2) / R^2$

▶ beam distance: d_{iB} = k²_{ii} if d_{iB} is smallest call i a jet

Sequential recombination $(k_t \text{ alg})$

Sequential recombination algorithms:

- ▶ introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

t algorithm: Ellis & Soper '93

 $\min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ii} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

 k_t algorithm:Catani et al '91–93Ellis & Soper '93 $d_{ij} =$ $\min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$ beam distance: $d_{iB} = k_{ti}^2$ if d_{iB} is smallestcall i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

 beam distance: d_{iB} = k²_{ii} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

 beam distance: d_{iB} = k²_{ii} if d_{iB} is smallest call i a jet

algo-

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

- beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest call *i* a jet

algo-

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

 beam distance: d_{iB} = k²_{ii} if d_{iB} is smallest call i a jet

recombination algo-

- introduce distance d_{ii} between pairs of particles
- combine closest pair into one
 - Catani et al '91-93 Ellis & Soper '93

 $\min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest
call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest
call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>kt</u> algorithm: Catani et al '91–93 Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

- beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest
call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

- beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

- beam distance: $d_{iB} = k_{ii}^2$ if d_{iB} is smallest call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

► $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

Sequential recombination algorithms:

- introduce distance d_{ii} between pairs of particles
- combine closest pair into one

repeat

k_t algorithm: Catani et al '91-93 Ellis & Soper '93

 $\blacktriangleright d_{ii} =$ $\min(k_{ti}^2,k_{ti}^2)(\Delta y_{ii}^2+\Delta\phi_{ii}^2)/R^2$

• beam distance: $d_{iB} = k_{ti}^2$ if d_{iB} is smallest call *i* a jet

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Catani et al '91–93 Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

algo-

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

algo-

Sequential recombination algorithms:

- introduce distance d_{ij} between pairs of particles
- combine closest pair into one

repeat

<u>k</u>t algorithm: Ellis & Soper '93

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$

▶ beam distance: d_{iB} = k²_{ti} if d_{iB} is smallest call i a jet

QCD & Searches, G. Salam (p. 12) Lintroduction Types of jet alg.	Seedless [Infrared Safe] cones (SC	
p _t /GeV .	Aim to iden dependently	tify <i>all</i> stable cones, in- of any seeds
•	Procedure in	1 dimension (y):
50 -	▶ find all dis radius R	tinct enclosures of by repeatedly sliding
40		a cone sideways until edge touches a particle
30 •	► check eacl	n for stability
	🕨 then run u	
20 •	ln 2 dimen analogous pr	
$0 \begin{array}{c c} 1 \\ 0 \\ 0 \\ 1 \end{array} \begin{array}{c} 1 \\ 2 \end{array}$	$\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{y}$	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
-		Procedure in 1 dimension (y) :
50 ·		 find all distinct enclosures of
-		radius <i>R</i> by repeatedly sliding
40 •		a cone sideways until
-		edge touches a particle
30 •		 check each for stability
20 •		
	3 4	
0 1 2	з ту	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	.particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y) :
50 •		► find all distinct enclosures of
-		radius R by repeatedly sliding
40 •		a cone sideways until
-		edge touches a particle
30 •		check each for stability
4		
20.		
	3 4 y	This gives an IRC safe cone alg.

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	n particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
-		Procedure in 1 dimension (y) :
50 -		find all distinct enclosures of
		radius <i>R</i> by repeatedly sliding
40 -		a cone sideways until
1		Edge touches a particle
30		
20	1	
20		
	└╢┻	
0 1 2	3 4 _y	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y) :
50 -		► find all distinct enclosures of
		radius R by repeatedly sliding
40 -		a cone sideways until
-		edge touches a particle
30 •		Check each for stability
20 •		
10 •		
0 1 2	3 4 y	This gives an IRC safe cone alg.

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y):
50 -		► find all distinct enclosures of
-		radius <i>R</i> by repeatedly sliding
40 -		a cone sideways until
1		edge touches a particle
30 •		check each for stability
•		
20 •		
10 •		
111 111.		
$\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \end{array}$	3 4 v	This gives an IRC safe cone alg.
	<i>J</i>	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y) :
50 -		 find all distinct enclosures of
4		radius R by repeatedly sliding
40 •		a cone sideways until
1		euge touches a particle
30		Check each for stability
	1.1	
20 •		
0 1 2	3 4 _y	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60 .	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
-		Procedure in 1 dimension (y) :
50 ·		find all distinct enclosures of
-		radius <i>R</i> by repeatedly sliding
40 •		a cone sideways until
-		edge touches a particle
30 •		check each for stability
20		
	3 4 y	This gives an IRC safe cone alg.

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless [Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge on 60	particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y) :
50 ·		 find all distinct enclosures of
-		radius <i>R</i> by repeatedly sliding
40 •		a cone sideways until
-		edge touches a particle
30 .		 check each for stability
1		
20 •		
10 .		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 v	
	5	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless	[Infrared Safe] cones (SC-SM)
p_t/GeV . Next cone edge or 60	1 particle	Aim to identify <i>all</i> stable cones, in- dependently of any seeds
		Procedure in 1 dimension (y):
50 -		find all distinct enclosures of
	•	radius R by repeatedly sliding
40		edge touches a particle
30 •		 check each for stability
-=		
20 •		
	3 4 v	

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless [Infrared Safe	e] cones (SC-SM)
p_t/GeV . Next cone edge or 60 .	ı particle	Aim to identif dependently of	y <i>all</i> stable cones, in- any seeds
-		Procedure in 1	dimension (y):
50 -		find all disti	nct enclosures of
	•	radius <i>R</i>	by repeatedly sliding
40			edge touches a particle
30		check each f	for stability
20 •			
	3 4 y		

QCD & Searches, G. Salam (p. 12) Introduction Types of jet alg.	Seedless [Infrared Safe	e] cones (SC-SM)
p_t/GeV . Next cone edge or 60 .	n particle	Aim to identif dependently of	y <i>all</i> stable cones, in- any seeds
-		Procedure in 1	dimension (y) :
50 •		find all distinues of the second s	nct enclosures of
	•	radius <i>R</i>	by repeatedly sliding
40			a cone sideways until edge touches a particle
30 •		check each f	for stability
20 •			
10	10		
	3 4 y		

Aim to identify *all* stable cones, independently of any seeds

Procedure in 1 dimension (y):

- find all distinct enclosures of radius R by repeatedly sliding a cone sideways until edge touches a particle
- check each for stability

then run usual split—merge

In 2 dimensions (y,ϕ) can design analogous procedure SISCone GPS & Soyez '07

Aim to identify *all* stable cones, independently of any seeds

Procedure in 1 dimension (y):

- find all distinct enclosures of radius R by repeatedly sliding a cone sideways until edge touches a particle
- check each for stability

then run usual split–merge

In 2 dimensions (y,ϕ) can design analogous procedure SISCone GPS & Soyez '07

Aim to identify *all* stable cones, independently of any seeds

Procedure in 1 dimension (y):

- find all distinct enclosures of radius R by repeatedly sliding a cone sideways until edge touches a particle
- check each for stability
- then run usual split-merge

In 2 dimensions (y,ϕ) can design analogous procedure SISCone GPS & Soyez '07

Seedless [Infrared Safe] cones (SC-SM)

Aim to identify *all* stable cones, independently of any seeds

Procedure in 1 dimension (y):

- find all distinct enclosures of radius R by repeatedly sliding a cone sideways until edge touches a particle
- check each for stability
- then run usual split-merge

In 2 dimensions (y,ϕ) can design analogous procedure SISCone GPS & Soyez '07

Seedless [Infrared Safe] cones (SC-SM)

Aim to identify *all* stable cones, independently of any seeds

Procedure in 1 dimension (y):

- find all distinct enclosures of radius R by repeatedly sliding a cone sideways until edge touches a particle
- check each for stability
- then run usual split-merge

In 2 dimensions (y,ϕ) can design analogous procedure SISCone GPS & Soyez '07

A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

 $d_{ij} = \min(k_{ti}^{2\mathbf{p}}, k_{ti}^{2\mathbf{p}}) \Delta R_{ij}^2 / R^2 \qquad d_{iB} = k_{ti}^{2\mathbf{p}}$

	Alg. name	Comment	time
p = 1	k _t	Hierarchical in rel. k_t	
	CDOSTW '91-93; ES '93		NIn N exp.
p = 0	Cambridge/Aachen	Hierarchical in angle	
	Dok, Leder, Moretti, Webber '97	Scan multiple <i>R</i> at once	N In N
	Wengler, Wobisch '98	$\leftrightarrow QCD \text{ angular ordering}$	
p = -1	anti- k_t Cacciari, GPS, Soyez '08	Hierarchy meaningless, jets	
	\sim reverse- k_t Delsart	like CMS cone (IC-PR)	$N^{3/2}$
SC-SM	SISCone	Replaces JetClu, ATLAS	
	GPS Soyez '07 + Tevatron run II '00 $$	MidPoint (xC-SM) cones	$N^2 \ln N$ exp.

All these algorithms coded in (efficient) C++ at http://fastjet.fr/ (Cacciari, GPS & Soyez '05-08)

Past jet discussions often polarised, driven by unquantified statements

Question #3: what do we mean by a "better" jet definition?

Quality = suited to whatever you use the jets for

Simplest application: reconstruct dijet invariant mass peak for some new particle.

e.g. $pp \rightarrow X \rightarrow qq \rightarrow 2$ jets

Good jet algorithm \rightarrow better invariant mass peak.

Question #4a: What physics governs quality of jet definition? [*R*-dependence]

Small jet radius

Large jet radius

single parton @ LO: jet radius irrelevant

Small jet radius

Large jet radius

perturbative fragmentation: large jet radius better (it captures more)

Small jet radius

Large jet radius

non-perturbative fragmentation: large jet radius better (it captures more)

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Small jet radius

Large jet radius

multi-hard-parton events: **small jet radius better** (it resolves partons more effectively)

4-way tension in many measurements:

Prefer small R	prefer large <i>R</i>
resolve many jets (e.g. $t\overline{t}$)	minimize QCD radiation loss
limit UE & pileup	limit hadronisation

 $\mathsf{Jets} \ v. \ \mathsf{R}$

Parton $p_t \rightarrow \text{jet } p_t$ III-defined: MC "parton"

PT radiation:

$$q: \quad \langle \Delta p_t \rangle \simeq \frac{\alpha_{\rm s} C_F}{\pi} p_t \ln R$$
$$g: \quad \langle \Delta p_t \rangle \simeq \frac{\alpha_{\rm s} C_A}{\pi} p_t \ln R$$

Hadronisation:

$$q: \langle \Delta p_t
angle \simeq -rac{C_F}{R} \cdot 0.4 \; {
m GeV}$$

 $g: \langle \Delta p_t
angle \simeq -rac{C_A}{R} \cdot 0.4 \; {
m GeV}$

$rac{ extsf{Underlying event:}}{q,g:\quad \langle \Delta p_t angle \simeq rac{R^2}{2} \cdot 2.5{-}15 \; extsf{GeV}}$

Dasgupta, Magnea & GPS '07

Jets v. R

 $\overline{q,g}: \langle \Delta p_t \rangle \simeq \frac{R^2}{2} \cdot 2.5 - 15 \text{ GeV}$

Dasgupta, Magnea & GPS '07

Jets v. R

Dasgupta, Magnea & GPS '07

Parton
$$p_t \rightarrow jet p_t$$

Ill-defined: MC "parton"
PT radiation:
 $q: \langle \Delta p_t \rangle \simeq \frac{\alpha_s C_F}{\pi} p_t \ln R$
 $g: \langle \Delta p_t \rangle \simeq \frac{\alpha_s C_A}{\pi} p_t \ln R$
 $q: \langle \Delta p_t \rangle \simeq -\frac{C_F}{R} \cdot 0.4 \text{ GeV}$
 $g: \langle \Delta p_t \rangle \simeq -\frac{C_F}{R} \cdot 0.4 \text{ GeV}$
 $g: \langle \Delta p_t \rangle \simeq -\frac{C_A}{R} \cdot 0.4 \text{ GeV}$
 $g: \langle \Delta p_t \rangle \simeq -\frac{C_A}{R} \cdot 0.4 \text{ GeV}$
 $g: \langle \Delta p_t \rangle \simeq -\frac{C_A}{R} \cdot 0.4 \text{ GeV}$
 $underlying event:$

 $\overline{q,g:} \langle \Delta p_t \rangle \simeq \frac{R^2}{2} \cdot 2.5 - 15 \text{ GeV}$

Jets v. R

 $q,g: \langle \Delta p_t \rangle \simeq \frac{R^2}{2} \cdot 2.5 - 15 \text{ GeV}$

Dasgupta, Magnea & GPS '07

Best jet quality \Leftrightarrow least dispersion between "parton" p_t and jet p_t .

NB: "parton" not well-defined

Simplifying assumption:

 $\langle \Delta p_t^2
angle \simeq \langle \Delta p_t
angle^2$

 $\langle \Delta p_t \rangle^2$ from perturbatve, hadronisation and UE effects

► low- p_t jet \rightarrow prefer small RUE matters a lot

▶ high-p_t jet → prefer large R pert matters most

Quality $\Leftrightarrow p_t$ dispersion

Best jet quality \Leftrightarrow least dispersion between "parton" p_t and jet p_t .

NB: "parton" not well-defined

Simplifying assumption:

 $\langle \Delta p_t^2
angle \simeq \langle \Delta p_t
angle^2$

 $\langle \Delta p_t \rangle^2$ from perturbatve, hadronisation and UE effects

► low- p_t jet \rightarrow prefer small RUE matters a lot

▶ high-p_t jet → prefer large R pert matters most

Quality $\Leftrightarrow p_t$ dispersion

Best jet quality \Leftrightarrow least dispersion between "parton" p_t and jet p_t .

NB: "parton" not well-defined

Simplifying assumption:

 $\langle \Delta p_t^2
angle \simeq \langle \Delta p_t
angle^2$

 $\langle \Delta p_t \rangle^2$ from perturbatve, hadronisation and UE effects

- ► low- p_t jet \rightarrow prefer small RUE matters a lot
- ► high- p_t jet \rightarrow prefer large Rpert matters most

Does this match what one sees in Monte Carlo simulation?

QCD & Searches, G. Salam	(p.	24)
Jet quality		
Physics of quality		

QCD & Searches, G. Salam	(p.	24)
Jet quality		
Physics of quality		

Scan through *R* values, Pythia (6.4)

After scanning, summarise "quality" v. R. Minimum \equiv BEST picture not so different from crude analytical estimate

Best R is at minimum of curve

 Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

 Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

 Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

 Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

 Best R depends strongly on mass of system

Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

- Best *R* depends strongly on mass of system
- Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

Best R is at minimum of curve

- Best *R* depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values
Scan through qq mass values

Best R is at minimum of curve

- Best *R* depends strongly on mass of system
- Increases with mass, just like crude analytical prediction
 NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

e.g. CMS arXiv:0807.4961

Best R is at minimum of curve

- Best *R* depends strongly on mass of system
- Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow *qq* and *gg* resonances from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez '08

Best R is at minimum of curve

- Best *R* depends strongly on mass of system
- Increases with mass, just like crude analytical prediction NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish *R* values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez '08

1) 'Best' jet definition depends strongly on context

2) Key element is interplay between

- Loss of perturbative radiation from partons
- "Noise" contamination from underlying event (and pileup)

3) We've not discussed choice of jet algorithm

But it's relevant too
Relates to "jet areas"
= analytic study of UE contamination
also being looked at by H1

Question #5: Can we apply understanding somewhere new?

An example: light Higgs search

As example, a Higgs-boson search illustrates two things:

- Using LHC scale hierarchy $\sqrt{s} \gg M_{EW}$ to our advantage
- Using QCD to help us extract cleaner signals

taken from Butterworth, Davison, Rubin & GPS '08

Low-mass Higgs search @ LHC: complex because dominant decay channel, $H \rightarrow bb$, often swamped by backgrounds.

Various production processes

	$gg \to H$	$(\rightarrow \gamma \gamma)$	feasible
--	------------	-------------------------------	----------

- $WW \rightarrow H \rightarrow \dots$ feasible
- $gg \rightarrow t\bar{t}H$ v. hard

▶ $q\bar{q} \rightarrow WH, ZH$

small; but gives access to WH and ZH couplings Currently considered impossible

WH/ZH search channel @ LHC

• Signal is $W \to \ell \nu$, $H \to b \overline{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t}
ightarrow \ell
u b\bar{b} j j$, . . .

Studied e.g. in ATLAS TDR

Difficulties, e.g.

- Poor acceptance (~ 12%)
 Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- ► small S/B
- Need exquisite control of bkgd shape

 $\rm WH/ZH$ search channel @ LHC

• Signal is $W \to \ell \nu$, $H \to b \bar{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell \nu b\bar{b} j j$, ...

Studied e.g. in ATLAS TDR

Difficulties, e.g.

- Poor acceptance (~ 12%) Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- small S/B
- Need exquisite control of bkgd shape

 $\rm WH/ZH$ search channel @ LHC

• Signal is $W \to \ell \nu$, $H \to b \overline{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell \nu b\bar{b} j j$, ...

Studied e.g. in ATLAS TDR

Difficulties, e.g.

 Poor acceptance (~ 12%) Easily lose 1 of 4 decay products

- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- small S/B
- Need exquisite control of bkgd shape

Conclusion (ATLAS TDR):

"The extraction of a signal from $H \rightarrow bb$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions [...]"

Take advantage of the fact that $\sqrt{s} \gg M_H, m_t, \ldots$

Go to high *p*_t:

- ✓ Higgs and W/Z more likely to be central
- ✓ high- p_t Z → $ν\bar{ν}$ becomes visible
- ✓ Fairly collimated decays: high- $p_t \ \ell^{\pm}, \nu, b$ Good detector acceptance
- ✓ Backgrounds lose cut-induced scale
- ✓ $t\overline{t}$ kinematics cannot simulate bkgd Gain clarity and S/B

X Cross section will drop dramatically By a factor of 20 for $p_{tH} > 200 \text{ GeV}$

Will the benefits outweigh this?

Hadronically decaying Higgs boson at high p_t = single massive jet?

discussion of this & related problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lillie, Randall & Wang '07; Contino & Servant '08; Brooij-mans '08; Thaler & Wang '08; Kaplan et al '08; Almeida et al '08; [...]

What does QCD tell us about how to deal with this?

Hadronically decaying Higgs boson at high p_t = single massive jet?

discussion of this & related problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lillie, Randall & Wang '07; Contino & Servant '08; Brooij-mans '08; Thaler & Wang '08; Kaplan et al '08; Almeida et al '08; [...]

What does QCD tell us about how to deal with this?

QCD principle: soft divergence

Splitting probability for Higgs:

 $P(z) \propto 1$

Splitting probability for quark:

 $P(z) \propto rac{1+z^2}{1-z}$

1/(1-z) divergence enhances background

Remove divergence in bkdg with cut on z Can choose cut analytically so as to maximise S/\sqrt{B}

> Originally: ad-hoc cut on (related) k_t -distance Seymour '93; Butterworth, Cox & Forshaw '02

QCD principle: angular ordering

Given a color-singlet $q\bar{q}$ pair of opening angle R_{bb} :

Nearly all the radiation from the pair is contained in two cones of opening angle R_{bb} , one centred on each quark.

Standard result also in QED

Use this to capture just the radiation from the $q\bar{q} \Rightarrow$ good mass resolⁿ

Searching for high- p_t HW/HZ?

High- p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen? Butterworth, Davison, Rubin & GPS '08

Then on the Higgs-candidate: *filter* away UE/pileup by reducing $R \rightarrow R_{filt}$, take *three hardest subjets* (keep LO gluon rad^{*n*}) + require *b*-tags on two hardest.

Searching for high- p_t HW/HZ?

High- p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen? Butterworth, Davison, Rubin & GPS '08

Then on the Higgs-candidate: *filter* away UE/pileup by reducing $R \rightarrow R_{filt}$, take *three hardest subjets* (keep LO gluon rad^{*n*}) + require *b*-tags on two hardest.

Searching for high- p_t HW/HZ?

High- p_t light Higgs decays to $b\bar{b}$ inside a single jet. Can this be seen? Butterworth, Davison, Rubin & GPS '08

Then on the Higgs-candidate: *filter* away UE/pileup by reducing $R \rightarrow R_{filt}$, take *three hardest subjets* (keep LO gluon rad^{*n*}) + require *b*-tags on two hardest.

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Cluster event, C/A, R=1.2

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Fill it in, \rightarrow show jets more clearly

arbitrary norm.

arbitrary norm.

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts

- $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 16 GeV window

Leptonic channel

$$\overline{Z}
ightarrow \mu^+ \mu^-, e^+ e^-$$

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts

- ▶ $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01

• S/\sqrt{B} from 16 GeV window

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts

- ▶ p_{tV}, p_{tH} > 200 GeV
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01

• S/\sqrt{B} from 16 GeV window

Semi-leptonic channel

 $W \to \nu \ell$

- $\not\!\!E_T > 30 \text{ GeV}$ (& consistent W.)
- no extra jets $|\eta| < 3, p_t > 30$

combine HZ and HW, $p_t > 200 \text{ GeV}$

Common cuts

- $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- \blacktriangleright No extra ℓ , *b*'s with $|\eta| < 2.5$
- ▶ Real/fake *b*-tag rates: 0.7/0.01

• S/\sqrt{B} from 16 GeV window

<u>3 channels combined</u> Note excellent $VZ, Z \rightarrow b\bar{b}$ peak for calibration NB: $q\bar{q}$ is mostly $t\bar{t}$

Higgs physics means establishing whether it has the expected SM couplings.

Crucial part of that is seeing WH and ZH cleanly and separately from each other.

This channel seems to be the only good way of doing that for a light Higgs. Alternative WW fusion: but mixes with ZZ fusion, gg fusion

Outlook

- > There seem to be clear benefits to be had from well-chosen jet-definitions
- No single jet-definition fits all physics tasks
- Unlike photography we don't yet have "autofocus, auto-exposure" jet finders
- But we're starting to understand the issues

Enough to qualitatively guide our choices e.g. choice of *R* in dijet resonance searches e.g. boosted EW bosons, cf. low-mass Higgs search

What's the next goal? Systematic, optimised jetography?

Extras

Sequential recombination algorithms

kt algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: N² d_{ij} searched through N times = N³
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05

QCD & Searches, G. Salam (p. 42) Extras

Sequential recombination algorithms

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: N² d_{ij} searched through N times = N³
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Advance #1: factorise momentum and geometry Borrow methods & tools from Computational Geometry: Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP Time reduced to Nn or N In N: 25ms for N=4000. Cacciari & GPS '05
k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: N² d_{ij} searched through N times = N³
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ► for *N* particles: $N^2 d_{ij}$ searched through *N* times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- ▶ for N particles: N² d_{ij} searched through N times = N³
- ▶ 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

k_t algorithm

- Find smallest of all $d_{ij} = k_{ti}^2 \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

'Trivial' computational issue:

- for N particles: $N^2 d_{ij}$ searched through N times = N^3
- ► 4000 particles (or calo cells): 1 minute NB: often study 10⁷ - 10⁸ events

Tevatron & ATLAS cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

- Find some/all stable cones
 - \equiv cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones

Tevatron & ATLAS cone algs have two main steps:

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N² [JetClu, Atlas]
- Iterate from 'midpoints' between cones from seeds
 Midpoint cone, less IR unsafe, N³
- Seedless: try all subsets of particles IR safe, N2^N 100 particles: 10¹⁷ years

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N² [JetClu, Atlas]
- Iterate from 'midpoints' between cones from seeds Midpoint cone, less IR unsafe, N³

Seedless: try all subsets of particles IR safe, N2^N
 100 particles: 10¹⁷ years

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

- Iterate from 'seed' particles
 Done originally, very IR unsafe, N² [JetClu, Atlas]
- Iterate from 'midpoints' between cones from seeds Midpoint cone, less IR unsafe, N³
- Seedless: try all subsets of particles IR safe, N2^N 100 particles: 10¹⁷ years

Find some/all stable cones

 \equiv cone pointing in same direction as the momentum of its contents

Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

How do you find the stable cones?

 Iterate from 'seed' particles Done originally, very IR unsafe, N² [JetClu, Atlas]
 Advance #2: IR safe seedless cone (SM) separate mom. and geometry New comp. geometry techniques: 2D all distinct circular enclosures Then for each check whether → stable cone
 Time reduced from N2^N to N² In N: 6s for N=4000. GPS & Soyez '07 "SISCone"

Question #4b: What physics governs quality of jet definition?

[jet algorithm dependence]

the *reach* of jet algorithms

the *reach* of jet algorithms

the *reach* of jet algorithms

the *reach* of jet algorithms

QCD & Searches, G. Salam (p. 45) Extras

the *reach* of jet algorithms

Jet contours - visualised

-

Jet areas

Can show that jet area goes as:

$$\begin{aligned} A &= A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_{\rm s}(Q_0)}{\alpha_{\rm s}(R\rho_t)} + \mathcal{O}\left(\alpha_{\rm s}^2 \ln \rho_t^2\right) \\ & \text{Cacciari, GPS \& Soyez '08} \\ & \text{measurements in progress in H1} \end{aligned}$$

Passive area: suscept. to point-like radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	1	0.56
Cam/Aachen	1	0.08
SISCone	1	-0.06

Analytical calcs capture main MC features
 k_t has larger area than cone, neither is πR²
 SISCone has small areas

Jet areas

Can show that jet area goes as:

$$A = A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_s(Q_0)}{\alpha_s(Rp_t)} + \mathcal{O}\left(\alpha_s^2 \ln p_t^2\right)$$
Cacciari, GPS & Soyez '08
measurements in progress in H1

Active area: suscept. to diffuse radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	1 ightarrow 0.81	$0.56 \rightarrow 0.52$
Cam/Aachen	1 ightarrow 0.81	$0.08 \rightarrow 0.08$
SISCone	$1 \rightarrow 0.25$	$-0.06 \rightarrow \textbf{0.12}$

Analytical calcs capture main MC features

 $\blacktriangleright k_t$ has larger area than cone, neither is πR^2

SISCone has small areas

Can show that jet area goes as:

$$A = A_0 + D \frac{C_{F/A}}{\pi b_0} \ln \frac{\alpha_{\rm s}(Q_0)}{\alpha_{\rm s}(Rp_t)} + \mathcal{O}\left(\alpha_{\rm s}^2 \ln p_t^2\right)$$

Cacciari, GPS & Soyez '08 measurements in progress in H1

Active area: suscept. to diffuse radiation:

	$A_0/\pi R^2$	$D/\pi R^2$
k _t	$1 \rightarrow 0.81$	$0.56 \rightarrow 0.52$
Cam/Aachen	1 ightarrow 0.81	$0.08 \rightarrow 0.08$
SISCone	$1 \rightarrow 0.25$	-0.06 ightarrow 0.12

- Analytical calcs capture main MC features
- k_t has larger area than cone, neither is πR^2
- SISCone has small areas

Jet areas

MISSING: SISCone worked well because of small area and wider perturbative reach (NB latter good for dijets, bad for multijets)