Jet substructure as a new Higgs search channel at the LHC

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

SUSY08 Seoul, Korea, 16–21 June 2008

Work in collaboration with Jon Butterworth, Adam Davison (UCL) & Mathieu Rubin (LPTHE) arXiv:0802.2470, PRL in press

Low-mass Higgs search @ LHC: complex because dominant decay channel, $H \rightarrow bb$, often swamped by backgrounds.

Various production processes

	$gg \to H$	$(\rightarrow \gamma \gamma)$	feasible
--	------------	-------------------------------	----------

- $WW \rightarrow H \rightarrow \dots$ feasible
- $gg \rightarrow t\bar{t}H$ v. hard

▶ $q\bar{q} \rightarrow WH, ZH$

small; but gives access to WH and ZH couplings Currently considered impossible

WH/ZH search channel @ LHC

• Signal is $W \to \ell \nu$, $H \to b\bar{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t} \rightarrow \ell \nu b\bar{b} j j$, ...

Studied e.g. in ATLAS TDR

Difficulties, e.g.

- Poor acceptance (~ 12%)
 Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- ► small S/B
- Need exquisite control of bkgd shape

Jets, G. Salam, LPTHE (p. 3)

WH/ZH search channel @ LHC

• Signal is $W \to \ell \nu$, $H \to b \overline{b}$.

• Backgrounds include $Wb\bar{b}$, $t\bar{t}
ightarrow \ell
u b\bar{b} j j$, . . .

Studied e.g. in ATLAS TDR

Difficulties, e.g.

- Poor acceptance (~ 12%) Easily lose 1 of 4 decay products
- *p_t* cuts introduce intrinsic bkgd mass scale;
- $gg \rightarrow t\bar{t} \rightarrow \ell \nu b\bar{b}[jj]$ has similar scale
- small S/B
- Need exquisite control of bkgd shape

Jets, G. Salam, LPTHE (p. 3) Intro

WH/ZH search channel @ LHC

▶ Signal is $W \rightarrow \ell \nu$, $H \rightarrow bb$.

Backgrounds include $Wb\bar{b}, t\bar{t} \rightarrow \ell \nu b\bar{b} j j, \ldots$

Studied e.g. in ATLAS TDR

Easily lose 1 of 4 decay products

"The extraction of a signal from $H \rightarrow bb$ decays in the WH channel will be very difficult at the LHC, even under the most optimistic assumptions [...]"

At high p_t :

- $\checkmark\,$ Higgs and W/Z more likely to be central
- ✓ high- p_t Z → $\nu \bar{\nu}$ becomes visible
- ✓ Fairly collimated decays: high- p_t ℓ^{\pm}, ν, b Good detector acceptance
- ✓ Backgrounds lose cut-induced scale
- ✓ $t\bar{t}$ kinematics cannot simulate bkgd Gain clarity and S/B

X Cross section will drop dramatically By a factor of 20 for $p_{tH} > 200 \text{ GeV}$ Will the benefits outweigh this?

discussion of such problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lille, Randall & Wang '07; Contino & Servant '08; Brooijmans '08; Thaler & Wang '08; Kaplan et al '08 [...]

Drawbacks

• Optimal R depends on m, p_t , z — hard to get single "best" choice

• Y_{ij} cut implicitly introduces mass scale $\sim \sqrt{Y_{cut}} \times$ jet p_t

discussion of such problems: Seymour '93; Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07; Skiba & Tucker-Smith '07; Holdom '07; Baur '07; Agashe et al. '07; Lille, Randall & Wang '07; Contino & Servant '08; Brooijmans '08; Thaler & Wang '08; Kaplan et al '08 [...]

Drawbacks

• Optimal R depends on m, p_t , z — hard to get single "best" choice

• Y_{ij} cut implicitly introduces mass scale $\sim \sqrt{Y_{cut}} imes$ jet p_t

Most powerful idea till 2007

- Find jets with k_t jet algorithm with given NUncluster last recomb. for jet and require $Y_{ij} = \frac{\min(p_{ti}^2, p_{ti}^2)}{p_t^2} \Delta R_{ij}^2 > Y_{cut}$ [Seymour '93]

Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07

- Optimal R depends on m, p_t , z hard to get single "best" choice
- \blacktriangleright Y_{ii} cut implicitly introduces mass scale $\sim \sqrt{Y_{cut}} \times$ jet p_t

Most powerful idea till 2007

- Find jets with k_t jet algorithm with given NUncluster last recomb. for jet and require $Y_{ij} = \frac{\min(p_{ti}^2, p_{ti}^2)}{p_t^2} \Delta R_{ij}^2 > Y_{cut}$ [Seymour '93]

Butterworth, Cox & Forshaw '02; Butterworth, Ellis & Raklev '07

Drawbacks

- Optimal R depends on m, p_t , z hard to get single "best" choice
- Y_{ii} cut implicitly introduces mass scale $\sim \sqrt{Y_{cut}} \times$ jet p_t

The Cambridge/Aachen jet alg.Dokshitzer et al '97
Wengler & Wobisch '98Work out $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2$ between all pairs of objects i, j;
Recombine the closest pair;
Repeat until all objects separated by $\Delta R_{ij} > R$.

Provides a "hierarchical" view of the event; work through it backwards to analyse a jet

Start with high- p_t jet

- 1. Undo last stage of clustering (\equiv reduce R): $J
 ightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a **mass drop** [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
- 4. Require each subjet to have *b*-tag [else reject event] Correlate flavour & momentum structure

#2: The jet analysis

Start with high-p_t jet

- 1. Undo last stage of clustering (\equiv reduce *R*): $J \rightarrow J_1, J_2$
- 2. If $\max(m_1, m_2) \lesssim 0.67m$, call this a mass drop [else goto 1] Automatically detects correct $R \sim R_{bb}$ to catch angular-ordered radn.
- 3. Require $y_{12} = \frac{\min(p_{t1}^2, p_{t2}^2)}{m_{12}^2} \Delta R_{12}^2 \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ [else goto 1] dimensionless rejection of asymmetric QCD branching
- 4. Require each subjet to have *b*-tag [else reject event] Correlate flavour & momentum structure

#3: jet filtering

At moderate p_t , R_{bb} is quite large; UE & pileup degrade mass resolution $\delta M \sim R^4 \Lambda_{UE} \frac{p_t}{M}$ [Dasgupta, Magnea & GPS '07]

Filter the jet

- Reconsider region of interest at smaller $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
- **•** Take **3** hardest subjets b, \bar{b} and leading order gluon radiation

#3: jet filtering

At moderate p_t , R_{bb} is quite large; UE & pileup degrade mass resolution $\delta M \sim R^4 \Lambda_{UE} \frac{p_t}{M}$ [Dasgupta, Magnea & GPS '07]

Filter the jet

- Reconsider region of interest at smaller $R_{filt} = \min(0.3, R_{b\bar{b}}/2)$
- **•** Take 3 hardest subjets b, \bar{b} and leading order gluon radiation

Lets, G. Salam, LPTHE (p. 9) $pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14TeV, $m_H = 115 \, { m GeV}$

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Cluster event, C/A, R=1.2

Lets, G. Salam, LPTHE (p. 9) $pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14TeV, $m_H = 115 \, { m GeV}$

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Fill it in, \rightarrow show jets more clearly

arbitrary norm.

arbitrary norm.

arbitrary norm.

arbitrary norm.

Jets, G. Salam, LPTHE (p. 10) Results

The full analysis (scaled to 30 fb^{-1})

Common cuts

- ▶ $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ▶ $|\eta_{Higgs-jet}| < 2.5$
- $\ell=e,\mu$, $p_{t,\ell}>$ 30 GeV, $|\eta_\ell|<$ 2.5
- No extra ℓ , *b*'s with $|\eta| < 2.5$

Channel-specific cuts: see next slide

Assumptions

- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 16 GeV window

optimistic, but not inconceivable ATLAS jet-mass resln \sim half this? cf. talk by Adam Davison in P6 @16:10

<u>Tools</u>: Herwig 6.510, Jimmy 4.31 (tuned), hadron-level \rightarrow FastJet 2.3 Backgrounds: *VV*, *Vj*, *jj*, $t\bar{t}$, single-top, with > 30 fb⁻¹ (except *jj*)

Common cuts

- ▶ p_{tV}, p_{tH} > 200 GeV
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01

• S/\sqrt{B} from 16 GeV window

Common cuts

- ▶ $p_{tV}, p_{tH} > 200 \text{ GeV}$
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01
- S/\sqrt{B} from 16 GeV window

Semi-leptonic channel

 $W \to \nu \ell$

- $\not\!\!E_T > 30 \text{ GeV}$ (& consistent W.)
- no extra jets $|\eta| < 3, p_t > 30$

Common cuts

- ▶ p_{tV}, p_{tH} > 200 GeV
- ► $|\eta_H| < 2.5$
- $[p_{t,\ell} > 30 \text{ GeV}, |\eta_\ell| < 2.5]$
- \blacktriangleright No extra ℓ , *b*'s with $|\eta| < 2.5$
- Real/fake b-tag rates: 0.7/0.01

• S/\sqrt{B} from 16 GeV window

<u>3 channels combined</u> Note excellent $VZ, Z \rightarrow b\bar{b}$ peak for calibration NB: $q\bar{q}$ is mostly $t\bar{t}$

How can we be doing so well despite losing factor 20 in X-sct?

	Signal	Background	
Eliminate <i>tī</i> , etc.	_	imes 1/3	[very approx.]
$p_t > 200 \text{ GeV}$	imes 1/20	imes1/60	[bkgds: $Wb\overline{b}, Zb\overline{b}$]
improved acceptance	$\times 4$	$\times 4$	
twice better resolution	_	imes 1/2	
add $Z ightarrow u ar{ u}$	imes1.5	imes1.5	
total	×0.3	×0.017	

much better S/B; better S/\sqrt{B} [exact numbers depend on analysis details]

Jets, G. Salam, LPTHE (p. 13) Lesults

Impact of *b*-tagging, Higgs mass

Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]In nearly all cases, looks feasible for extracting *WH*, *ZH* couplings

Jets, G. Salam, LPTHE (p. 13) Results

Impact of *b*-tagging, Higgs mass

Most scenarios above 3σ

For it to be a significant discovery channel requires decent *b*-tagging, lowish mass Higgs [and good experimental resolution]In nearly all cases, looks feasible for extracting *WH*, *ZH* couplings

Specific

- New promising Higgs search channel
- ▶ Unique at LHC in terms of separately seeing WH, ZH couplings
- Deserves & needs in-depth experimental study starting within ATLAS

General

- Clarity & simplicity of high-pt final state outweighed large X-sct loss Might this hold in other cases?
- 3rd generation jet-finding tools play a key role here

3rd generation \equiv interact with the event structure Applied also to high- p_t top, Kaplan et al, arXiv:0806.0848

EXTRAS

Jets, G. Salam, LPTHE (p. 16)

Compare with "standard" algorithms

Check mass spectra in HZ channel, $H \rightarrow b\bar{b}$, $Z \rightarrow \ell^+ \ell^-$

Cambridge/Aachen (C/A) with mass-drop and filtering (MD/F) works best

Cross section for signal and the Z+jets background in the leptonic Z channel for $200 < p_{TZ}$ /GeV < 600 and $110 < m_J$ /GeV < 125, with perfect *b*-tagging; shown for our jet definition (C/A MD-F), and other standard ones close to their optimal *R* values.

Jet definition	$\sigma_{\mathcal{S}}/fb$	$\sigma_B/{ m fb}$	$S/\sqrt{B\cdot \mathrm{fb}}$
C/A, <i>R</i> = 1.2, MD-F	0.57	0.51	0.80
k_t , $R=1.0$, y_{cut}	0.19	0.74	0.22
SISCone, $R = 0.8$	0.49	1.33	0.42
anti- k_t , $R = 0.8$	0.22	1.06	0.21

Analysis shown without K factors. What impact do they have?

Determined with MCFM, MC@NLO

- ▶ Signal: K ~ 1.6
- Vbb backgrounds: $K \sim 2 2.5$
- ▶ $t\bar{t}$ backgrounds: $K \sim 2$ for total; not checked for high- p_t part

Conclusion: S/\sqrt{B} should not be severely affected by NLO contributions

Worsen *b*-tagging: 60%/2%

Jets, G. Salam, LPTHE (p. 20)

Raise p_t cut to 300 GeV

NB: kills $t\bar{t}$ background

- 1st generation: the original UAx, Tevatron jet algorithms
 all IR or collinear unsafe
- 2nd generation: sequential recombination algorithms (JADE, k_t, Cambridge), and IR safe cones (SISCone, anti-k_t)
 All IR safe; some give jet substructure
- Srd generation(?): algorithms and jet-analysis procedures whose behaviour adapts itself to the specific event under consideration. Not yet systematic reality; but reaonsable dream?