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Intro

LHC will (should...) span two orders of magnitude in pt :

mEW

2
←→ 50mEW

That’s why it’s being built

In much of that range, EW-scale particles are light
[a little like b-quarks at the Tevatron]

This talk:

about reconstructing high-pt EW-scale particles
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Intro Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt

: always resolve two jets R < 0.4

◮ R &
3m

pt

: resolve one jet in 75% of cases (1
8 < z < 7

8) R & 0.6
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Intro Relevant in (at least) two ways

New heavy particles can decay to W, Z, top → hadrons

◮ Need “taggers” for boosted hadronic SM particles

◮ To help extract new-physics signals; help identify their decays

Continue here: top-quark ID

New EW-scale particles may be easier to discover at high-pt

◮ Some relevant fraction produced at high-pt (
√

s ≫ m)

◮ Jet combinatorics are easier at high pt — cleaner events

◮ Easier to organise cuts so as not to sculpt backgrounds

Start here: light Higgs-boson search
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Intro

Low-mass Higgs search @ LHC:
complex because dominant decay
channel, H → bb, often swamped by
backgrounds.

Various production processes

◮ gg → H (→ γγ) feasible

◮ WW → H → . . . feasible

◮ gg → tt̄H v. hard

◮ qq̄ → WH,ZH
small; but gives access to

WH and ZH couplings

Currently considered impossible
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Intro WH/ZH search channel @ LHC

◮ Signal is W → ℓν, H → bb̄. Studied e.g. in ATLAS TDR
◮ Backgrounds include Wbb̄, tt̄ → ℓνbb̄jj , . . .

Difficulties, e.g.

◮ Poor acceptance (∼ 12%)
Easily lose 1 of 4 decay products

◮ pt cuts introduce intrinsic bkgd mass scale;
◮ gg → tt̄ → ℓνbb̄[jj ] has similar scale
◮ small S/B
◮ Need exquisite control of bkgd shape

e,µ

b

ν
b

H

W
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Intro WH/ZH search channel @ LHC

◮ Signal is W → ℓν, H → bb̄. Studied e.g. in ATLAS TDR
◮ Backgrounds include Wbb̄, tt̄ → ℓνbb̄jj , . . .

pp → WH → ℓνbb̄ + bkgds

ATLAS TDR

Difficulties, e.g.

◮ Poor acceptance (∼ 12%)
Easily lose 1 of 4 decay products

◮ pt cuts introduce intrinsic bkgd mass scale;
◮ gg → tt̄ → ℓνbb̄[jj ] has similar scale
◮ small S/B
◮ Need exquisite control of bkgd shape

Conclusion (ATLAS TDR):

“The extraction of a signal from H → bb̄ decays in
the WH channel will be very difficult at the LHC,
even under the most optimistic assumptions [...]” e,µ

b

ν
b

H

W
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Intro Study subset of WH/ZH with high pt

W

H

b
b

e,µ ν

At high pt :

✓ Higgs and W/Z more likely to be central

✓ high-pt Z → νν̄ becomes visible

✓ Fairly collimated decays: high-pt ℓ±, ν, b
Good detector acceptance

✓ Backgrounds lose cut-induced scale

✓ tt̄ kinematics cannot simulate bkgd
Gain clarity and S/B

✗ Cross section will drop dramatically
By a factor of 20 for ptH > 200 GeV

Will the benefits outweigh this?
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Boosted object finding Finding a boosted Higgs?

How do we find a boosted Higgs inside a single jet?
Special case of general (unanswered) question: how do we best do jet-finding?

Various people have looked at boosted objects over the years
◮ Seymour ’93 [heavy Higgs →WW → νℓjets]

◮ Butterworth, Cox & Forshaw ’02 [WW →WW → νℓjets ]

◮ Agashe et al. ’06 [KK excitation of gluon → tt̄]

◮ Butterworth, Ellis & Raklev ’07 [SUSY decay chains →W , H ]

◮ Skiba & Tucker-Smith ’07 [vector quarks]

◮ Lillie, Randall & Wang ’07 [KK excitation of gluon → tt̄]

◮ · · ·

ETC.



Jets, G. Salam, LPTHE (p. 9)

Boosted object finding Boosted ID strategies

q q
Select on the jet mass with one large (cone)
jet Can be subject to large bkgds

[high-pt jets have significant masses]

q q

Choose a small jet size (R) so as to resolve
two jets Easier to reject background

if you actually see substructure

[NB: must manually put in “right” radius]

q q Take a large jet and split it in two
Let jet algorithm establish correct division
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Boosted object finding Past methods

Use kt jet-algorithm’s hierarchy to
split the jets

Use kt alg.’s distance measure (rel.
trans. mom.) to cut out QCD bkgd:

dkt

ij = min(p2
ti , p

2
tj )∆R2

ij

Y-splitter only partially

correlated with mass
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Boosted object finding #1: Our tool

The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2

ij + ∆φ2
ij between all pairs of objects i , j ;

Recombine the closest pair;
Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet
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Boosted object finding #1: Our tool

The Cambridge/Aachen jet alg. Dokshitzer et al ’97

Wengler & Wobisch ’98

Work out ∆R2
ij = ∆y2

ij + ∆φ2
ij between all pairs of objects i , j ;

Recombine the closest pair;
Repeat until all objects separated by ∆Rij > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet

kt algorithm Cam/Aachen algorithm

Allows you to “dial” the correct R to

keep perturbative radiation, but throw out UE
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Boosted object finding #2: The jet analysis

b

g

b

R

Start with high-pt jet

1. Undo last stage of clustering (≡ reduce R): J → J1, J2

2. If max(m1,m2) . 0.67m, call this a mass drop [else goto 1]
Automatically detects correct R ∼ Rbb to catch angular-ordered radn.

3. Require y12 =
min(p2

t1,p
2
t2)

m2
12

∆R2
12 ≃

min(z1,z2)
max(z1,z2)

> 0.09 [else goto 1]

dimensionless rejection of asymmetric QCD branching

4. Require each subjet to have b-tag [else reject event]
Correlate flavour & momentum structure
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Rbb

Rbb

mass drop

b

g

b

R
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Boosted object finding #3: jet filtering

Rbb

Rbb

mass drop

b

g

b

R

UE

At moderate pt , Rbb is quite large; UE & pileup degrade mass resolution
δM ∼ R4ΛUE

pt

M
[Dasgupta, Magnea & GPS ’07]

Filter the jet

◮ Reconsider region of interest at smaller Rfilt = min(0.3,Rbb̄/2)

◮ Take 3 hardest subjets b, b̄ and leading order gluon radiation
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Boosted object finding #3: jet filtering

Rfilt

filter

Rbb

Rbb

mass drop

b

g

b

R

UE
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pt

M
[Dasgupta, Magnea & GPS ’07]
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◮ Take 3 hardest subjets b, b̄ and leading order gluon radiation
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, C/A, R=1.2

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Fill it in, → show jets more clearly

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, m = 150 GeV

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 150 GeV, max(m1,m2)
m

= 0.92 → repeat
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 139 GeV, max(m1,m2)
m

= 0.37 → mass drop

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.



Jets, G. Salam, LPTHE (p. 14)

Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2

pt1
≃ 0.7→ OK + 2 b-tags (anti-QCD)
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Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.



Jets, G. Salam, LPTHE (p. 14)

Boosted object finding pp → ZH → νν̄bb̄, @14TeV, mH =115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

SIGNAL
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 0.05

 0.1
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 80  100  120  140  160
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200 < ptZ < 250 GeV

Zbb BACKGROUND
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 0.008
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200 < ptZ < 250 GeV

arbitrary norm.
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Boosted object finding Compare with “standard” algorithms

Check mass spectra in HZ channel, H → bb̄, Z → ℓ+ℓ−

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→HZ, H→b-jets

100% b-tagged

(a) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→Zj(b in event)

b-tagged

(b) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 80  90  100  110  120  130  140  150

1/
N

 d
N

/d
m

m [GeV]

300 < ptZ/GeV < 350

pp→Zj

no b-tagging

(c) C/A MD-F, R=1.2
kt, R=1.0

anti-kt, R=1.0

SISCone, R=0.8

Cambridge/Aachen (C/A) with mass-drop and filtering (MD/F) works best
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Results The full analysis (scaled to 30 fb−1)

Consider HW and HZ signals: H → bb̄, W → ℓν, Z → ℓ+ℓ− and Z → νν̄,
3 channels: ℓ± + /ET ; ℓ+ℓ−; /ET

Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηHiggs−jet | < 2.5

◮ ℓ = e, µ, pt,ℓ > 30 GeV, |ηℓ| < 2.5

◮ No extra ℓ, b’s with |η| < 2.5

Channel-specific cuts: see next slide

Assumptions

◮ Real/fake b-tag rates: 0.7/0.01 optimistic, but not inconceivable

◮ S/
√

B from 16 GeV window ATLAS jet-mass resln ∼ half this?

Tools: Herwig 6.510, Jimmy 4.31 (tuned), hadron-level → FastJet 2.3
Backgrounds: VV , Vj , jj , tt̄, single-top, with > 30 fb−1 (except jj)
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Results combine HZ and HW, pt > 200 GeV

Leptonic channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.7/0.01

◮ S/
√

B from 16 GeV window

Leptonic channel
Z → µ+µ−, e+e−

◮ 80 < mℓ+ℓ− < 100 GeV

At 5.9σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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Results combine HZ and HW, pt > 200 GeV

Missing ET channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.7/0.01

◮ S/
√

B from 16 GeV window

Missing-Et channel
Z → νν̄, W → ν[ℓ]

◮ /ET > 200 GeV

At 5.9σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!



Jets, G. Salam, LPTHE (p. 17)

Results combine HZ and HW, pt > 200 GeV

Semi-leptonic channel Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.7/0.01

◮ S/
√

B from 16 GeV window

Semi-leptonic channel
W → νℓ

◮ /ET > 30 GeV (& consistent W .)

◮ no extra jets |η| < 3, pt > 30

At 5.9σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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Results combine HZ and HW, pt > 200 GeV

3 channels combined Common cuts

◮ ptV , ptH > 200 GeV

◮ |ηH | < 2.5

◮ [pt,ℓ > 30 GeV, |ηℓ| < 2.5]

◮ No extra ℓ, b’s with |η| < 2.5

◮ Real/fake b-tag rates: 0.7/0.01

◮ S/
√

B from 16 GeV window

3 channels combined
Note excellent VZ , Z → bb̄

peak for calibration

NB: qq̄ is mostly tt̄

At 5.9σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!
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Results Rough impact of going to high-pt

How can we be doing so well despite losing factor 20 in X-sct?

Signal Background

Eliminate tt̄, etc. − ×1/3 [very approx.]
pt > 200 GeV ×1/20 ×1/60 [bkgds: Wbb̄,Zbb̄]
improved acceptance ×4 ×4
twice better resolution − ×1/2
add Z → νν̄ ×1.5 ×1.5

total ×0.3 ×0.017

much better S/B; better S/
√

B

[exact numbers depend on analysis details]
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Results Impact of b-tagging, Higgs mass

b Mistag Probability
0.02 0.04 0.06 0.08 0.1

S
ig

ni
fic

an
ce
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3

4

5

6

7
200GeV R = 1.2 Eff = 70%

300GeV R = 0.7 Eff = 70%

200GeV R = 1.2 Eff = 60%

300GeV R = 0.7 Eff = 60%

(a)

Higgs Mass (GeV)
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S
ig
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fic
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4

5

6

7
200GeV R = 1.2 Eff = 70% (1%)

300GeV R = 0.7 Eff = 70% (1%)

200GeV R = 1.2 Eff = 60% (2%)

300GeV R = 0.7 Eff = 60% (2%)

(b)

Most scenarios above 3σ

For it to be a significant discovery channel requires decent b-tagging,
lowish mass Higgs [and good experimental resolution]

In nearly all cases, looks feasible for extracting WH, ZH couplings
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tt̄

Boosted top
[hadronic decays]
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tt̄ X → tt̄ resonances of varying difficulty

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 500 times tt̄
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tt̄

Boosted top
Tagging boosted top-quarks

High-pt top production often envisaged in New Physics processes.
∼ high-pt EW boson, but: top has 3-body decay and is coloured.

4 papers on top tagging in ’08 (at least). All use the jet mass + something
extra.

Questions

◮ What efficiency for tagging top?
◮ What rate of fake tags for normal jets?

Rough results for top quark with pt ∼ 1 TeV

“Extra” eff. fake

[from T&W] just jet mass 50% 10%
Brooijmans 3,4 kt subjets, dcut 45% 5%
Thaler & Wang 2,3 kt subjets, zcut + various 40% 5%
Kaplan et al. 3,4 C/A subjets, zcut + θh 40% 1%
Almeida et al. predict mass distn, use jet-shape – –
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tt̄

Boosted top
Efficiency v. pt with calo (0.1x0.1)
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tt̄

Boosted top
Fair assumptions for detector?

Theory tt̄ studies use η − φ segmentation of 0.1. Limiting when ∆R ∼ 0.1
But charged tracks and EM-calo provide much better angular resolution.

two-body mass

m ≃ Etotal

√

z(1− z)∆R

For z ≥ 0.2:

25% error on z ⇔
. 10% error on mass

Etotal

h−cal

e−cal

tracker

for total
energy

for angular
distribution
of energy?

z, ∆R

Even rough info from tracks & e-cal very valuable
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tt̄

Boosted top
Efficiency v. pt (ideal detector)

without detector segmentation
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tt̄

Boosted top
Using (coloured!) boosted top-quarks

If you want to use the tagged top (e.g. for tt̄ invariant mass) QCD tells you:

the jet you use to tag a top quark 6= the jet you use to get its pt

t

b
jet for
top−tag

jet for
top p t

Within inner cone ∼ 2mt

pt
(dead cone)

you have the top-quark decay prod-
ucts, but no radiation from top

ideal for reconstructing top mass

Outside dead cone, you have radia-
tion from top quark

essential for top pt

Cacciari, Rojo, GPS & Soyez ’09
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tt̄

Boosted top
Impact of using small cone angle

Use small cone
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Use large cone
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Figure actually from 0810.1304 (Cacciari, Rojo, GPS & Soyez)

for light qq̄ resonance — but tt̄ will be similar

How you look at your event matters: http://quality.fastjet.fr/

http://quality.fastjet.fr/
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Closing Conclusions

General

◮ Boosted EW-scale particles can be found in jets

◮ Cambridge/Aachen alg. is very powerful (flexible, etc.) tool for this

◮ General two-body eff/fake is 60% v. 3− 7%

Higgs discovery

◮ high-pt limit recovers WH and ZH channel at LHC

◮ Separately see WH, ZH couplings

◮ Deserves & needs in-depth experimental study
ongoing/starting within ATLAS/CMS

Top

◮ Efficiencies/fake rates: up to 40/1(2)%

◮ Only get this if detector can resolve fine structure

◮ Top-quark at decay (the one you tag) and top-quark at production are
different objects need different R for them
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Extras

EXTRAS
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Extras Jet-alg comparison

Cross section for signal and the Z+jets background in the leptonic Z
channel for 200 < pTZ/GeV < 600 and 110 < mJ/GeV < 125, with
perfect b-tagging; shown for our jet definition (C/A MD-F), and other
standard ones close to their optimal R values.

Jet definition σS/fb σB/fb S/
√

B · fb
C/A, R = 1.2, MD-F 0.57 0.51 0.80
kt , R = 1.0, ycut 0.19 0.74 0.22
SISCone, R = 0.8 0.49 1.33 0.42
anti-kt , R = 0.8 0.22 1.06 0.21
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Extras K -factors

Analysis shown without K factors. What impact do they have?
Determined with MCFM, MC@NLO

◮ Signal: K ∼ 1.6

◮ Vbb backgrounds: K ∼ 2− 2.5

◮ tt̄ backgrounds: K ∼ 2 for total; not checked for high-pt part

Conclusion: S/
√

B should not be severely affected by NLO contributions
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Extras Worsen b-tagging: 60%/2%
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Extras Raise pt cut to 300 GeV
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ground
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