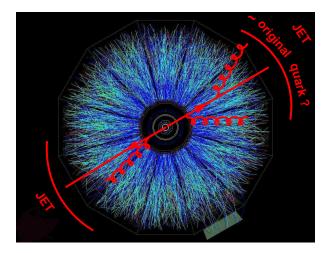
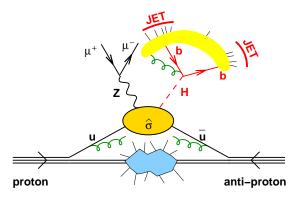

New Jet Methods for High-Multiplicity Environments

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

APS April Meeting Washington D.C., 14 February 2010

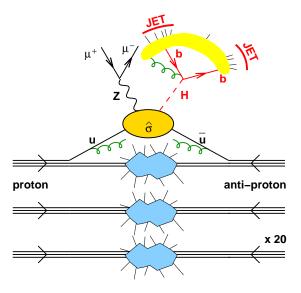

Based on work (some preliminary) with Matteo Cacciari, Juan Rojo, Sebastian Sapeta, Gregory Soyez

Jets in Heavy-Ion Collisions



Radiation from high-momentum quarks & gluons traversing hot medium can tell us about the medium

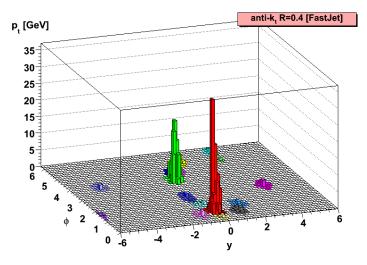
Jets in Heavy-Ion Collisions


Radiation from high-momentum quarks & gluons traversing hot medium can tell us about the medium

Use jets to reconstruct quarks from decay of some new heavy object

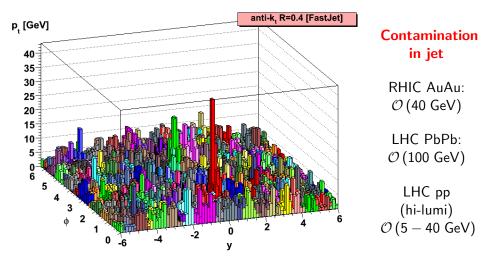
e.g. a Higgs boson

At high luminosity, many simultaneous *pp* collisions – not unlike AuAu/PbPb collision

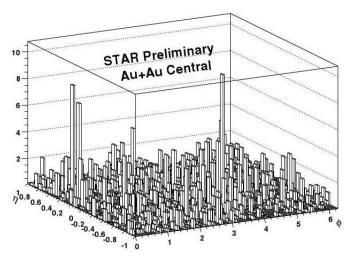


Use jets to reconstruct quarks from decay of some new heavy object

e.g. a Higgs boson


At high luminosity, many simultaneous *pp* collisions – not unlike AuAu/PbPb collision

Common challenge: large contamination



A pp event (LHC 5.5 TeV, Pythia)

Common challenge: large contamination

A pp event (LHC 5.5 TeV, Pythia), embedded in a HI collision background (Hydjet 1.5)

Contamination in jet

RHIC AuAu: $\mathcal{O}(40 \text{ GeV})$

LHC PbPb: $\mathcal{O}(100 \text{ GeV})$

LHC pp (hi-lumi) $\mathcal{O}(5-40 \text{ GeV})$

A pp event (LHC 5.5 TeV, Pythia), embedded in a HI collision background (Hydjet 1.5) and an actual STAR event

What are ingredients of jet finding in noisy environments?

1. Jets

2. Jet areas

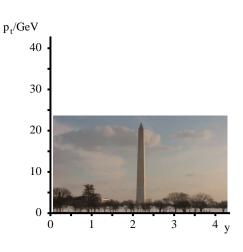
- 3. Noise estimation
- 4. Noise subtraction
- [5. Noise suppression]

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

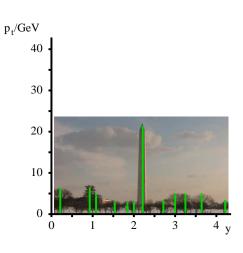


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

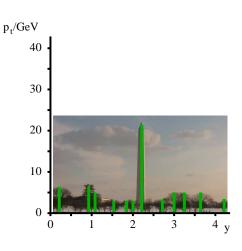


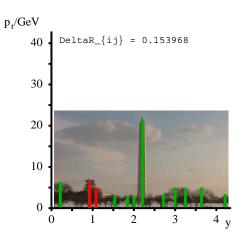
A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$




A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

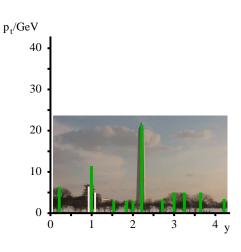
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

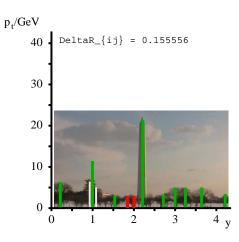
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def.}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

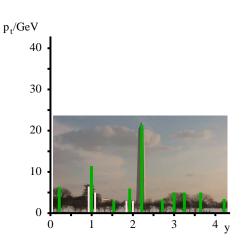
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

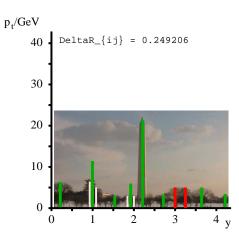
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{\textit{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

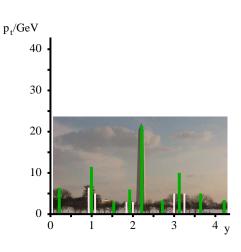
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

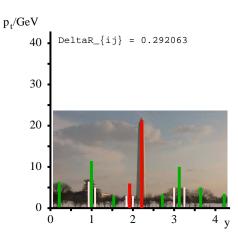
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{\textit{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

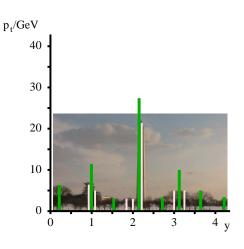
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

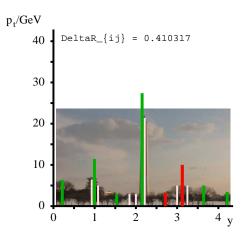
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

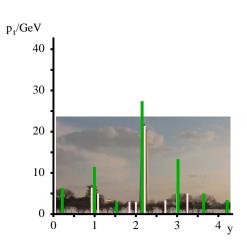
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

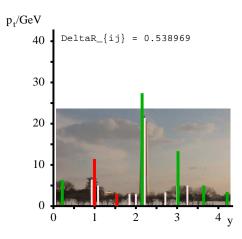
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def.}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

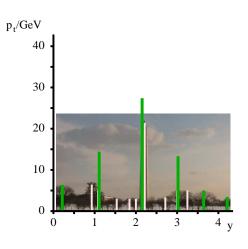
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

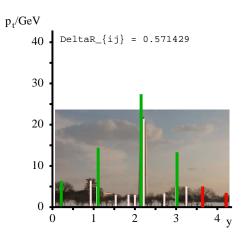
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def.}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

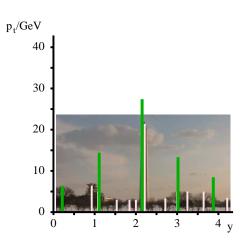
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

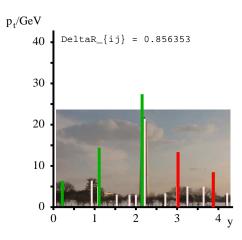
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{\textit{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

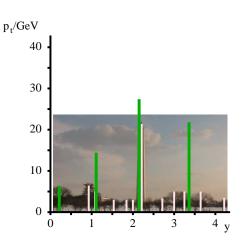
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

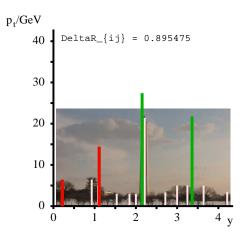
Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{\textit{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

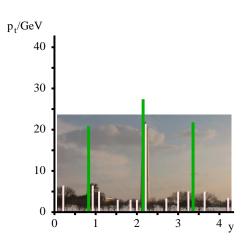
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def.}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

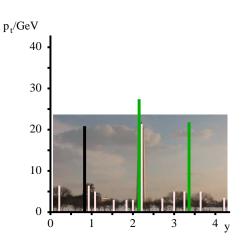
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

p_t/GeV DeltaR_{ij} > 1 40 30 20 10 0 2 3 A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

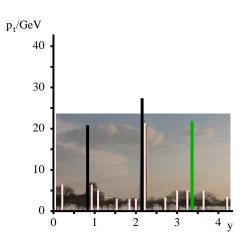
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

p_t/GeV DeltaR_{ij} > 1 40 30 20 10 0 2 3 A jet algorithms provides a mapping:

particles $\xrightarrow{jet.def.}$ jets

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98


Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

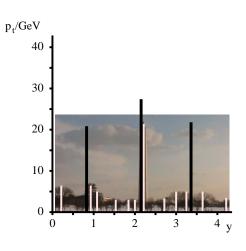
p_t/GeV DeltaR_{ij} > 1 40 30 20 10 0 2 3 A jet algorithms provides a mapping:

$$\underset{\textit{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

Jets?


A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathit{jet.def.}}{\longrightarrow} \mathsf{jets}$$

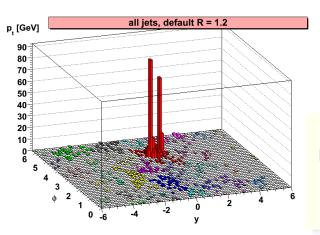
Simplest pp jet algorithm is "Cambridge/Aachen" Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

R parameter sets angular resolution ϕ assumed 0 for all towers

Jet areas

Jets are made of finite number of pointlike particles.


Area not unambiguous concept

Jet areas must be defined

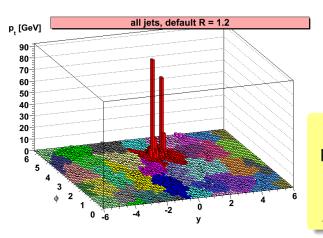
Add many soft particles to event $10^{-100 \text{ GeV}}$ each

 $A \propto \#$ inside jet

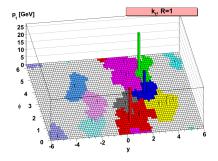
Cacciari, GPS & Soyez '08 measure of jet's susceptibility to contamination from soft radiation

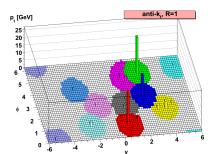
Jet areas

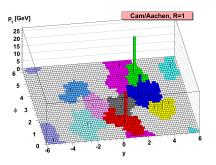
Jets are made of finite number of pointlike particles.


Area not unambiguous concept

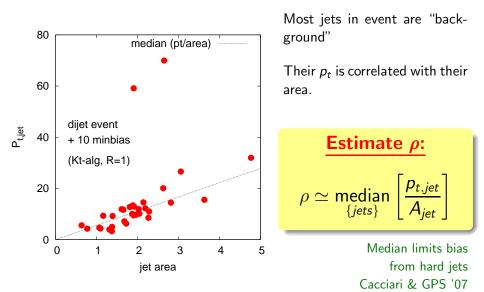
Jet areas must be defined


Add many soft particles to event $10^{-100 \text{ GeV}}$ each


```
A \propto \# inside jet
```


Cacciari, GPS & Soyez '08 measure of jet's susceptibility to contamination from soft radiation

Areas for 3 jet algorithms



A family of algorithms, all cluster pair with smallest d_{ij} :

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$$

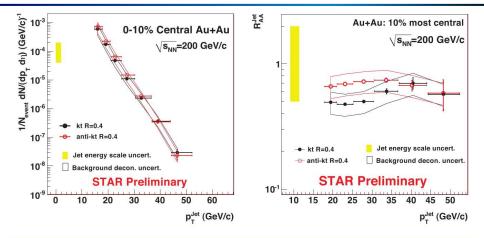
$$p = \left\{ egin{array}{ccc} 1 & k_t \ 0 & {
m C}/{
m A} \ -1 & {
m anti-}k_t \end{array}
ight.$$

Estimating $\rho\equiv$ background noise level

$$p_{t,jet}^{\text{subtracted}} = p_{t,jet} - \rho \times A_{jet}$$

$$A_{jet} = \mathsf{jet}$$
 area

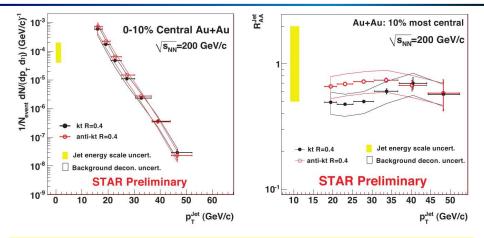
$\rho = p_t$ per unit area from underlying event (or "background")


This procedure is intended to be common to pp, pp with pileup (multiple simultaneous minbias) and HIC

NB in AuAu at RHIC: $p_{t,jet}^{
m subtracted}=20-50~{
m GeV}$, $ho\simeq 80~{
m GeV}$ and $A_{jet}\simeq 0.5$

Use at RHIC

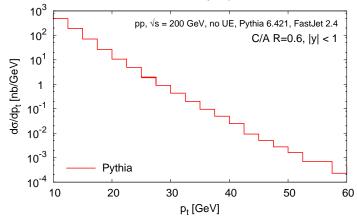
HIC Jets, G. Salam (p. 12) RHIC, systematics


This method is basis of STAR jet results

Method designed to minimise biases, but some still persist. STAR corrects remaining biases based (partly) on Monte Carlo modelling. Question: can we calculate size of biases? Can we further reduce them? Identify complementary methods?

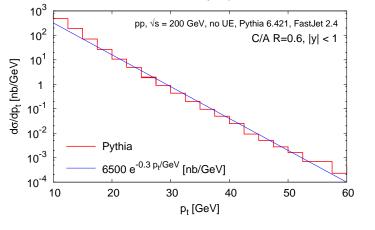
HIC Jets, G. Salam (p. 12) RHIC, systematics

This method is basis of STAR jet results



Method designed to minimise biases, but some still persist. STAR corrects remaining biases based (partly) on Monte Carlo modelling. Question: can we calculate size of biases? Can we further reduce them? Identify complementary methods?

HIC Jets, G. Salam (p. 13) HIC, systematics


Context: a steeply falling X-section

RHIC Inclusive jet spectrum

Context: a steeply falling X-section

RHIC Inclusive jet spectrum

To help think about impact of falling cross section at RHIC, approximate it as:

$$rac{d\sigma}{dp_t} \sim \exp(-0.3p_t/\text{ GeV})$$

Interplay of PDFs & $1/p_t^4$ matrix element

The problem is basically about **subtracting the correct** amount of "underlying event" from each jet, in order to reconstruct correct jet energy.

Take the model for the jet spectrum, $\exp(-ap_t)$ $a = 0.3 \text{ GeV}^{-1}$

Suppose you make a "mistake":

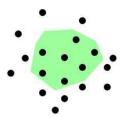
Systematic offset in
$$p_t$$
 by $\delta p_{t,jet}$
 \longrightarrow mistake in spectrum by factor $\exp(a \, \delta p_{t,jet})$
If $\delta p_{t,jet} = 3$ GeV, factor = 2.5

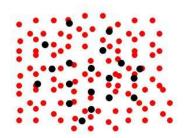
► Gaussian error of std.dev. σ_{jet} in subtraction \longrightarrow mistake in spectrum by factor $\exp(a^2 \sigma_{jet}^2/2)$ If $\sigma_{jet} = 5$ GeV, factor = 3.1

You want to know R_{AA} to within a few tens of percent. Residual systematic offsets must be understood to within 1 GeV. Fluctuations must be as small as possible, and accurately known.

Example #1: a bias

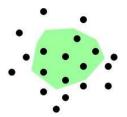
(background does not just linearly add noise to jet)

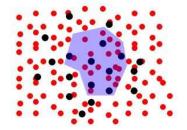

"How (much) a jet changes when immersed in a background"


Without background

"How (much) a jet changes when immersed in a background"

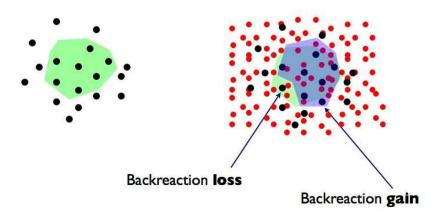
Without background





"How (much) a jet changes when immersed in a background"

Without background


With background

"How (much) a jet changes when immersed in a background"

Without background With background

Backreaction can be calculated (sort of...)

Soft & collinear approximation:

HIC Jets, G. Salam (p. 17)

RHIC, systematics

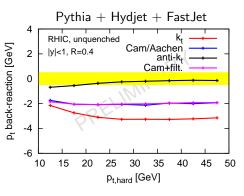
$$\delta p_t^{BR} = \mathcal{B}_{alg} \cdot \rho R^2 \frac{2C_i}{\pi} \alpha_{\rm s} \ln \frac{p_t}{\rho R^2}$$

Cacciari, GPS & Soyez '08 + large corrections

jet alg
$$\mathcal{B}_{alg}$$

 k_t -0.3
C/A -0.3
anti- k_t 0

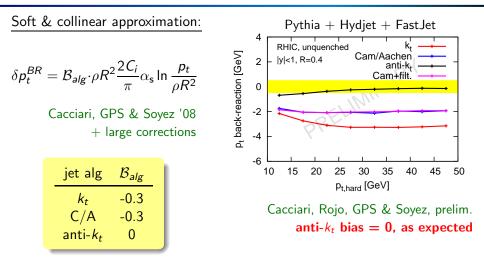
HIC Jets, G. Salam (p. 17) RHIC, systematics


Backreaction can be calculated (sort of...)

Soft & collinear approximation:

$$\delta p_t^{BR} = \mathcal{B}_{alg} \cdot \rho R^2 \frac{2C_i}{\pi} \alpha_{\rm s} \ln \frac{p_t}{\rho R^2}$$

Cacciari, GPS & Soyez '08 + large corrections

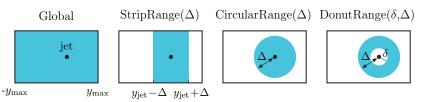

jet alg
$$\mathcal{B}_{alg}$$

 k_t -0.3
C/A -0.3
anti- k_t 0

Cacciari, Rojo, GPS & Soyez, prelim. **anti**- k_t **bias** = **0**, **as expected**

HIC Jets, G. Salam (p. 17) RHIC, systematics

Backreaction can be calculated (sort of...)

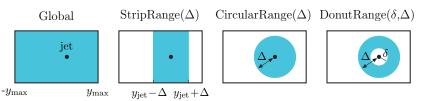


Different jet algorithms have different systematics Use of more than one provides important cross-checks

Example #2: another bias is ρ measured correctly?

What could go wrong?

Rapidity and azimuth dependence of ρ distribution means ρ near jet ≠ ρ measured over large region. So try various regions:


• Median estimate \neq mean contamination. Can be studied in toy models:

$$\rho^{\textit{median}} \simeq \rho^{\textit{true}} \left(1 - \frac{1}{3\nu R^2} \right)$$

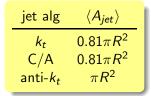
 ν = number of particles / unit area With ν = 100, R = 0.4, $\mathcal{O}(2\%) \rightarrow \mathcal{O}(1 \text{ GeV})$ on jet p_t Cacciari, GPS & Sapeta '09, for measuring $\rho \sim 2 \text{ GeV}$ in pp collisions!

What could go wrong?

Rapidity and azimuth dependence of ρ distribution means ρ near jet ≠ ρ measured over large region. So try various regions:

• Median estimate \neq mean contamination. Can be studied in toy models:

$$ho^{median} \simeq
ho^{true} \left(1 - rac{1}{3
u R^2}
ight)$$

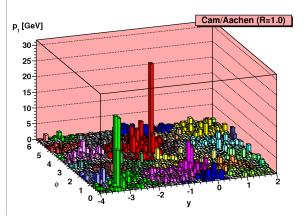

 $\nu =$ number of particles / unit area With $\nu = 100$, R = 0.4, $\mathcal{O}(2\%) \rightarrow \mathcal{O}(1 \text{ GeV})$ on jet p_t Cacciari, GPS & Sapeta '09, for measuring $\rho \sim 2 \text{ GeV}$ in pp collisions!

Example #3: fluctuations

Fluctuations of amount of background / underlying-event in a square of unit area can be characterised in terms of σ_{UE} , which is \mathcal{O} (10 GeV) at RHIC.

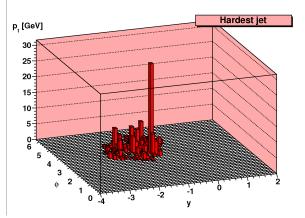
Dispersion in jet subtraction, σ_{jet} is given by

 $\sigma_{jet} = \sigma_{UE} \times \sqrt{A_{jet}}$

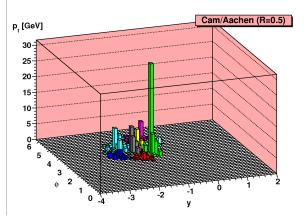

+ p_t -dependent scaling violations for k_t and C/A

Put in numbers and find $\sigma_{jet} \sim 7$ GeV. This is dangerous Steeply falling spectrum rescaled by $\times 10$? Obvious solution: reduce *R*

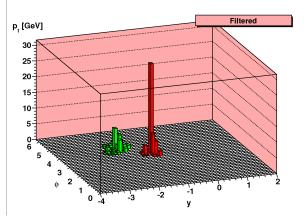
But then lose gluon radiation Can be very severe with quenching cf. STAR tried R = 0.2 instead of 0.4


Reducing fluctuations, while limiting bias:

filtering

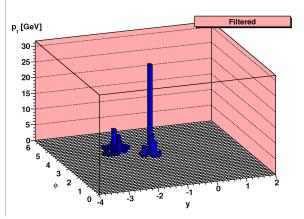

1. Consider a jet

- View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet



1. Consider a jet

- View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet



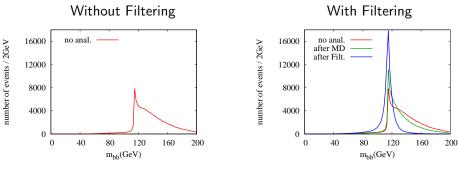
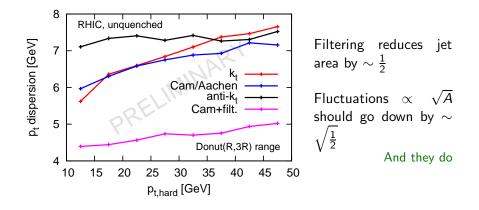
- 1. Consider a jet
- 2. View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet

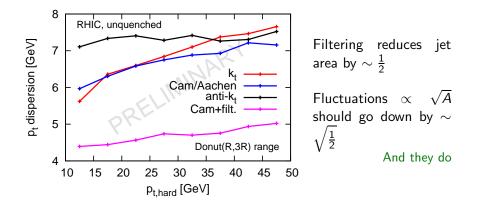
- 1. Consider a jet
- 2. View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon

4. The result is a "filtered" jet

- 1. Consider a jet
- 2. View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet

Reconstructed mass for jets from decay of high-pt Higgs-boson [without pileup]

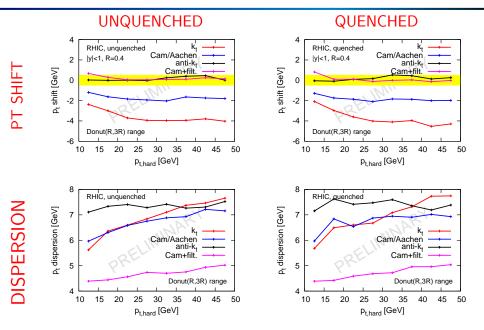




Figure from Rubin

Among the techniques adopted in search for $H \rightarrow b\bar{b}$ at LHC

HIC Jets, G. Salam (p. 25) Filtering

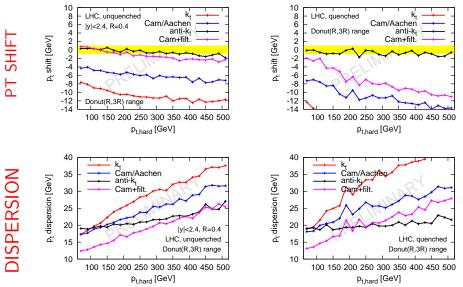
HIC Jets, G. Salam (p. 25) Filtering


Filtering's reduction of dispersion from 7 GeV to 5 GeV means experimental "unfolding" might be factor 3 instead of factor 10

Numbers are rough – intended to give an idea of impact Alternative ideas: see Cole & Lai '08

Does filtering introduce new biases in jets in quenched case?

Vacuum QCD: we know how much gluon radiation we lose QCD in medium: extra medium-induced radiation lost?


Summary RHIC (Pythia/Hydjet)

Summary LHC (Pythia/Hydjet)

QUENCHED

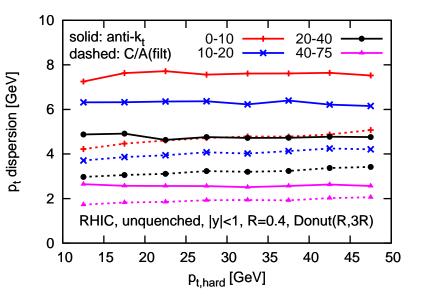
It's still early days for jet-finding in HIC (& high-luminosity LHC)

It's a tough job to accurately remove 40 GeV of noise from a 40 GeV hard jet in the context of a steeply falling cross-section.

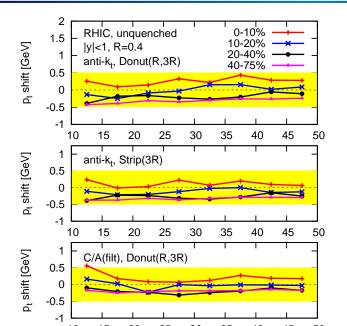
Theory calculations can guide the choices one makes

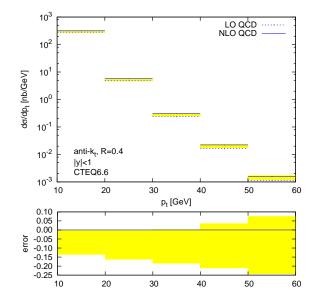
Give us an idea of size of corrections semi-independently of Monte Carlo Some of them are rather large

Tell us which approaches are complementary in their systematics Adding to robustness of experimental measurements, e.g. k_t v. anti-k_t NB: it's still hard to estimate how quenching affects systematics


Guide design of new tools that have smaller systematics
 Like filtering, yet to be tried out at RHIC

Important potential for cross-fertilization between ideas in HIC and LHC pp programs.


EXTRAS


Disperson for non central AuAu

P_t shift for non central AuAu

HIC Jets, G. Salam (p. 33) Extras L_Jet spectrum

