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Introduction Jets in Heavy-Ion Collisions

Radiation from high-momentum quarks & gluons
traversing hot medium can tell us about the medium
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Introduction Common challenge: large contamination

A pp event (LHC 5.5 TeV, Pythia)
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Contamination
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RHIC AuAu:
O (40 GeV)

LHC PbPb:
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LHC pp
(hi-lumi)

O (5 − 40 GeV)
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Jet methods

What are ingredients of jet finding
in noisy environments?

1. Jets

2. Jet areas
3. Noise estimation

4. Noise subtraction
[5. Noise suppression]
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Jet methods Jets?

A jet algorithms provides a map-
ping:

particles −→
jet.def .

jets

Simplest pp jet algorithm is
“Cambridge/Aachen”

Dokshitzer et al ’97

Wengler & Wobisch ’98

Repeatedly recombine closest pair
of objects, until all separated by
∆R2

ij = ∆y2
ij + ∆φ2

ij > R2.

R parameter sets angular resolution

φ assumed 0 for all towers
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Jet methods Jet areas

Jets are made of
finite number of
pointlike particles.

Area not unambi-

guous concept

Jet areas must be

defined

Add many soft
particles to event

10−100 GeV each

A ∝ # inside jet

Cacciari, GPS & Soyez ’08
measure of jet’s susceptibility to contamination from soft radiation
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Jet methods Areas for 3 jet algorithms

A family of algorithms, all cluster
pair with smallest dij :

dij = min(p2p
ti , p2p

tj )
∆R2

ij

R2

p =







1 kt

0 C/A
−1 anti-kt
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Jet methods Estimating ρ ≡ background noise level
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P
t,j

et

jet area

dijet event
+ 10 minbias

(Kt-alg, R=1)

median (pt/area)

Most jets in event are “back-
ground”

Their pt is correlated with their
area.

Estimate ρρρ:

ρ ≃ median
{jets}

[

pt,jet

Ajet

]

Median limits bias

from hard jets

Cacciari & GPS ’07
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Jet methods Subtracting noise from jets

psubtracted
t,jet = pt,jet − ρ × Ajet

Ajet = jet area

ρ = pt per unit area from underlying event

(or “background”)

This procedure is intended to be common to pp, pp with
pileup (multiple simultaneous minbias) and HIC

NB in AuAu at RHIC: psubtracted
t,jet = 20 − 50 GeV, ρ ≃ 80 GeV and Ajet ≃ 0.5
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RHIC, systematics

Use at RHIC



HIC Jets, G. Salam (p. 12)

RHIC, systematics This method is basis of STAR jet results

Method designed to minimise biases, but some still persist.
STAR corrects remaining biases based (partly) on Monte Carlo modelling.

Question: can we calculate size of biases? Can we further reduce them?
Identify complementary methods?
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RHIC, systematics Context: a steeply falling X-section
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RHIC, systematics Context: a steeply falling X-section
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6500 e-0.3 pt/GeV [nb/GeV]

To help think about impact of falling cross
section at RHIC, approximate it as:

dσ

dpt

∼ exp(−0.3pt/ GeV)

Interplay of PDFs & 1/p4
t matrix element
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RHIC, systematics The numbers (for RHIC)

The problem is basically about subtracting the correct amount of
“underlying event” from each jet, in order to reconstruct correct jet energy.

Take the model for the jet spectrum, exp(−apt) a = 0.3 GeV−1

Suppose you make a “mistake”:

◮ Systematic offset in pt by δpt,jet

−→ mistake in spectrum by factor exp(a δpt,jet)
If δpt,jet = 3 GeV, factor = 2.5

◮ Gaussian error of std.dev. σjet in subtraction
−→ mistake in spectrum by factor exp(a2σ2

jet/2)
If σjet = 5 GeV, factor = 3.1

You want to know RAA to within a few tens of percent.

Residual systematic offsets must be understood to within 1 GeV.
Fluctuations must be as small as possible, and accurately known.
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RHIC, systematics

Example #1: a bias
(background does not just linearly add noise to jet)



Slide from M. Cacciari

BACK REACTION



Slide from M. Cacciari

BACK REACTION



Slide from M. Cacciari

BACK REACTION



Slide from M. Cacciari

BACK REACTION



HIC Jets, G. Salam (p. 17)

RHIC, systematics Backreaction can be calculated (sort of...)

Soft & collinear approximation:

δpBR
t = Balg ·ρR2 2Ci

π
αs ln

pt

ρR2

Cacciari, GPS & Soyez ’08

+ large corrections

jet alg Balg

kt -0.3
C/A -0.3

anti-kt 0
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Different jet algorithms have different systematics

Use of more than one provides important cross-checks
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RHIC, systematics

Example #2: another bias
is ρ measured correctly?
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RHIC, systematics Bias in median estimate for ρ?

What could go wrong?

◮ Rapidity and azimuth dependence of ρ distribution means ρ near jet 6= ρ
measured over large region. So try various regions:

Global StripRange(∆) CircularRange(∆) DonutRange(δ,∆)

jet

-ymax ymax yjet−∆ yjet+∆

∆ ∆ δ

◮ Median estimate 6= mean contamination. Can be studied in toy models:

ρmedian ≃ ρtrue

(

1 − 1

3νR2

)

ν = number of particles / unit area

With ν = 100, R = 0.4, O (2%) → O (1 GeV) on jet pt

Cacciari, GPS & Sapeta ’09, for measuring ρ ∼ 2 GeV in pp collisions!
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RHIC, systematics

Example #3: fluctuations
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RHIC, systematics Fluctuations

Fluctuations of amount of background / underlying-event in a square of unit
area can be characterised in terms of σUE , which is O (10 GeV) at RHIC.

Dispersion in jet subtraction, σjet is given by

σjet = σUE ×
√

Ajet

jet alg 〈Ajet〉
kt 0.81πR2

C/A 0.81πR2

anti-kt πR2

+ pt-dependent scaling

violations for kt and C/A

Put in numbers and find σjet ∼ 7 GeV.
This is dangerous

Steeply falling spectrum rescaled by ×10?

Obvious solution: reduce R

But then lose gluon radiation

Can be very severe with quenching

cf. STAR tried R = 0.2 instead of 0.4
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Filtering

Reducing fluctuations, while
limiting bias:

filtering
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Filtering Filtering

Idea to improve resolution for an LHC Higgs search in H → bb̄ decay mode!

Keep hardest O (αs) gluon emission in jet, while throwing out soft “junk”
Butterworth, Davison, Rubin & GPS ’08

1. Consider a jet

2. View it on smaller
angular resolution
scale Rfilt

3. Take (e.g.) 2
hardest “subjets”

leading quark + 1 gluon

4. The result is a
“filtered” jet

Related ideas by Ellis, Vermillion & Walsh ’09 and Krohn, Thaler & Wang ’09
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Filtering LHC Higgs-boson search & filtering

Reconstructed mass for jets from decay of high-pt Higgs-boson

[without pileup]

Without Filtering

 0

 4000

 8000

 12000

 16000

 0  40  80  120  160  200

nu
m

be
r 

of
 e

ve
nt

s 
/ 2

G
eV

mbb(GeV)

no anal.

With Filtering

 0

 4000

 8000

 12000

 16000

 0  40  80  120  160  200

nu
m

be
r 

of
 e

ve
nt

s 
/ 2

G
eV

mbb(GeV)

no anal.
after MD
after Filt.

Figure from Rubin

Among the techniques adopted in search for H → bb̄ at LHC
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Filtering Impact of filtering on dispersion in HIC
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And they do

Filtering’s reduction of dispersion from 7 GeV to 5 GeV means
experimental “unfolding” might be factor 3 instead of factor 10

Numbers are rough – intended to give an idea of impact

Alternative ideas: see Cole & Lai ’08
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Filtering

Does filtering introduce new biases
in jets in quenched case?

Vacuum QCD: we know how much gluon radiation we lose

QCD in medium: extra medium-induced radiation lost?
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Filtering Summary RHIC (Pythia/Hydjet)
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Filtering Summary LHC (Pythia/Hydjet)
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Conclusions Conclusions

It’s still early days for jet-finding in HIC (& high-luminosity LHC)

It’s a tough job to accurately remove 40 GeV of noise from a 40 GeV hard

jet in the context of a steeply falling cross-section.

Theory calculations can guide the choices one makes

◮ Give us an idea of size of corrections semi-independently of Monte Carlo
Some of them are rather large

◮ Tell us which approaches are complementary in their systematics
Adding to robustness of experimental measurements, e.g. kt v. anti-kt

NB: it’s still hard to estimate how quenching affects systematics

◮ Guide design of new tools that have smaller systematics
Like filtering, yet to be tried out at RHIC

Important potential for cross-fertilization between ideas in
HIC and LHC pp programs.
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Extras

EXTRAS
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Extras

Centrality dependence
Disperson for non central AuAu
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Extras

Centrality dependence
Pt shift for non central AuAu
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Extras

Jet spectrum
Anti-kt jet spectrum, pp
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