Jets, UE and early LHC data

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

LHC@BNL

Joint Theory/Experiment Workshop on Early Physics at the LHC

8 February 2010 Brookhaven National Laboratory, Upton, USA

Based on work with

Jon Butterworth, Andrea Banfi, Matteo Cacciari, John Ellis, Are Raklev, Sebastian Sapeta, Gregory Soyez, Giulia Zanderighi

LHC is a parton collider

- Quarks and gluons are inevitable in initial state
- and ubiquitous in the final state

Partons — quarks and gluons — are key concepts of QCD.

- Lagrangian is in terms of quark and gluon fields
- Perturbative QCD only deals with partons

Though we often talk of quarks and gluons, we never see them

- ▶ Not an asymptotic state of the theory because of confinement
- But also even in perturbation theory

because of collinear divergences (in massless approx.)

The closest we can get to handling final-state partons is jets

Jets as projections

Projection to jets provides "universal" view of event

QCD jets flowchart

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses

QCD jets flowchart

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses <u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- RecombineBottom-up jets:RepeatSequential recombination
(attempt to invert QCD branching) $\Delta R_{ij} = (\varphi_i \varphi_j)^2 + (y_i y_j)^2$ $\wedge rapidity y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i p_{zi}}$ $\wedge R_{ij}$ is boost invariant angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)

Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + \rho_{zi}}{E_i - \rho_{zi}}$ ΔR_{ij} is boost invariant angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)

Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + \rho_{zi}}{E_i - \rho_{zi}}$ ΔR_{ij} is boost invariant angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)

Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$ ΔR_{ij} is boost invariant angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)

Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$ ΔR_{ij} is boost invariant angle

 k_t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91-'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine *i*, *j* (if *iB*: $i \rightarrow jet$)

Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables • $\Delta R_{ii}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ • rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$ • ΔR_{ii} is boost invariant angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$ ΔR_{ij} is boost invariant angle

R sets minimal interjet angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

Jets @ early LHC (p. 5)

Introduction

NB: hadron collider variables ► $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$ ► rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$

• ΔR_{ij} is boost invariant angle

R sets minimal interjet angle

<u>k</u>t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93 Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if $iB: i \rightarrow jet$)
- Repeat

Jets @ early LHC (p. 5)

Introduction

R sets minimal interjet angle

NB: d_{ij} distance \leftrightarrow QCD branching probability $\sim \alpha_s \frac{dk_{tj}^2 dR_{ij}^2}{d_{ij}}$

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence Cacciari, GPS & Soyez '08

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

$$k_t: d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \operatorname{anti-k_t}: d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

anti-k_t gives cone-like jets without using stable cones

ATLAS: first dijet event, with anti- k_t

Jets @ early LHC (p. 7)

Introduction

z [mm]

Jets @ early LHC (p. 8)

CMS: first dijet event, with anti- k_t

CMS Experiment at the LHC, CERN Date Recorded: 2009-12-06 07:18 GMT Run/Event: 123596 / 6732761 Candidate Dijet Collision Event With ATLAS and CMS having adopted anti- k_t as their default jet algorithm, LHC is the first hadron collider experiment to start running with a clear prospect for infrared and collinear jet-finding.

Crucial for future comparisons to QCD.

Limited luminosity

Jet energy scale poorly constrained $(\pm 10\%?)$

Steeply falling jet cross sections not well measured

Strategy?

Use purely hadronic events (large X-sct) Measure ratios of jet p_t 's, ratios of cross sections 1) Select events with two central jets, hardest with $p_{t1} > 100 \text{ GeV}$ $\sigma = O(100 \text{ nb}) @ 7 \text{ TeV}$

- **2)** Define $d_{23} = \text{maximum of}$
- 3rd hardest jet, p_{t3}^2
- k_t splitting scale of either of two central jets cf. substructure studies
- 3) Normalise to $Q^2 = (p_{t1} + p_{t2})^2$, $y_{23} = d_{23}/Q^2$ cancel (most of) Jet Energy Scale uncertainty

4) Plot differential distribution within selected events uncertainty on selected X-section cancels

You can compare to Monte Carlo parton showers Pythia, Herwig, Sherpa

Parton showers matched to tree-level matrix elements Alpgen (MLM), Madgraph (MLM), Sherpa (CKKW)

Non-MC predictions: NLL resummation + NLO CAESAR + NLOJET: controlled approximations Banfi, GPS & Zanderighi '10

Low p_t , gluon dominated

NLL+NLO v. showers

Low p_t , gluon dominated

Jets @ early LHC (p. 17) Early data

There are many other ways of combining event particle momenta to get "event shapes"

e.g. transverse thrust

Each with different sensitivity to QCD branching.

Hadronic observables not just for constraining Monte Carlos

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, *except* that neutralino is not LSP, but instead decays, $\tilde{\chi}_1^0 \rightarrow qqq$.

Jet combinatorics makes this a tough channel for discovery

• Produce pairs of squarks, $m_{\tilde{q}} \sim 500$ GeV.

• Each squark decays to quark + neutralino, $m_{\tilde{\chi}^0_1} \sim 100~{
m GeV}$

► Neutralino is somewhat boosted → jet with substructure

Butterworth, Ellis, Raklev & GPS '09

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, *except* that neutralino is not LSP, but instead decays, $\tilde{\chi}_1^0 \rightarrow qqq$.

Jet combinatorics makes this a tough channel for discovery

• Produce pairs of squarks, $m_{\tilde{q}} \sim 500$ GeV.

• Each squark decays to quark + neutralino, $m_{{ ilde\chi_1^0}} \sim 100~{
m GeV}$

► Neutralino is somewhat boosted → jet with substructure

Butterworth, Ellis, Raklev & GPS '09

Subjet decomposition procedures are not *just* trial and error.

Mass distribution for undecomposed jet:

$$\frac{1}{N}\frac{dN}{dm} \sim \frac{2C\alpha_{\rm s}\ln Rp_t/m}{m}e^{-C\alpha_{\rm s}\ln^2 Rp_t/m+\cdots}$$

Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within C/A jet that satisfies a symmetry cut ($z > z_{min}$):

$$\frac{1}{N}\frac{dN}{dm} \sim \frac{C'\alpha_{\rm s}(m)}{m} e^{-C'\alpha_{\rm s}\ln Rp_t/m+\cdots} \\ \sim \frac{C'\alpha_{\rm s}(Rp_t)}{m} \left[1 + \underbrace{(2b_0 - C')}_{\rm partial cancellation} \alpha_{\rm s}\ln Rp_t/m + \mathcal{O}\left(\alpha_{\rm s}^2\ln^2\right)\right]$$

Procedure gives nearly flat distribution in mdN/dm

Neutralino procedure involves 2 hard substructures, but ideas are similar

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet ($p_t > 500 \text{ GeV}$)
- Require 3-pronged substructure
- And third jet
 - And fourth central jet 99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third jet
 - And fourth central jet 99% background rejection scale-invariant procedure so remaining bkgd is flat
- Once you've found neutralino:
- Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet ($p_t > 500 \text{ GeV}$)
- Require 3-pronged substructure
- And third jet
 - And fourth central jet 99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- And fourth central jet
 99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- And fourth central jet
 99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

RPV SUSY, SPS1a, 1 fb $^{-1}$ [14 TeV]

Keep it simple:

Look at mass of leading jet

- ► Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- And fourth central jet
 99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

- ▶ All points use 1 fb⁻¹, 14 TeV
- \blacktriangleright Divide significance by \sim 3 for 7 TeV
- ► as m_{\chi} increases, m_{\tilde{q}} goes from 530 GeV to 815 GeV
- Same cuts as for main SPS1A analysis

no particular optimisation

Constraining low-*p*_t part of Monte Carlos Underlying Event

For each event

[Marchesini & Webber (1988), UA1 (1988), Field et al.]

- 1. take charged particles with $p_t > 0.5 \ {\rm GeV}$ and |y| < 1
- 2. cluster with cone jet algorithm with R=0.7 to find the leading jet
- 3. define typical p_t of UE as $\langle p_t \rangle$ in TransMin, TransMax or TransAv regions

topological separation: UE defined as particles entering certain region of (y, ϕ) space

For each event

[Cacciari, Salam, Soyez ('08), http://fastjet.fr]

- 1. cluster particles with an infrared safe jet finding algorithm (all particles are clustered so we have set of jets ranging from hard to soft) only k_t or C/A algs
- from the list of all jets (no cuts required!) determine

$$\rho = \operatorname{median}\left[\left\{\frac{p_{t,j}}{A_j}\right\}\right]$$

and its uncertainty σ

- median gives a typical value of p_t/A for a given event
- using median is a way to dynamically separate hard and soft parts of the event

For each event

[Cacciari, Salam, Soyez ('08), http://fastjet.fr]

- cluster particles with an infrared safe jet finding algorithm (all particles are clustered so we have set of jets ranging from hard to soft)
 only k_t or C/A algs
- 2. from the list of all jets (no cuts required!) determine

$$\rho = \mathrm{median}\left[\left\{\frac{p_{t,j}}{A_j}\right\}\right]$$

and its uncertainty $\boldsymbol{\sigma}$

- median gives a typical value of p_t/A for a given event
- using median is a way to dynamically separate hard and soft parts of the event

How do you decide when one method works better than another?

Cacciari, GPS & Sapeta '10

Questions

- should initial and final state radiation be called part of the underlying event?
- are multiple parton interactions responsible for most of the underlying activity?

Do the methods measure "UE" or perturbative radiation?

- If you can't define what UE is, you can't answer the question
- So try a simplistic, but well-defined toy model

Soft component (UE)

Independent emission with spectrum

$$\frac{1}{n}\frac{dn}{dp_t} = \frac{1}{\mu}e^{-p_t/\mu}$$

 $\langle Number \rangle$ of emissions and $\langle p_t \rangle = \mu$ set its characteristics

Hard component (PT)

Independent emission with spectrum

$$\frac{dn}{dp_t dy d\phi} = \frac{C_i}{\pi^2} \frac{\alpha_{\rm s}(p_t)}{p_t}$$

up to scale $Q \sim p_{t,hard}/2$ (C_i is $C_A = 3$ or $C_F = \frac{4}{3}$) In the toy model: the same ρ distribution used to generate all events

- \blacktriangleright nevertheless: event-to-event fluctuations of ρ due to restricted area
- \blacktriangleright this sets the lower limit for the uncertainty of ρ determination

In the toy model: the same ρ distribution used to generate all events

- nevertheless: event-to-event fluctuations of ρ due to restricted area
- \blacktriangleright this sets the lower limit for the uncertainty of ρ determination

Iower fluctuations for area/median approach due to larger available area

 \blacktriangleright traditional approach suffers more from the hard contamination $S_d \sim Q$

Jets @ early LHC (p. 29)

In the toy model: the same ρ distribution used to generate all events

- nevertheless: event-to-event fluctuations of ρ due to restricted area
- \blacktriangleright this sets the lower limit for the uncertainty of ρ determination

lower fluctuations for area/median approach due to larger available area
 traditional approach suffers more from the hard contamination S_d ~ Q

UE in Monte Carlo with median method?

Average ρ as a function of y

 \blacktriangleright dijets at the LHC, $\sqrt{s}=10$ TeV, $p_t>100$ GeV, |y|<4

- significant y dependence
- strips of $\Delta y=2$ sufficient for robust ρ determination

Fluctuations within an event

within an event

- large inter-event and intra-event
- two patterns of rapidity dependence
- sizable difference between Herwig+Jimmy and Pythia

Fluctuations within an event

within an event

- large inter-event and intra-event
- two patterns of rapidity dependence
- sizable difference between Herwig+Jimmy and Pythia

Jets @ early LHC (p. 33)

Correlations

$$\operatorname{corr}(y_1, y_2) = \frac{\langle \rho(y_1)\rho(y_2) \rangle - \langle \rho(y_1) \rangle \langle \rho(y_2) \rangle}{S_d(y_1)S_d(y_2)}$$

y₁, y₂ − rapidity bins of width Δy = 2
 ⟨...⟩ − average over many events

 significant difference between Herwig + Jimmy and Pythia

• qualitatively consistent with $\langle \sigma \rangle / \langle \rho \rangle$: smaller fluctuations within event \Leftrightarrow larger correlations Jets @ early LHC (p. 33)

Correlations

$$\operatorname{corr}(y_1, y_2) = \frac{\langle \rho(y_1)\rho(y_2) \rangle - \langle \rho(y_1) \rangle \langle \rho(y_2) \rangle}{S_d(y_1)S_d(y_2)}$$

y₁, y₂ - rapidity bins of width Δy = 2
 ⟨...⟩ - average over many events

significant difference between Herwig + Jimmy and Pythia

• qualitatively consistent with $\langle \sigma \rangle / \langle \rho \rangle$: smaller fluctuations within event \Leftrightarrow larger correlations Jets @ early LHC (p. 33)

Correlations

- significant difference between Herwig + Jimmy and Pythia
- qualitatively consistent with $\langle \sigma \rangle / \langle \rho \rangle$: smaller fluctuations within event \Leftrightarrow larger correlations

$$\operatorname{vorr}(y_1, y_2) = \frac{\langle \rho(y_1)\rho(y_2) \rangle - \langle \rho(y_1) \rangle \langle \rho(y_2) \rangle}{S_d(y_1)S_d(y_2)}$$

y₁, y₂ − rapidity bins of width Δy = 2
 ⟨...⟩ − average over many events

► In early data, look at ratios of observables.

Much scope for constraining our QCD predictions

- There's more information in the Underlying Event than we're extracting currently
 Jets offer a way of extracting it
- Searches, e.g. multi-jet + jet-substructure, have interesting potential in 2010-2011 data

EXTRAS

7 TeV LHC (leading order, from Herwig 6.5):

dijets, $p_t > 100 \; { m GeV}$	$2.7 imes10^{5}~{ m pb}$	65% glue
dijets, $p_t > 300 \text{ GeV}$	1000 pb	
dijets, $p_t > 500~{ m GeV}$	53 pb	30% glue
$W_{ ightarrow e/\mu + u} + j$, $ ho_{tW} > 50~{ m GeV}$	620pb	
$W_{ ightarrow e/\mu + u} + j$, $p_{tW} > 100 \; { m GeV}$	90pb	
$Z_{\to \mu^+\mu^-/e^+e^-} + j, \ p_{tZ} > 50 \ { m GeV}$	66pb	
tī	70pb	
$t\overline{t}$, $p_{t,t} > 300 \text{ GeV}$	1.5 pb	

```
Jets @ early LHC (p. 37)

Extras

UE
```

Two component model: soft UE + hard PT

 \blacktriangleright the two terms bias $\langle \rho_{\rm ext} \rangle$ in opposite directions

- ▶ for $R \simeq 0.5 0.6$ (used in most MC analysis of UE) the biases largely cancel
- \blacktriangleright similar picture and conclusions for σ

Lextras Comparison of characteristics: toy model vs MC

the pattern for ρ(R) from the toy model present in MC events:
 (i) turn-on at low R, (ii) linear growth at larger R

variation in the curves indicative of the inter-event fluctuations

• growth of ρ with R produced by the tails of distributions of p_t/A