Pileup subtraction and rapidity dependence

Gavin Salam with Matteo Cacciari & Gregory Soyez

CERN, Princeton & LPTHE/CNRS (Paris)

CERN, 11 November 2010

$$p_{t,jet}^{\text{subtracted}} = p_{t,jet} - \rho \times A_{jet}$$

$$A_{jet} = \mathsf{jet}$$
 area

$$ho =
ho_t$$
 per unit area from pileup (or "background")

This procedure is intended to be common to pp ($\rho \sim 1-2$ GeV), pp with pileup ($\rho \sim 2-15$ GeV) and Heavy-Ion collisions ($\rho \sim 100-300$ GeV)

As proposed so far: jet-by-jet area determination, event-by-event ρ determination

Event-by-event ρ (background) estimation

INTERNAL CMS PLOT NOT SHOWN IN PUBLIC VERSION OF TALK

INTERNAL CMS PLOT NOT SHOWN IN PUBLIC VERSION OF TALK

Issues: 1) drop-off at $\eta \gtrsim 2.5$, 2) spike at $\eta \simeq 2.5$

1. First study drop-off (smooth rapidity dependence)

The quantity we look at is

$$\Delta p_t \equiv p_t^{\mathsf{pileup},\mathsf{sub}} - p_t^{\mathsf{no} \; \mathsf{pileup},\mathsf{sub}}$$

perfect subtraction will give $\Delta p_t = 0$

- Pythia DW tune, LHC 7 TeV, particles
- FastJet 2.5-devel
- anti- k_t with R = 0.5 for main jets
- k_t with R = 0.6 for ρ determination
- particles, ghosts and jets up to y = 5
- jets (no pileup) with $20 < p_t < 40 \text{ GeV}$
- global ρ estimation range extends to y = 5

Subtraction works to within 1 GeV.

But there is some residual rapidity dependence.

This is because minimum-bias p_t flow has rapidity dependence. So far: take all jets with |y| < 5 to estimate single ρ for whole event.

Alternative: for each jet, estimate ρ in its local neighbourhood, using "local range"

Useful also for heavy-ion collisions, cf Cacciari, Rojo, GPS & Soyez '10

What to watch out for? Local range must be large enough

- \blacktriangleright to have statistically meaningful measurement of ρ
- for occasional hard jets not to bias median

In what follows we'll use strip range with $\Delta=1.2$

2010-11-11 CERN

8 / 18

So far: take all jets with |y| < 5 to estimate single ρ for whole event.

Alternative: for each jet, estimate ρ in its local neighbourhood, using "local range"

Useful also for heavy-ion collisions, cf Cacciari, Rojo, GPS & Soyez '10

Impact of switch to local range

Impact of switch to local range

G. Salam (with M. Cacciari & G. Soyez) Pileup subtraction and rapidity dependence

Impact of switch to local range

2. Rapidity "ears"

INTERNAL CMS PLOT

What's going on here?

Min-bias physics doesn't have structures like this.

We mimic such an effect by doubling the p_t of every particle with $p_t < 2 \text{ GeV} \& 2.3 < |y| < 2.7$

Our simulated rapidity "ears"

Our simulated rapidity "ears"

We use "ghosts" to measure jet areas \equiv susceptibility of jet to contamination from noise.

"Ears" \equiv greater susceptibility to contamination from a given amount of actual (particle-level) noise.

Two ways of accounting for this:

► Associate "weight" w_i with each ghost i. Detector regions with more noise-sensitivity → larger w_i. Then use "weighted area" for ρ estimation and subtraction:

weighted area =
$$A_{\text{ghost}} \times \sum_{\text{ghost } i \in \text{jet}} w_i$$

Conceptually related: add extra ghosts (≡ enhanced area) in relevant part of y − φ. This is what we use in next slides. Specifically, a crude first try: double up the ghosts for 2.3 < |y| < 2.7</p>

Areas of hard jets

Subtraction without extra ghosts

G. Salam (with M. Cacciari & G. Soyez) Pileup subtraction and rapidity dependence 2010-11-11 CERN 16 / 18

Subtraction with extra ghosts

G. Salam (with M. Cacciari & G. Soyez) Pileup subtraction and rapidity dependence 2010-11-11 CERN 16 / 18

Subtraction with extra ghosts

G. Salam (with M. Cacciari & G. Soyez) Pileup subtraction and rapidity dependence

Comments

- Smooth rapidity dependence can be addressed by local ρ determination
- "Ears" can be cured by small adaptation of area/median subtraction method But is this a detector issue better resolved "upstream"?

More generally: There are two separate parts to PU subtraction problem

- The jet's sensitivity to contamination (area)
- Determining the level of the contamination (ρ)

Different methods can also be mixed. E.g.

- With track primary vertex info, you could choose to deduce "neutral" ρ from tracks and use that to subtract A × ρ^{neutral} from particle flow jets And use median ρ method where you have no tracks?
- With correction \propto number of primary vertices ($\rho \propto n^{PU}$), knowledge of area still important, because not all jets have $A = \pi R^2$

- Smooth rapidity dependence can be addressed by local ρ determination
- "Ears" can be cured by small adaptation of area/median subtraction method But is this a detector issue better resolved "upstream"?

More generally: There are two separate parts to PU subtraction problem

- The jet's sensitivity to contamination (area)
- Determining the level of the contamination (ρ)

Different methods can also be mixed. E.g.

- With track primary vertex info, you could choose to deduce "neutral" ρ from tracks and use that to subtract A × ρ^{neutral} from particle flow jets And use median ρ method where you have no tracks?
- With correction ∝ number of primary vertices (ρ ∝ n^{PU}), knowledge of area still important, because not all jets have A = πR²

Main aim: make it easier to do advanced things

Will definitely be included

PseudoJet now knows what ClusterSequence it belongs to. So one can write jet->area(), jet->constituents(), etc. [instead of cs->area(jet), etc.]

Will probably be included

- PseudoJet carries extra_info (shared pointer derived from PseudoJet::ExtraInfo) for cleaner user-information management
- Revamp of background estimation framework, to facilitate use of local ranges (Selector, will extend Range functionality, BackgroundEstimator will replace what's currently in CSAreaBase)
- Etc. (e.g. filtering tools, boosted top ID(?), ...)

EXTRAS

- Basic idea of area/median pileup subtraction: arXiv:0707.1378
- The systematics behind jet areas: arXiv:0802.1189
- The systematics behind the jet/area median ρ estimation method: arXiv:0912.4926
- Application to heavy-ion collisions (including local ranges, etc.): arXiv:1010.1759