Jet reconstruction with FastJet

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

Jets in Proton-Proton and Heavy-Ion Collisions Prague, 12 August 2010

Based on work (some preliminary) with Matteo Cacciari, Juan Rojo, Sebastian Sapeta, Gregory Soyez

Jets in Heavy-Ion Collisions

Radiation from high-momentum quarks & gluons traversing hot medium can tell us about the medium

Jets in Heavy-Ion Collisions

Radiation from high-momentum quarks & gluons traversing hot medium can tell us about the medium

Use jets to reconstruct quarks from decay of some new heavy object e.g. a Higgs boson

At high luminosity, many simultaneous *pp* collisions – not unlike AuAu/PbPb collision

Use jets to reconstruct quarks from decay of some new heavy object e.g. a Higgs boson

At high luminosity, many simultaneous *pp* collisions – not unlike AuAu/PbPb collision

Common challenge: large contamination

A pp event (LHC 5.5 TeV, Pythia)

A pp event (LHC 5.5 TeV, Pythia), embedded in a HI collision background (Hydjet 1.5)

Common challenge: large contamination

Contamination in jet

RHIC AuAu: $\mathcal{O}(40 \text{ GeV})$

LHC PbPb: $\mathcal{O}(100 \text{ GeV})$

LHC pp (hi-lumi) $\mathcal{O}(5-40 \text{ GeV})$

A pp event (LHC 5.5 TeV, Pythia), embedded in a HI collision background (Hydjet 1.5) and an actual STAR event

What are ingredients of jet finding in noisy environments?

1. Jets

- 2. Jet areas
- 3. Noise estimation
- 4. Noise subtraction
- [5. Noise suppression]

1. Jet algorithms

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{{}_{\mathit{jet.def.}}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97

Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\underset{{}_{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{{}_{\mathit{jet.def.}}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97

Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{jet.def}{\mathsf{particles}} \xrightarrow{}_{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{{}_{\mathit{jet.def.}}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97

Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\mathsf{particles} \underset{{}_{\mathit{jet.def.}}}{\longrightarrow} \mathsf{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{{}_{\mathit{jet.def.}}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{_{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jets}$

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\underset{jet.def.}{\mathsf{particles}} \xrightarrow{}_{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

> Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\underset{{}_{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

 $\underset{{}_{jet.def.}}{\mathsf{particles}} \xrightarrow{}_{jets}$

Simplest pp jet algorithm is "Cambridge/Aachen"

> Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles
$$\xrightarrow{jet.def.}$$
 jets

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\mathsf{particles} \underset{\mathsf{jet.def.}}{\longrightarrow} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\underset{{\it jet.def.}}{{\sf particles}} \xrightarrow{}_{{\it jets}}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

particles
$$\xrightarrow{jet.def}$$
 jets

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

$$\underset{jet.def.}{\mathsf{particles}} \xrightarrow{}_{jet.def.} \mathsf{jets}$$

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A jet algorithms provides a mapping:

Simplest pp jet algorithm is "Cambridge/Aachen"

Dokshitzer et al '97 Wengler & Wobisch '98

Repeatedly recombine closest pair of objects, until all separated by $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2 > R^2.$

A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

$$d_{ij} = \min(k_{ti}^{2\mathbf{p}}, k_{tj}^{2\mathbf{p}})\Delta R_{ij}^2/R^2$$
 $d_{iB} = k_{ti}^{2\mathbf{p}}$

	Alg. name	Comment	time
p = 1	k _t	Hierarchical in rel. k_t	
	CDOSTW '91-93; ES '93		NIn N exp.
p = 0	Cambridge/Aachen	Hierarchical in angle	
	Dok, Leder, Moretti, Webber '97	Scan multiple <i>R</i> at once	N In N
	Wengler, Wobisch '98	$\leftrightarrow QCD \text{ angular ordering}$	
p = -1	${\sf anti-}k_t$ Cacciari, GPS, Soyez '08	Hierarchy meaningless, jets	
	\sim reverse- k_t Delsart	like CMS cone (IC-PR)	$N^{3/2}$
SC-SM	SISCone	Replaces JetClu, ATLAS	
	GPS Soyez '07 + Tevatron run II '00 $$	MidPoint (xC-SM) cones	$N^2 \ln N \exp$.

All these algorithms [& much more] coded in (efficient) C++ at http://fastjet.fr/ (Cacciari, GPS & Soyez '05-'10)

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

2. Jet areas

Measure jets' susceptibility to contamination by noise

[Jet methods] └[Jet areas]

Jet areas

Jets are made of finite number of pointlike particles.

Area not unambiguous concept

Jet areas must be defined

Add many soft particles to event 10^{-100 GeV} each

 $A \propto \#$ inside jet

Cacciari, GPS & Soyez '08 measure of jet's susceptibility to contamination from soft radiation

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

Prague, August 2010 11 / 36

Jet areas

Jets are made of finite number of pointlike particles.

Area not unambiguous concept

Jet areas must be defined

Add many soft particles to event $10^{-100 \text{ GeV}}$ each

 $A \propto \#$ inside jet

Cacciari, GPS & Soyez '08 measure of jet's susceptibility to contamination from soft radiation

Jet reco with FastJet

Areas for 3 jet algorithms

A family of algorithms, all cluster pair with smallest d_{ij} :

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$$

$$p = \begin{cases} 1 & k_t \\ 0 & C/A \\ -1 & \text{anti-}k_t \end{cases}$$

3. Noise estimation

Estimating $\rho\equiv$ background noise level

4. Noise subtration

$$p_{t,jet}^{\text{subtracted}} = p_{t,jet} - \rho \times A_{jet}$$

$$A_{jet} = \mathsf{jet}$$
 area

$ho = p_t$ per unit area from underlying event (or "background")

This procedure is intended to be common to pp, pp with pileup (multiple simultaneous minbias) and HIC

NB in AuAu at RHIC: $p_{t,jet}^{
m subtracted}=20-50~{
m GeV}$, $ho\simeq 80~{
m GeV}$ and $A_{jet}\simeq 0.5$

Use at RHIC?

Let's examine some of the issues

Area/median method \rightarrow STAR jet results

Method designed to minimise biases, but some still persist.

Question: can we calculate size of biases? Can we further reduce them?

Area/median method \rightarrow STAR jet results

Method designed to minimise biases, but some still persist.

Question: can we calculate size of biases? Can we further reduce them?

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

Framework for a theorists' study

Gavin Salam (LPTHE, Paris)

We don't have real background (or hard!) events, so use

- ► Hard event: Pythia 6.4, and optionally PyQyen 1.5 / QPythia
- ▶ Background: Hydjet 1.6 (Hydjet++ 2.1 for cross-checks)
- Analysis: FastJet 2.4 (& 2.5-devel), R = 0.4 for all main jet finders (k_t with R = 0.5 for bkgd estimation).

Cacciari, Rojo, GPS & Soyez, to appear soon...

Example #1: non-zero $\langle \Delta p_t \rangle$

(background does not just linearly add noise to jet)

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

"How (much) a jet changes when immersed in a background"

Without background

With background

"How (much) a jet changes when immersed in a background"

Without background With background

Backreaction can be calculated (sort of...)

Soft & collinear approximation:

$$\delta p_t^{BR} = \mathcal{B}_{alg} \cdot \rho R^2 \frac{2C_i}{\pi} \alpha_s \ln \frac{p_t}{\rho R^2}$$

Cacciari, GPS & Soyez '08 + large corrections

jet alg
$$\mathcal{B}_{alg}$$

 k_t -0.3
C/A -0.3
anti- k_t 0

Backreaction can be calculated (sort of...)

Soft & collinear approximation:

$$\delta p_t^{BR} = \mathcal{B}_{alg} \cdot \rho R^2 \frac{2C_i}{\pi} \alpha_s \ln \frac{p_t}{\rho R^2}$$

Cacciari, GPS & Soyez '08 + large corrections

jet alg
$$\mathcal{B}_{alg}$$

 k_t -0.3
 C/A -0.3
anti- k_t 0

Cacciari, Rojo, GPS & Soyez, prelim. **anti**- k_t **bias** = **0**, **as expected**

Backreaction can be calculated (sort of...)

Different jet algorithms have different systematics Use of more than one provides important cross-checks

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

Example #2: fluctuations

Fluctuations

Fluctuations of amount of background / underlying-event in a square of unit area can be characterised in terms of σ_{UE} , which is $\mathcal{O}(10 \text{ GeV})$ at RHIC.

Dispersion in jet subtraction, σ_{jet} is given by

$$\sigma_{\Delta p_t} = \sigma_{UE} \times \sqrt{A_{jet}}$$

+ p_t -dependent scaling violations for k_t and C/A

Put in numbers:

$$\sigma_{\textit{UE}} \simeq 8 - 10 \text{ GeV}$$

$$ightarrow~\sigma_{m{\Delta} p_{
m t}} \sim {m 6} - {m 7}~{
m GeV}$$

What impact does this have?

[An MC study for RHIC]

Context: a steeply falling X-section

RHIC Inclusive jet spectrum

[An MC study for RHIC]

Context: a steeply falling X-section

RHIC Inclusive jet spectrum

To help think about impact of falling cross section at RHIC, approximate it as:

$$rac{d\sigma}{dp_t} \sim \exp(-0.3p_t/~{
m GeV})$$

Interplay of PDFs & $1/p_t^4$ matrix element

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

Prague, August 2010 26 / 36

Exponential spectrum \otimes Gaussian fluctuations

$$\exp(-ap_t)\otimes rac{1}{\sqrt{2\pi\sigma}}\exp\left(-rac{\Delta p_t^2}{2\sigma^2}
ight)$$

Real fluctuations not quite Gaussian Real spectrum not quite exponential (especially at low & high p_t !) But simple approximations give instructive analytical answers

Convolution rescales spectrum by factor:

$$\exp\left(rac{1}{2}a^2\sigma^2
ight)\sim 10$$
 for $\sigma\sim 7~{
m GeV}$

Convolution migrates pt's by

 $a\sigma^2 \sim 15 \; {
m GeV}$ for $\sigma \sim 7 \; {
m GeV}$

Gavin Salam (LPTHE, Paris)

[An MC study for RHIC]

└ [Fluctuations]

Reducing fluctuations, while limiting bias:

filtering

Idea to improve resolution for an LHC Higgs search in $H \rightarrow b\bar{b}$ decay mode! Keep hardest $\mathcal{O}(\alpha_s)$ gluon emission in jet, while throwing out soft "junk" Butterworth, Davison, Rubin & GPS '08

- 1. Consider a jet
- View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet

Idea to improve resolution for an LHC Higgs search in $H \rightarrow b\bar{b}$ decay mode! Keep hardest $\mathcal{O}(\alpha_s)$ gluon emission in jet, while throwing out soft "junk" Butterworth, Davison, Rubin & GPS '08

- 1. Consider a jet
- View it on smaller angular resolution scale R_{filt}
- Take (e.g.) 2 hardest "subjets" leading guark + 1 gluon
- 4. The result is a "filtered" jet

Idea to improve resolution for an LHC Higgs search in $H \rightarrow b\bar{b}$ decay mode! Keep hardest $\mathcal{O}(\alpha_s)$ gluon emission in jet, while throwing out soft "junk" Butterworth, Davison, Rubin & GPS '08

- 1. Consider a jet
- 2. View it on smaller angular resolution scale *R_{filt}*
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet

Idea to improve resolution for an LHC Higgs search in $H \rightarrow b\bar{b}$ decay mode! Keep hardest $\mathcal{O}(\alpha_s)$ gluon emission in jet, while throwing out soft "junk" Butterworth, Davison, Rubin & GPS '08

- 1. Consider a jet
- 2. View it on smaller angular resolution scale *R_{filt}*
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon

4. The result is a "filtered" jet

Idea to improve resolution for an LHC Higgs search in $H \rightarrow b\bar{b}$ decay mode! Keep hardest $\mathcal{O}(\alpha_s)$ gluon emission in jet, while throwing out soft "junk" Butterworth, Davison, Rubin & GPS '08

- 1. Consider a jet
- 2. View it on smaller angular resolution scale *R_{filt}*
- Take (e.g.) 2 hardest "subjets" leading quark + 1 gluon
- 4. The result is a "filtered" jet

Reconstructed mass for jets from decay of high-pt Higgs-boson [without pileup]

Among the techniques adopted in search for $H \rightarrow b\bar{b}$ at LHC

Filtering's reduction of dispersion from 7 GeV to 5 GeV means experimental "unfolding" might be factor 3 instead of factor 10

Numbers are rough – intended to give an idea of impact

NB: Gaussian filtering (Cole & Lai '08) not the same thing

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet
Full Δp_t distributions

Gavin Salam (LPTHE, Paris)

Full Δp_t distributions

Gavin Salam (LPTHE, Paris)

Does filtering introduce new biases in jets in quenched case?

Vacuum QCD: we know how much gluon radiation we lose QCD in medium: extra medium-induced radiation lost?

Summary RHIC (Pythia/Hydjet)

Summary RHIC (Pythia/Hydjet)

Summary LHC (Pythia/Hydjet)

Summary LHC (Pythia/Hydjet)

Gavin Salam (LPTHE, Paris)

It's still early days for jet-finding in HIC (& high-luminosity LHC)

It's a tough job to accurately remove 40 GeV of noise from a 40 GeV hard jet in the context of a steeply falling cross-section.

Theory calculations can guide the choices one makes

- Give us an idea of size of corrections semi-independently of Monte Carlo Some of them are rather large
- Tell us which approaches are complementary in their systematics Adding to robustness of experimental measurements, e.g. k_t v. anti-k_t NB: it's still hard to estimate how quenching affects systematics
- Guide design of new tools that have smaller systematics

Like filtering, yet to be tried out at RHIC

Important potential for cross-fertilization between ideas in HIC and LHC pp programs.

Gavin Salam (LPTHE, Paris)

Jet reco with FastJet

EXTRAS

[Extras] [Centrality dependence]

Disperson for non central AuAu

[Extras] └ [Centrality dependence]

P_t shift for non central AuAu

Example #2: another bias

is ρ measured correctly?

[Extras] $\lfloor \rho \text{ estimation} \rfloor$

What could go wrong?

Rapidity and azimuth dependence of ρ distribution means ρ near jet ≠ ρ measured over large region. So try various regions:

• Median estimate \neq mean contamination. Can be studied in toy models:

$$\rho^{median} \simeq \rho^{true} \left(1 - \frac{1}{3\nu R^2} \right)$$

 $\nu =$ number of particles / unit area With $\nu = 100$, R = 0.4, $\mathcal{O}(2\%) \rightarrow \mathcal{O}(1 \text{ GeV})$ on jet p_t Cacciari, GPS & Sapeta '09, for measuring $\rho \sim 2$ GeV in pp collisions!

 $\lfloor \rho \text{ estimation} \rfloor$

What could go wrong?

Rapidity and azimuth dependence of ρ distribution means ρ near jet ≠ ρ measured over large region. So try various regions:

• Median estimate \neq mean contamination. Can be studied in toy models:

$$\rho^{median} \simeq \rho^{true} \left(1 - \frac{1}{3\nu R^2} \right)$$

u = number of particles / unit areaWith $\nu = 100$, R = 0.4, $\mathcal{O}(2\%) \rightarrow \mathcal{O}(1 \text{ GeV})$ on jet p_t Cacciari, GPS & Sapeta '09, for measuring $\rho \sim 2 \text{ GeV}$ in pp collisions!